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A new class of generalized correlation coefficients that contains the Pearson and Kendall

statistics as special cases was defined by Chinchilli et al. (2005) and applied to the

estimation of correlations coefficients within the context of 2�2 cross-over designs for

clinical trials. In this paper, we determine the infinitesimal robustness and local stability

properties of these generalized correlation coefficients by deriving their corresponding

influence functions. For cases in which the population distribution is a bivariate normal

or a mixture of bivariate normal distributions we obtain explicit formulas, and

establish monotonicity and sign-reverse rule properties of the generalized correlation

coefficients.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the area of clinical trials, cross-over designs, viz., repeated measures designs in which the study is divided into different
periods and each subject receives a different treatment during each period, are often used to compare the efficacy of different
treatments. We refer to Jones and Kenward (1998) or Senn (2002) for comprehensive treatments of cross-over designs in
clinical trials research. Although many classical analyses of clinical trials data have focused on comparisons of the treatments
while controlling for nuisance effects such as period effects, sequence effects, and carryover effects, the correlation between
responses from different treatment periods is also of interest to researchers. In this regard, because the nuisance effects can be
aliased with direct treatment effects in cross-over designs, the estimation of correlations without accounting for these nuisance
effects may result in an inappropriate statistical analysis. To address this difficulty, Chinchilli et al. (2005) introduced a new
class of generalized correlation coefficients that contains the Pearson and Kendall statistics as special cases, and developed a
method for estimating those coefficients within the context of cross-over designs.

Let (X,Y) be a pair of continuous random variables with joint distribution function FX,Y and marginal distribution
functions FX and FY, respectively. For g 2 ½0,1�, let gg denote the function ggðtÞ ¼ jtj

gsgnðtÞ, t 2 R. Chinchilli et al. (2005)
defined the generalized correlation coefficient (GCC) between X and Y as

rg ¼
E½ggðX1�X2ÞggðY1�Y2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½g2

g ðX1�X2Þ�E½g2
g ðY1�Y2Þ�

q , ð1:1Þ
ll rights reserved.

Chinchilli).
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where the pairs (X1,Y1) and (X2,Y2) are independent and identically distributed with joint cumulative distribution function
FX,Y. The GCC rg provides simultaneously a class of correlation coefficients as g ranges over [0,1].

Chinchilli et al. (2005) showed that rg reduces to Kendall’s correlation coefficient when g¼ 0 and to Pearson’s
coefficient when g¼ 1. Chinchilli et al. also applied the theory of U-statistics (Lee, 1990) to construct r̂g, an estimator of
rg, obtained the asymptotic distribution and other properties of r̂g, and showed that r̂g can be modified for application to
2�2 cross-over designs in such a way that the correlation between treatment responses can be estimated without being
affected by nuisance effects. In an investigation of the values of rg, Chinchilli et al. also observed among certain
distribution functions FX,Y a tendency for the monotonicity property jr̂gjo jr̂dj to hold whenever 0rgodr1.

In this paper, we derive explicit formulas for rg for cases in which the distribution of (X,Y) is bivariate normal or is a
mixture of bivariate normal distributions. These results provide insight about conditions under which the above
monotonicity property is valid and also about the robustness characteristics of rg. In particular, we investigate the local
stability properties of rg by deriving the influence function for the estimator r̂g, and we address the issue of assessing
robustness through the computed influence function, particularly in cases in which the underlying population distribution
is a bivariate normal or a mixture of bivariate normal distributions.

This paper is organized as follows. Section 2 summarizes our results on explicit formulas and monotonicity properties of
the GCC under bivariate normality and mixture of bivariate normals. In Section 3, we provide results for the influence
function for r̂g. Following on those derivations, we consider in Section 4 numerical features of the GCCs and their
robustness properties, Section 5 provides a discussion of the preceding results, and we also include two appendices with
rigorous proofs of results in Sections 2 and 3.

2. Properties of the GCC under bivariate normality

Throughout this section, we assume that the pair (X,Y) has a bivariate normal distribution. We have noted in Section 1
that Chinchilli et al. (2005) observed a tendency for jrgj to increase as g increases. To determine the complete nature of that
tendency, we now obtain an explicit formula for rg for the case in which (X,Y) is normally distributed.

2.1. Explicit formulas for qc

Let (X1,Y1) and (X2,Y2) be independent and identically distributed with bivariate normal distributions N 2ðl,RÞ with
mean vector and covariance matrix,

l¼
mX

mY

 !
, R¼

s2
X rsXsY

rsXsY s2
Y

 !
, ð2:1Þ

respectively, where mX , mY , s2
X , and s2

Y are, respectively, the means and marginal variances of X and Y, and r is the Pearson
coefficient of correlation between X and Y. Also, we use the standard notation 2F1ða,b; c; xÞ for the classical Gaussian
hypergeometric series (Andrews et al., 2000, p. 64). We shall establish in Appendix A the following explicit formulas for rg.

Property 2.1. Under bivariate normality,

rg ¼ 2p�1=2
G

1

2
gþ1

� �� �2

G gþ1

2

� � rð1�r2Þ
gþ1=2

2F1

1

2
gþ1,

1

2
gþ1;

3

2
;r2

� �
ð2:2Þ

¼ 2p�1=2
G

1

2
gþ1

� �� �2

G gþ1

2

� � r2F1

1

2
ð1�gÞ, 1

2
ð1�gÞ;3=2;r2

� �
: ð2:3Þ

It is interesting that the Gaussian hypergeometric series arise in the context of the generalized correlation coefficients.
It has been known, since Fisher (1915) and Hotelling (1953), that there is a connection between the Gaussian
hypergeometric series and the distributions of sample correlation coefficients; however, we are unaware of any results in
which any correlation coefficients themselves are expressible in terms of the Gaussian hypergeometric series.

As partial verification of (2.2), we set g¼ 0 and apply the well-known result,

2F1ð1,1;3=2;r2Þ ¼
sin�1r
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p ,

(Andrews et al., 2000, p. 64), to obtain

r0 ¼ 2p�1sin�1r: ð2:4Þ
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It is well known that r is related to the Kendall correlation coefficient, t, by the equation r¼ sinðpt=2Þ; cf. Joe (1997), p. 54,
Exercise 2.14. Therefore, by (2.4), r0 � t. For the case in which g¼ 1 we apply to (2.3) the elementary formula,

2F1ð0,0; c; xÞ � 1, obtaining r1 � r.
2.2. Monotonicity and reverse rule properties

We have noted in Section 1 that Chinchilli et al. (2005) observed a tendency of jrgj to increase monotonically as g
increases on [0,1]. That tendency was observed by examining the values of sample estimates, r̂g, from illustrative
examples including a case in which r̂0 ¼ 0:32or̂0:5 ¼ 0:51o r̂1 ¼ 0:61; cf. Chinchilli et al. (2005), Table 1. To determine
the exact nature of that tendency, we begin by obtaining an explicit formula for rg for the case in which (X,Y) is normally
distributed or distributed as a mixture of bivariate normal distributions.

As a consequence of (2.3), we obtain the following result.

Property 2.2. The GCC jrgj is a strictly increasing function of jrj.

To establish this result we observe that, by (2.3), it suffices to show that the hypergeometric series in (2.3) is strictly
increasing in jrj. Since 0rgr1 then, by the definition (A.5) of the Gaussian hypergeometric series, all terms in the
hypergeometric series in (2.3) are nonnegative. Moreover, since that series is a function of r2 then the resulting expression
is a strictly increasing function of jrj.

A more intricate property of the GCC under bivariate normality is the following.

Property 2.3. For rZ0, the GCC rg is a strictly increasing function of g.

In Appendix A, we obtain this result by means of the theory of total positivity (Karlin, 1968), a theory which has figured
prominently in studies of the positivity properties of correlation coefficients.

Let us change notation temporarily and denote the right-hand side of (2.2) or (2.3) by Kðr,gÞ. Then we shall prove the
following result.

Property 2.4. For 0rr2or1r1, the ratio Kðr2,gÞ=Kðr1,gÞ is a strictly increasing function of g 2 ½0,1�.

In order to obtain Property 2.3, we now substitute r1 ¼ 1 in Property 2.4, and use an earlier observation that Kð1,gÞ ¼ r,
which does not depend on g.
Table 1
Parameter values for cases 1–9.

Cases g¼ 0 g¼ 0:25 g¼ 0:50 g¼ 0:75 g¼ 1

Values of E½g2
g ðX1�X2Þ�

1–3,5–9 1.0 0.97774 1.12838 1.44641 2.00

4 1.0 1.12900 0.150451 2.22689 3.56

Values of E½g2
g ðY1�Y2Þ�

1–3,5–9 1.0 0.97774 1.12838 1.44641 2.00

4 1.0 1.19748 1.69257 2.65722 4.50

Values of E½ggðX1�X2ÞggðY1�Y2Þ�

1 0.79784 0.87524 1.05342 1.36988 1.900

2 0.33333 0.40962 0.52896 0.71339 1.000

3 0.12819 0.16030 0.20956 0.28468 0.400

4 0.12819 0.19063 0.29637 0.47877 0.800

5 0.75513 0.83304 1.00642 1.31141 1.820

6 0.71805 0.78771 0.94808 1.23289 1.710

7 0.63827 0.70019 0.84274 1.09590 1.520

8 0.51859 0.56890 0.68472 0.89042 1.235

9 0.23935 0.26257 0.31603 0.41096 0.570

Values of rg
1 0.79784 0.89516 0.93357 0.94709 0.9500

2 0.33333 0.41894 0.46878 0.49321 0.5000

3 0.12819 0.16395 0.18572 0.19682 0.2000

4 0.12819 0.16395 0.18572 0.19682 0.2000

5 0.75513 0.85201 0.89192 0.90667 0.9100

6 0.71805 0.80565 0.84021 0.85238 0.8550

7 0.63827 0.71613 0.74686 0.75767 0.7600

8 0.51859 0.58186 0.60682 0.61561 0.6175

9 0.23935 0.26855 0.28007 0.28413 0.2850
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It is straightforward to see that the strictly increasing nature of the ratio in Property 2.4 is equivalent to the fact that the
determinant

Kðr1,g1Þ Kðr1,g2Þ

Kðr2,g1Þ Kðr2,g2Þ

�����
�����o0

for 14r14r240 and 1Zg14g2Z0. In the terminology of the theory of total positivity (Karlin, 1968, p. 12), the negative
sign of these determinants signifies that for r 2 ð0,1Þ and g 2 ½0,1�, the kernel Kðr,gÞ is strictly reverse rule of order 2 (SRR2).

Generalizing Property 2.4, we also shall prove in Appendix A the following result.

Property 2.5. The kernel Kðr,gÞ is strictly reverse rule of order infinity ðSRR1Þ, i.e., for any positive integer r, if

14r14 � � �4rr 40 and 1Zg14 � � �4gr Z0 then the sign of the determinant

Kðr1,g1Þ Kðr1,g2Þ � � � Kðr1,grÞ

Kðr2,g1Þ Kðr2,g2Þ � � � Kðr2,grÞ

^ ^ ^

Kðrr ,g1Þ Kðrr ,g2Þ � � � Kðrr ,grÞ

����������

����������
is ð�1Þrðr�1Þ=2.

We remark that Wijsman (1959) long ago established a connection between the theory of total positivity and the
sampling distribution of the Pearson correlation coefficient based on samples from a bivariate normal distribution;
cf. Karlin (1968, p. 120).

2.3. Mixtures of bivariate normal distributions

Departures from multivariate normality are well known to arise naturally in applied work (Kowalski, 1972; Wilcox,
1993). In such instances, a classic approach is to apply mixtures of normal distributions as the underlying model when it is
of interest to determine the effects of outlying observations (Tukey, 1960). Let e1, . . . ,em be constants representing the
mixing proportions of component sub-populations, where 0reir1 and

Pm
i ¼ 1 ei ¼ 1. A mixture of m bivariate normal

distributions is a random vector (X,Y) having distribution function

FX,Y ¼ e1F1þ � � � þemFm,

where Fi is the joint cumulative distribution function of a bivariate normal distribution with mean vector ðmi,X ,mi,Y Þ,
variances ðs2

i,X ,s2
i,Y Þ, correlation coefficient ri, i=1,y,m, and it is assumed that the corresponding sub-populations are

mutually independent. For independent, identically distributed, bivariate random variables (X1,Y1) and (X2,Y2), having the
same distribution as (X,Y), we apply (A.6) to obtain

E½ggðX1�X2ÞggðY1�Y2Þ� ¼

22gþ1 G
1

2
gþ1

� �� �2

p
Xm

i ¼ 1

eis
g
i,Xs

g
i,Yrið1�r

2
i Þ
gþ1=2

2F1

1

2
gþ1,

1

2
gþ1;

3

2
;r2

i

� �
: ð2:5Þ

By applying (A.7) we also find that

E½g2
g ðX1�X2Þ� ¼

Gð2gþ1Þ

Gðgþ1Þ

Xm
i ¼ 1

eis
2g
i,X , ð2:6Þ

and

E½g2
g ðY1�Y2Þ� ¼

Gð2gþ1Þ

Gðgþ1Þ

Xm
i ¼ 1

eis
2g
i,Y : ð2:7Þ

Therefore, the GCC of (X,Y) is obtained in the form

rg ¼
E½ggðX1�X2ÞggðY1�Y2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½g2

g ðX1�X2Þ�E½g2
g ðY1�Y2Þ�

q ¼ 2p�1=2
G

1

2
gþ1

� �� �2

G gþ1

2

� �
Pm

i ¼ 1

eis
g
i,Xs

g
i,Yrið1�r2

i Þ
gþ1=2

2F1

1

2
gþ1,

1

2
gþ1;

3

2
;r2

i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i ¼ 1 eis
2g
i,X

� 	 Pm
i ¼ 1 eis

2g
i,Y

� 	r : ð2:8Þ

For the case in which each Fi is a standard bivariate normal distribution with si,X ¼ si,Y ¼ 1, i=1,y,m, (2.8) reduces to

rg ¼ 2p�1=2
G

1

2
gþ1

� �� �2

G gþ1

2

� � Xm

i ¼ 1

eirið1�r
2
i Þ
gþ1=2

2F1

1

2
gþ1,

1

2
gþ1;

3

2
;r2

i

� �
: ð2:9Þ
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Setting g¼ 1 in this latter formula, we obtain rX,Y � rgjg ¼ 1 ¼
Pm

i ¼ 1 eiri, a result due originally to Kowalski (1972). If the
underlying population follows a two-component mixture of bivariate normal distribution then, by (2.8),

rgjg ¼ 1 ¼
esg1Xs

g
1Yr1þð1�eÞs

g
2Xs

g
2Yr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðes2g
1,Xþð1�eÞs

2g
2,XÞðes

2g
1,Yþð1�eÞs

2g
2,Y Þ

q : ð2:10Þ

For general values of g, it is clear from the expressions in (2.5)–(2.10) that the population parameters rg,
E½ggðX1�X2ÞggðY1�Y2Þ�, E½g2

g ðX1�X2Þ�, and E½g2
g ðY1�Y2Þ�) are dependent on the parameters ei, ri, si,X , and si,Y corresponding

to the component bivariate normal distributions in the mixture.

3. The influence function of the GCC

In research on robust statistical methods, the influence function originated by Hampel (1974) (cf. Hampel et al., 1986) is
a basic tool for describing the infinitesimal stability of an estimator and quantifying the approximate effect of a single
observation on the estimator. When the influence function is bounded, then the corresponding estimator is said to have
infinitesimal robustness; in such instances, the estimator displays less sensitivity to variations in the characteristics of the
observations, e.g., non-normality, small amounts of outliers or influential points, or badly placed observations.

Let x¼ ððx1,y1Þ,ðx2,y2ÞÞ denote a pair of bivariate points at the values (x1,y1) and (x2,y2). Also, let FX,Y be the distribution
function of (X,Y), and (X1,Y1) and (X2,Y2) be a random sample from (X,Y). We shall show in Appendix B that the asymptotic
influence function for r̂g is

IFðx; r̂g,FX,Y Þ ¼
1

2
rg

2ggðx1�x2Þggðy1�y2Þ

E½ggðX1�X2ÞggðY1�Y2Þ�
�
½ggðx1�x2Þ�

2

E½ggðX1�X2Þ�
2
�
½ggðy1�y2Þ�

2

E½ggðY1�Y2Þ�
2

 !
: ð3:1Þ

Let u=x1�x2, v=y1�y2, U=X1�X2 and V=Y1�Y2. Substituting

rg ¼
E½ggðUÞggðVÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½g2

g ðUÞ�E½g
2
g ðVÞ�

q ,

we find that the influence function (3.1) can be reexpressed as

IFððu,vÞ; r̂g,FU,V Þ ¼
ggðuÞggðvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ggðUÞ�
2E½ggðVÞ�

2
q �

1

2
rg
½ggðuÞ�

2

E½ggðUÞ�
2
þ
½ggðvÞ�

2

E½ggðVÞ�
2

 !
: ð3:2Þ

For a given g and distribution function FX,Y, we can see from (3.2) that observations (x1,y1) and (x2,y2) that are far from each
other tend to increase the influence function IFðx; r̂g,FX,Y Þ. Also, the influence function is unbounded unless g¼ 0, the case
of the Kendall correlation coefficient. For various values of g, the Kendall correlation coefficient ðg¼ 0Þ is the most robust,
whereas the Pearson correlation coefficient ðg¼ 1Þ is the least robust.

4. Robustness properties of the GCC

In this section, numerical investigations are conducted to demonstrate what we have observed in Section 2 and to
explore the robustness behavior of the GCC using the influence function derived in Section 3. Denoting the bivariate
normal distribution in (2.1) by N 2ðmX ,mY ;s2

X ,s2
Y ;rÞ, we shall consider several bivariate population distributions FX,Y as

follows:
Case 1: A normal distribution, N 2ð0,0;1,1;0:95Þ, representing examples in which the random variables are highly

correlated.
Case 2: A normal distribution, N 2ð�

ffiffiffiffiffiffiffi
0:1
p

=2,
ffiffiffiffiffiffiffi
0:1
p

=2;1,1;0:5Þ, representing examples in which the random variables are
moderately correlated.

Case 3: A normal distribution, N 2ð�0:5,0:5;1,1;0:2Þ, representing examples in which the random variables are weakly
correlated.

Case 4: A normal distribution, N 2ð
ffiffiffiffiffiffiffiffiffiffi
0:25
p

=2,
ffiffiffiffiffiffiffiffiffiffi
0:25
p

=2; ð4=3Þ2,ð3=2Þ2;0:2Þ, representing examples in which two weakly
correlated variables both have large variances.

Case 5: A mixture, 0:9�N 2ð0,0;1,1;0:95Þþ0:1�N 2ð0,0;1,1;0:55Þ, in which 10% of the population is generated by a
standard bivariate normal distribution with moderate correlation.

Case 6: A mixture, 0:9�N 2ð0,0;1,1;0:95Þþ0:1�N 2ð0,0;1,1;0Þ, where the 10% of the population is through a standard
bivariate normal distribution with uncorrelated variables.

Case 7: A mixture, 0:9�N 2ð0,0;1,1;0:95Þþ0:1�N 2ð0,0;1,1;�0:95Þ, in which 10% of the population is generated by a
standard bivariate normal distribution with highly negative correlated variables.

Case 8: A mixture, 0:65�N 2ð0,0;1,1;0:95Þþ0:35�N 2ð0,0;1,1;0Þ, in which 35% of the population is drawn from a
standard bivariate normal distribution with uncorrelated variables.

Case 9: A mixture, 0:3�N 2ð0,0;1,1;0:95Þþ0:7�N 2ð0,0;1,1;0Þ, in which 70% of the population is through an
uncorrelated bivariate standard normal distribution.
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In each case, we tabulate the corresponding values of the four parameters E½ggðY1�Y2Þ�
2, E½ggðX1�X2Þ�

2,
E½ggðX1�X2ÞggðY1�Y2Þ�, and rg by means of the explicit formulas provided in Section 2.
4.1. Bivariate normal distributions

The parameter values for the distributions of Cases 1–4 are listed in Table 1. In Cases 1–3, we obtain identical values for
E½ggðX1�X2Þ�

2 and E½ggðY1�Y2Þ�
2 for given choices of g, and we also find that the values of E½ggðX1�X2ÞggðY1�Y2Þ� and rg

decrease as r, the associated Pearson correlation coefficient, decreases. These results also reflect the fact that if two normal
distributions have the same Pearson correlation coefficient, as in Cases 3–4, then the resulting values of rg are unchanged
irrespective of the values of sX and sY . By comparing Cases 3–4 we see that, an increase in s2

X , s2
Y , or g tends to increase the

values of the parameters E½ggðX1�X2Þ�
2, E½ggðY1�Y2Þ�

2, and E½ggðX1�X2ÞggðY1�Y2Þ�.
The strict sign-regularity property derived in Property 2.5 is also exhibited by the values of the GCC for Cases 1–3. In

Table 1, it is straightforward to verify that the 4�4 array of values of rg satisfies the SRR properties, e.g., the determinant
of any 2�2 or 3�3 sub-matrix constructed from that array, with rows and columns indexed by r and g in increasing
order, has sign �1, as predicted by Property 2.5.

To illustrate further the behavior of the associated influence function of the GCCs for these various normal distributions,
the graphs of IFðx; T,FX,Y Þ formed by (3.2) are pictured in Fig. 1 for Cases 1–3 and for various values of g. In these graphs, the
horizontal and vertical axes list values of u=x1�x2 and v=y1�y2, respectively, ranging from �5 to 5. Cells having similar or
identical color as their neighbors represent regions of bounded influence. We also consider pairs x¼ ððx1,y1Þ,ðx2,y2ÞÞ of
points for which the difference vector ðu,vÞ � ðx1�y1,x2�y2Þ, takes the values (3,3), (�3,�3), (3,�3), or (�3,3). Such points
will be viewed as pairs of ‘‘bad points’’ or ‘‘gross errors’’ for the underlying population, and we shall interpret the effect of
an additional observation on the GCC rg. The values of the influence function at such pairs of observations for Cases 1–4 are
provided in Table 2.

By Fig. 1 and as illustrated in Table 2, several findings are observed. First, Kendall’s correlation coefficient (the case in
which g¼ 0) is, as expected, the most robust one with good stability against small perturbations of the underlying
distribution. Second, under the same distribution, the tendency toward bounded influence declines as g increases (see
Fig. 1). In other words, the larger the value of g the greater the influence (see Table 2). Finally, the influence function is sign-
symmetric, and for u and v of the same sign, the calculated influence function values are less pronounced than those for u

and v of opposite sign. For brevity, we have omitted the graphs of IFðx; T,FX,Y Þ for Case 4 because those graphs have shape
similar to those of Case 3, the only difference being that they have a smaller range of influence function values due to the
larger variances chosen for the underlying distribution.

On the other hand, comparisons in Cases 1–3 indicate that the values of the influence function of the GCC are inversely
related to the Pearson correlation coefficient in the associated bivariate normal distribution. For highly correlated normal
random variables with unit variances, the outcome is a smaller influence at an additional pair of bivariate points than is the
case for a bivariate normal random vector with weakly correlated components. For example, the influence function values
at a pair of bivariate observations with difference vector (u,v)=(3,3) for g¼ 0:5 are 0.17661, 1.41235, and 2.16491 for the
bivariate normal distributions having Pearson correlation coefficients 0.95 (in Case 1), 0.5 (in Case 2), and 0.2 (in Case 3),
respectively.
4.2. Contaminated bivariate normal distributions

Comparisons for the two-component mixture of bivariate normal distributions are performed in a similar fashion. True
parameter values for Cases 5–9 are also given in Table 1.

By (2.6) and (2.7), and since all the population variances are equal to 1, it follows that E½g2
g ðX1�X2Þ� and E½g2

g ðY1�Y2Þ� are
equal for all such cases. It also can be seen that these parameters increase as g increases. Cases 5–7 are instances in which
1�e, the mixing proportion, is fixed at 0.1; both rg and E½ggðX1�X2ÞggðY1�Y2Þ� are dependent on r and ru, the Pearson
correlation coefficients corresponding to the standard bivariate normal distributions in the mixture. It can be seen also that
the larger the value of jr�ruj, the smaller the values of the parameters. The combination ðr,ruÞ ¼ ð0:95,�0:95Þ considered in
Case 7 results in even smaller values of the parameters E½g2

g ðX1�X2Þ� and E½g2
g ðY1�Y2Þ�. In addition, by comparing Cases 8

and 9 with Case 6, we see that as the mixing proportion 1�e increases for a given pair ðr,ruÞ in the mixture, the values of rg
and E½ggðX1�X2ÞggðY1�Y2Þ� decrease.

Table 2 also provides values of the influence function at a pair of bivariate observations for Cases 5–9. In comparing
Cases 5–7, we see from Table 2 that small values of jr�ruj at a fixed mixing proportion result in small influence function
values. For Cases 6, 8 and 9, the values of the influence function increase with mixing proportion 1�e for cases in which r
and ru are fixed. These implies that influence function tends to be unbounded (note that for brevity, the graphs of
IFðx; T,FX,Y Þ for these case comparisons are not provided here) with increased mixing proportion 1�e for certain mixtures of
two standard bivariate normal distributions (i.e., r, ru fixed), or with jr�ruj large and where the mixing proportion, 10%, is
held fixed.
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Fig. 1. Three-dimensional graphs of the influence functions for Cases 1–3.
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5. Concluding remarks

In this article, we have explored in a twofold way the robustness properties of the GCCs introduced by Chinchilli et al.
(2005). We derived explicit formulas for the GCC for bivariate normal and contaminated normal distributions, and
established monotonicity and sign-regularity properties of the GCC.



Table 2
Values of IFðx; T; FX,Y Þ for Cases 1–9 at given pairs of bivariate points.

Cases g¼ 0 g¼ 0:25 g¼ 0:50 g¼ 0:75 g¼ 1

ðx1�x2 ,y1�y2Þ ¼ 7 ð3,3Þ

1 0.20217 0.18572 0.17661 0.19009 0.22500

2 0.66667 1.02933 1.41235 1.82061 2.25000

3 0.87181 1.48104 2.16491 2.88539 3.60000

4 0.87181 1.24530 1.53022 1.71402 1.79688

5 0.24487 0.26216 0.28736 0.33529 0.40500

6 0.28195 0.34430 0.42482 0.53032 0.65250

7 0.36173 0.50287 0.67303 0.87056 1.08000

8 0.48141 0.74074 1.04534 1.38091 1.72125

9 0.76065 1.29575 1.91406 2.57174 3.21750

ðx1�x2 ,y1�y2Þ ¼ 7 ð�3,3Þ

1 �1.79783 �3.35724 �5.14075 �6.99481 �8.77500

2 �1.33333 �2.51363 �3.90501 �5.36429 �6.75000

3 �1.12819 �2.06912 �3.15245 �4.29951 �5.40000

4 �1.12819 �1.73397 �2.29730 �2.55815 �2.70313

5 �1.75513 �3.28080 �5.03000 �6.84960 �8.59500

6 �1.71805 �3.19867 �4.89254 �6.65458 �8.34750

7 �1.63827 �3.04009 �4.64434 �6.31434 �7.92000

8 �1.51859 �2.80223 �4.27202 �5.80399 �7.27875

9 �1.23935 �2.24721 �3.40330 �4.61316 �5.78250
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We have also obtained the influence function for assessing robustness of the GCC, thereby evaluating the robustness
when the underlying distribution is a normal or mixture of normal distributions. Except for the case in which g¼ 0, the
influence function for the GCC is unbounded; this justifies a phenomenon observed earlier in empirical studies, as well as
in Chinchilli et al. (2005), that the Kendall correlation coefficient is robust and is a good alternative to the Pearson
correlation coefficient when bivariate normality is suspect.

We have noted in Section 3 that if the distance between observations (x1,y1) and (x2,y2) is large then the influence
function for the estimator r̂g is commensurately large, and we have illustrated this phenomenon with nine examples of
normal or contaminated normal distributions.

Kocherlakota and Kocherlakota (1981) showed that the non-normality of a mixture of two standard bivariate normal
distributions, similar to those considered in Cases 5–7 of Section 4, can be demonstrated by an examination of the
coefficient of kurtosis. Kocherlakota and Kocherlakota noted that marked departures from bivariate normality arise for
large values of jr�ruj, and especially so for cases in which r and ru are of opposite signs. Thus, when the parent population
is a mixture of two standard bivariate normal distributions, the results of Section 4 suggest an intuitive relationship
between the robustness of the GCC, as assessed by the influence function, and departures from normality.

The inverse hyperbolic tangent transformation (or Fisher’s Z-transformation) ordinarily applied to sample correlation
statistics has been also described in Chinchilli et al. (2005) for r̂g. In this paper, we do not, however, investigate the
robustness properties based on the transformed scale. As the r̂g is bounded between �1 and +1, an unbounded influence
function will result in a large relative, instead of absolute, change in the correlation coefficient when a data point is
perturbed. Therefore, it would be unnecessary to develop the influence function for the Fisher-transformed correlation
coefficient, when the relative change is of higher concern than the absolute change.

In data analysis, the choice of a specific GCC, as defined by a particular choice of g, must be determined by an
investigator based on their experience and familiarity with the underlying data. In practice, as the retention of a potential
outlier becomes more costly or precarious, bearing in mind that the GCC rg behaves more robustly as g decreases, we
would recommend that an investigator apply correspondingly smaller values of g. Conversely, if the data analysis is able to
tolerate a higher possibility of a potential outlier then an investigator may find it appropriate to use higher values of g in
their choice of a GCC. The suggestion above, however, is more reasonable for the data that do not exhibit extreme
departures from a bivariate normal distribution.

It is important to realize that the GCC is not invariant under the class of monotonic transformations (e.g., exponential
transformation). The rg calculated on the original data is not equal to that calculated on the transformed data for 0ogr1.
Unlike Kendall’s correlation coefficient and Spearman’s correlation coefficient, the GCC is not a measure of monotone
association. To construct the invariant GCC, one can replace X by FX and Y by FY in Eq. (1.1). With FX and FY being uniformly
distributed between zero and one, the sample estimate then would be based on the ranks of the X’s and the Y’s. This new
class of GCC yields a family of monotone association measures which interpolates between Kendall’s and Spearman’s
correlation coefficients. While we currently do not include the Spearman rank correlation coefficient as a case, the
invariant GCC may provide an alternative particularly for nonparametric correlation analysis.

The relationship between Kendall’s and Spearman’s correlation coefficients has attracted attention in recent years
(Capéraá and Genest, 1993; Chen, 2006; Li and Li, 2007; Fredricks and Nelsen, 2007). It has been suggested that Spearman’s
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correlation coefficient is, under certain regularity conditions, larger than Kendall’s correlation coefficient. This relationship,
therefore, may still hold for the rank or invariant GCC due to its strictly increasing property (Property 2.4), and further
investigation will be required to settle this issue.

Chinchilli et al. (2005) have also shown how the GCC may be adapted to estimate correlation coefficients within the
context of a 2�2 cross-over design. It is believed that the GCC can be applied also to more general types of two-treatment
cross-over designs that include at least two sequences or treatment periods. Such generalizations are expected to involve
corresponding asymptotic theory and associated robustness properties more complicated than in the present paper, and
those possibilities will be described in forthcoming work.
Appendix A. Proofs for Section 2

By changing location and scale, it follows from the definition (1.1) of rg that, without loss of generality, we may assume
mX ¼ mY ¼ 0 and s2

X ¼ s2
Y ¼ 1. Now define the random variables U ¼ 2�1=2

ðX1�X2Þ and V ¼ 2�1=2
ðY1�Y2Þ; then U and V have

the joint density function

f ðu,vÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p exp �
1

2ð1�r2Þ
ðu2�2ruvþv2Þ

� �
, ðA:1Þ

u,v 2 R, and this density satisfies the symmetry property, f(u,�v)= f(�u,v) for all u, v. By the definition of U and V,

EggðX1�X2ÞggðY1�Y2Þ ¼ 2gEjUV jgsgnðUVÞ ¼ 2g
Z Z

R2
juvjgsgnðuvÞf ðu,vÞdu dv:

By decomposing R2 into the four quadrants fð7u,7vÞ : uZ0,vZ0g, and applying the above symmetry property of f(u,v),
we obtain

EjUV jgsgnðUVÞ ¼ 2

Z 1
0

Z 1
0
ðuvÞg½f ðu,vÞ�f ðu,�vÞ�du dv: ðA:2Þ

Applying (A.1), we find that (A.2) equals

2g

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

p Z 1
0

Z 1
0
ðuvÞgexp �

u2þv2

2ð1�r2Þ

� �
sinh

r
1�r2

uv

� �
du dv

¼
2g

p ð1�r
2Þ
ð2gþ1Þ=2

Z 1
0

Z 1
0
ðuvÞgexp½�ðu2þv2Þ=2�sinhðruvÞdu dv, ðA:3Þ

where the latter expression is obtained by replacing (u,v) by ð1�r2Þ
1=2
ðu,vÞ. On applying the Taylor–Maclaurin series

expansion,

sinhðruvÞ ¼
X1
k ¼ 0

ðruvÞ2kþ1

ð2kþ1Þ!

to (A.3), verifying via Fubini’s theorem that the interchange of integrals and summation is justified, and evaluating each
integral using the formula:Z 1

0
t2a�1expð�t2=2Þdt¼ 2a�1GðaÞ,

a40, we obtain

EjUV jgsgnðUVÞ ¼
2ð1�r2Þ

gþ1=2

p
X1
k ¼ 0

r2kþ1

ð2kþ1Þ!

Z 1
0

Z 1
0
ðuvÞ2kþgþ1e�ðu

2þv2Þ=2 du dv

¼
2gþ1

p
rð1�r2Þ

gþ1=2
X1
k ¼ 0

r2k

ð2kþ1Þ!
G

1

2
gþkþ1

� �� �2

22k:

Recall the notation for the rising factorial,

ðaÞk ¼
GðaþkÞ

GðaÞ
¼ aðaþ1Þðaþ2Þ � � � ðaþk�1Þ, ðA:4Þ

k=0,1,2,y; then it is straightforward to verify that

ð2kþ1Þ!¼ k!22k
ð3=2Þk,

and that

Gð12 gþkþ1Þ ¼ ð12 gþ1ÞkGð12gþ1Þ:
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Therefore,

EjUV jgsgnðUVÞ ¼

2gþ1 G
1

2
gþ1

� �� �2

p rð1�r2Þ
gþ1=2

X1
k ¼ 0

1

2
gþ1

� �
k

1

2
gþ1

� �
k

ð3=2Þkk!
r2k

¼

2gþ1 G
1

2
gþ1

� �� �2

p
rð1�r2Þ

gþ 1
2 � 2F1

1

2
gþ1,

1

2
gþ1;3=2;r2

� �
,

where 2F1 is the Gauss hypergeometric function,

2F1ða,b; c; xÞ ¼
X1
k ¼ 0

ðaÞkðbÞk
ðcÞk

xk

k!
, ðA:5Þ

jxjo1. Consequently,

E½ggðX1�X2ÞggðY1�Y2Þ� ¼ 2gE½jUV jgsgnðUVÞ� ¼
22gþ1 G

g
2
þ1

� 	h i2

p rð1�r2Þ
gþ1=2

� 2F1

g
2
þ1,

g
2
þ1;

3

2
;r2

� �
: ðA:6Þ

By a similar argument, we obtain

E½g2
g ðX1�X2Þ� ¼ E½g2

g ðY1�Y2Þ� ¼
Gð2gþ1Þ

Gðgþ1Þ
: ðA:7Þ

Substituting (A.6) and (A.7) into (1.1), and applying Legendre’s duplication formula for the gamma function (Andrews et al.,
2000, p. 22) to simplify the constant term, we obtain the explicit formula (2.2).

Finally, (2.3) is obtained from (2.2) by applying the Euler identity,

2F1ða,b; c,xÞ ¼ ð1�xÞc�a�b
2F1ðc�a,c�b; c,xÞ,

to the hypergeometric series in (2.2).

Proof of Property 2.5. Let di ¼ 1=2ð1�giÞ, i¼ 1, . . . ,r. Then, we need to determine the sign of the r� r determinant

detðKðri,gjÞÞ ¼
Yr

j ¼ 1

2p�1=2
G

1

2
gjþ1

� �� �2

G gjþ
1

2

� � rj

2
6664

3
7775detð2F1ðdi,di;3=2;r2

j ÞÞ ðA:8Þ

for 14r14 � � �4rr 40 and 1Zg14 � � �4gr Z0. Define the functions hiðkÞ ¼ ½ðdiÞk�
2=k!ð3=2Þk and giðkÞ ¼ r2k

i , k=0,1,2,y,
i=1,y,r. By the Binet–Cauchy formula (Karlin, 1968, p. 1),

detð2F1ðdi,di;3=2;r2
j ÞÞ � det

X1
k ¼ 0

hiðkÞgjðkÞ

 !
¼

X
k1 4 ���4kr Z0

detðhiðkjÞÞdetðgiðkjÞÞ: ðA:9Þ

To determine the sign of the r� r determinant red detðhiðkjÞÞ, it suffices to determine the sign of detð½ðdiÞkj
�2Þ. Define a

measure n on ð0,1Þ by dnðtÞ ¼ e�tt�1 dt; then, for d40 and kZ0, it is elementary that

½ðdÞk�
2 ¼

1

½GðdÞ�2

Z 1
0

Z 1
0
ðt1t2Þ

dþk dnðt1Þdnðt2Þ: ðA:10Þ

We now define a measure n on ð0,1Þ by convolving the measure n multiplicatively, viz.,

dnðtÞ ¼
Z

t1t2 ¼ t
dnðt1Þdnðt2Þ:

The measure n is sigma-finite and, since the double integral (A.10) converges absolutely, we may apply Fubini’s theorem to
deduce that

½ðdÞk�
2 ¼

1

½GðdÞ�2

Z 1
0

tdþk dnðtÞ:

Therefore

detð½ðdiÞkj
�2Þ ¼ det

1

½GðdiÞ�
2

Z 1
0

tdiþkj dnðtÞ
� �

¼
Yr

j ¼ 1

1

½GðdiÞ�
2

2
4

3
5det

Z 1
0

tdi tkj dnðtÞ
� �

: ðA:11Þ
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Applying the continuous form of the Binet–Cauchy formula (Karlin, 1968, pp. 16–17) to the latter determinant, we have

det

Z 1
0

tdi tkj dnðtÞ
� �

¼

Z
� � �

Z
14 t1 4 ���4 tr 40

detðt
dj

i Þdetðt
kj

i Þ
Yr

j ¼ 1

dnðtjÞ:

Each determinant in the above integrand is a well-known generalized Vandermonde determinant. It is well known that
detðt

kj

i Þ40 whenever t14 � � �4tr and k14 � � �4kr . As for detðt
dj

i Þ, since d1o � � �odr , then this determinant would be
positive if we were to reverse the order of all its rows, a process that would require r(r�1)/2 row interchanges. Hence, the
sign of detðt

dj

i Þ is ð�1Þrðr�1Þ=2, and the same holds for detðfiðkjÞÞ.

Finally, returning to (A.9), the determinant detðgiðkjÞÞ � detðrkj

i Þ also is a generalized Vandermonde determinant, hence is

positive for r14 � � �4rr and k14 � � �4kr Z0; see Karlin (1968, p. 15). Therefore, the sign of the determinant (A.8) is

ð�1Þrðr�1Þ=2. &

We remark that for small values of k, the determinant (A.11) can be calculated explicitly and then its sign is seen
directly to be positive. For instance, for the case in which k=2, we have

½ðd1Þk1
�2 ½ðd1Þk2

�2

½ðd2Þk1
�2 ½ðd2Þk2

�2

������
������¼ ½ðd1Þk2

�2½ðd2Þk2
�2
½ðd1Þk1

�2

½ðd1Þk2
�2
�
½ðd2Þk1

�2

½ðd2Þk2
�2

 !
: ðA:12Þ

For k14k2,

ðdÞk1

ðdÞk2

¼ ðdþk2Þ � � � ðdþk1�1Þ � ðdþk2Þk1�k2
,

hence the last term in (A.12) equals ½ðd1þk2Þk1�k2
�2�½ðd2þk2Þk1�k2

�2, which is seen easily to be positive for d14d2 and
k14k2; therefore, the determinant (A.12) is positive under the same conditions.
Appendix B. Proofs for Section 3

Let (X1,Y1) and (X2,Y2) be independent and identically distributed according to the distribution function FX,Y. Define

f1ððX1,Y1Þ,ðX2,Y2ÞÞ ¼ ½ggðX1�X2Þ�
2,

f2ððX1,Y1Þ,ðX2,Y2ÞÞ ¼ ½ggðY1�Y2Þ�
2,

f3ððX1,Y1Þ,ðX2,Y2ÞÞ ¼ ggðX1�X2ÞggðY1�Y2Þ,

and let

FððX1,Y1Þ,ðX2,Y2ÞÞ ¼

f1ððX1,Y1Þ,ðX2,Y2ÞÞ

f2ððX1,Y1Þ,ðX2,Y2ÞÞ

f3ððX1,Y1Þ,ðX2,Y2ÞÞ

0
B@

1
CA: ðB:1Þ

Also, define cg,j ¼ E½fjððX1,Y1Þ,ðX2,Y2ÞÞ�, j=1,2,3, and set

cg ¼

cg,1

cg,2

cg,3

0
BB@

1
CCA� EFððX1,Y1Þ,ðX2,Y2ÞÞ, Ag ¼

1

2
rg

�1=cg,1

�1=cg,2

2=cg,3

0
BB@

1
CCA: ðB:2Þ

For random samples (Xj1, Yj1) and (Xj2, Yj2), j=1,y,n, define

Ug �

Ug,XX

Ug,YY

Ug,XY

0
B@

1
CA¼ 2

nðn�1Þ

X
j1 o j2

FððXj1
,Yj1 Þ,ðXj2 ,Yj2

ÞÞ, ðB:3Þ

a vector of U-statistics. Let On,g be the matrix defined by Chinchilli et al. (2005, Eq. (A.25)); and set s2
n,g ¼ AguOn,gAg; then

Chinchilli et al. (2005) have shown that the asymptotic distribution of r̂g ¼Ug,XY=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ug,XXUg,YY

p
is given by

ðr̂g�rgÞ=sn,g-
L N ð0,1Þ, ðB:4Þ
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as n-1. Further, by Chinchilli et al. (2005), the joint distribution of the vector Ug is asymptotically trivariate normal, and
AguðUg�cgÞ is asymptotically normal with asymptotic variance AguOn,gAg � s2

n,g, i.e., as n-1,

AguðUg�cgÞ=sn,g-
L N ð0,1Þ: ðB:5Þ

By (B.2), we have Agucg ¼ 0. Therefore, it follows from (B.4) and (B.5) that r̂g�rg and AguUg are asymptotically equivalent in
probability, and therefore we can derive the asymptotic influence function for r̂g from that of AguUg. On applying (B.3), we
obtain

AguUg ¼
2

nðn�1Þ

X
j1 o j2

AguFgððXj1
,Yj1
Þ,ðXj2

,Yj2
ÞÞ,

which shows that AguUg is an unbiased estimator of the functional

TðFÞ ¼ EF ½AguFgððX1,Y1Þ,ðX2,Y2ÞÞ� ¼

Z
AguFgðwÞdFðwÞ, ðB:6Þ

where, similar to the foregoing, if w¼ ððs1,t1Þ,ðs2,t2ÞÞ is a pair of bivariate variables then we denote dFX,Y ðs1,t1ÞdFX,Y ðs2,t2Þ by
dFðwÞ.

Let dx denote the point mass 1 at a pair of bivariate observations with observed value x¼ ððx1,y1Þ,ðx2,y2ÞÞ. For e 2 ð0,1Þ
consider the distribution

Fe,xðwÞ ¼ ð1�eÞFX,Y ðwÞþedxðwÞ ðB:7Þ

representing the mixture distribution under which a pair of bivariate observations w is randomly sampled from the
distribution FX,Y with probability 1�e, and otherwise the observed value is x with probability e.

By definition, the influence function of the functional T(FX,Y) in (B.6), is

IFðx; T,FÞ ¼ lim
e-0

1

e ½TðFe,xÞ�TðFÞ�, ðB:8Þ

and it is this limit that we need to calculate. By (B.6) and (B.7) we have

TðFe,xÞ�TðFÞ ¼

Z
AguFgðwÞd½ð1�eÞFX,Y ðwÞþedxðwÞ��

Z
AguFgðwÞdFðwÞ

¼ ð1�eÞ
Z

AguFgðwÞdFX,Y ðwÞþeAguFgðxÞ�

Z
AguFgðwÞdFðwÞ ¼ e AguFgðxÞ�

Z
AguFgðwÞdFðwÞ

� �
:

Substituting this result into (B.8), we obtain

IFðx; T,FX,Y Þ ¼ AguFgðxÞ�
Z

AguFgðwÞdFðwÞ:

By (B.5),
R

AguFgðwÞdFðwÞ is asymptotically close to 0; therefore (B.8) reduces to

IFðx; T,FX,Y ÞCAguFgðxÞ: ðB:9Þ

By the asymptotic equivalence of AguUg and r̂g, the asymptotic influence function for r̂g also is given by (B.9). On applying
(B.1) and (B.2) to (B.9), we obtain

IFðx; T,FX,Y ÞCAguFgðxÞ ¼
1

2
rg

2ggðx1�x2Þggðy1�y2Þ

E½ggðX1�X2ÞggðY1�Y2Þ�

�
�

g2
g ðx1�x2Þ

E½g2
g ðX1�X2Þ�

�
g2
g ðy1�y2Þ

E½g2
g ðY1�Y2Þ�

!
,

which establishes (3.1).
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Capéraá, P., Genest, C., 1993. Spearman’s r is larger than Kendall’s t for positively dependent random variables. Nonparametric Statistics 2, 183–194.
Chen, Y.-P., 2006. A note on the relationship between Spearman’s r and Kendall’s t. Journal of Statistical Planning and Inference 137, 2165–2171.
Chinchilli, V.M., Phillips, B.R., Mauger, D.T., Szefler, S.J., 2005. A general class of correlation coefficients for the 2�2 cross-over design. Biometrical Journal

47, 644–653.
Fisher, R.A., 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10,

507–521.
Fredricks, G.A., Nelsen, R.B., 2007. On the relationship between Spearman’s r and Kendall’s t for pairs of continuous random variables. Journal of

Statistical Planning and Inference 137, 2143–2150.
Hampel, F.R., 1974. The influence curve and its role in robust estimation. Journal of the American Statistical Association 69, 383–393.
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A., 1986. Robust Statistics. Wiley, New York.
Hotelling, H., 1953. New light on the correlation coefficient and its transforms with discussion. Journal of the Royal Statistical Society, Series B 15,

193–232.
Joe, H., 1997. Multivariate Models and Dependence Concepts. Chapman & Hall, London.
Jones, B., Kenward, M.G., 1998. Design and Analysis of Cross-Over Trials. Chapman & Hall, London.
Karlin, S., 1968. Total Positivity. Stanford University Press, Stanford, CA.



V.Y.-J. Chen et al. / Journal of Statistical Planning and Inference 141 (2011) 924–936936
Kocherlakota, K., Kocherlakota, S., 1981. On the distribution of r in samples from the mixtures of bivariate normal populations. Communications in
Statistics—Theory and Methods 10, 1943–1966.

Kowalski, C.J., 1972. On the effects of non-normality on the distribution of the sample product moment correlation coefficient. Applied Statistics 21, 1–12.
Lee, A.J., 1990. U-Statistics. Marcel Dekker, New York.
Li, X., Li, Z., 2007. Proof of a conjecture on Spearman’s r and Kendall’s t for sample minimum and maximum. Journal of Statistical Planning and Inference

137, 359–361.
Senn, S., 2002. Cross-Over Trials in Clinical Research. Wiley, Chichester, UK.
Tukey, J.W., 1960. A survey of sampling from contaminated normal distributions. In: Olkin, I. (Ed.), Contributions to Probability and Statistics: Essays in

Honor of Harold Hotelling. Stanford University Press, Stanford, CA, pp. 448–485.
Wijsman, R.A., 1959. Applications of a certain representation of the Wishart matrix. Annals of Mathematical Statistics 30, 597–601.
Wilcox, R.R., 1993. Some results on a Winsorized correlation coefficient. British Journal of Mathematical and Statistical Psychology 46, 339–349.


	Robustness and monotonicity properties of generalized correlation coefficients
	Introduction
	Properties of the GCC under bivariate normality
	Explicit formulas for rhogamma
	Monotonicity and reverse rule properties
	Mixtures of bivariate normal distributions

	The influence function of the GCC
	Robustness properties of the GCC
	Bivariate normal distributions
	Contaminated bivariate normal distributions

	Concluding remarks
	Proofs for Section 2
	Proofs for Section 3
	References




