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Abstract. In this paper we exploit a basic type of three-stage Distributed Bragg Reflector (DBR) laser 

that by adjusting its input driving currents in the tri-electrode to generate signals with wavelengths 

that are in the International Telecommunication Union (ITU)-Band. Many driving current 

combinations can generate the same ITU wavelength; we will consider in this paper the situation 

when the input currents are restricted within certain range and to find for all those input current 

combinations that generate output signals with wavelengths locating in the ITU defined wavelength 

range. And we will through simulations to determine which set of current combinations will generate 

the shortest switching time. We will also propose a new current control method, when we know in 

advance the signal will be switched to certain band, to determine the best current switching 

combinations that resulting in faster and shorter switching time than that of the conventional system 

structure which has the drawback that it has only one fixed current combinations for each channel. 

Introduction 

It used light emitting diode (LED) as the transmitter module in the early stage of optic fiber 

communication system and it has been replaced by laser diodes. With laser source it has the 

characteristics of coherent and monochromatic; it has relatively low chromatic dispersion than the 

LED when it passes through the optic fiber and consequently it can transmit longer distance in optic 

fiber to make it as the choice of the light source in optic fiber communication system. 

It can, by using multiplexing technique, simultaneously transmit many signals in one channel with 

the purpose of increasing the transmission rate. In Wavelength Division Multiplexing development it 

allows to simultaneously transmit many different wavelengths signals in the same optic filer to 

improve extremely the wideband characteristic of optic fiber [1]. The introduction and successful 

application of Erbium Doped Fiber Amplifier (EDFA) make it a breakthrough in the development of 

optic fiber communication system. It can be classified into two classes in wavelength division 

multiplexing, namely, the Coarse Wavelength Division Multiplexing (CWDM) and Dense 

Wavelength Division Multiplexing (DWDM). In CWDM system it multiplexes four wavelengths of 

2.5 Gbps with wavelength separation of 20 nm to generate an output signal with a capacity of 1 Gbps, 

while in DWDM the separation of wavelength can be less than 1nm and it divides the 1550 nm 

wavelength into many wavelength segments and consequently in the same bandwidth it can multiplex 

more channel bandwidths and transmit more signals to increase its transmission rate from 2.5 Gbps to 

tens of Gbps or even hundreds of Gbps and effectively improves the communication capacity of optic 

fiber communication system. 
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Relative to CWDM, DWDM has larger transmission capacity and when it transmits many signals 

simultaneously it needs the separation of less than 1 nm between channels and it also has a stringent 

requirement in the wavelength stability. Although it has many studies covering the methodologies of 

how to maintain wavelength stability in optic fiber communication system [2], it will be more 

effective by reducing the subsequent procedures in the wavelength stability operation if we can 

improve the output wavelength stability of the laser source; consequently we need a tunable laser with 

accurate and stable wavelength [3]. From technique point of view the Distributed Feed-back (DFB) 

Laser and Distributed Bragg Reflector (DBR) laser are the most matured laser fabrication processes 

[4-7]. It uses thermal modulation method to tune the laser bandwidth in DFB laser and because it has 

longer modulation time and shorter tunable bandwidth range; it usually makes DBR laser as the 

selected laser source for optic fiber communication system. 

It uses current modulation to adjust the output laser wavelength in DBR laser, we propose in this 

paper a new method to control the input current in DBR laser to improve the drawback of the 

conventional wavelength adjustment method to effectively attain the optimization of the wavelength 

switching process.  

Basic Characteristics of DBR Laser 

From the discussion of three-stage DBR Laser in the above, each electrode current has its own 

function, the input current Ia of the Active Region provides the gain for the output laser power but in 

reality when the current Ia varies it will generate temperature gradient that resulting in the variation of 

the output laser wavelength. If we control the input currents of the three-stage DBR Laser; such as 

adjusting one electrode current and holding the other two electrodes currents the variation of the 

wavelength will be discontinuous. When we adjust the current Ig then the output laser wavelength 

will be changed in a step form, the output wavelength continuously varies in a small wavelength 

segment and then jumps to another continuous band. By only adjusting Ia (fix Ip and Ig) or Ip (fix Ia 

and Ig) it will have the same result as the wavelength changes in a short continuous interval and then 

jumps to another level. Generally speaking the wavelength can only continuously change for less than 

1 nm by adjusting one electrode current, while by adjusting Ip and Ig the wavelength can continuously 

change over 3 nm and the discontinuous wavelength change can reach 5.8 nm as shown in Fig. 1. 

From various theoretical studies and experimental tests it can increase the wavelength variation 

range for the three-stage DBR Laser around the 1550 nm band. From theoretical studies it reveals that 

for DBR Laser the continuous wavelength can change over 4nm range while for discontinuous 

wavelength change it can be around 10 nm [8] 

 

 

   
(a) Fix Ip and Ig to Adjust Ia (b) Fix Ia and Ip to Adjust Ig (c) Fix Ia and Ig to Adjust Ip 

Fig. 1 The Result of Fixing Two Electrodes Currents and Adjusting One Electrode Current in 

Three-stage DBR Laser. 
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Simulation Structure and the Analysis of Current Combinations 

Current Sweeping Simulation 

After the intrinsic physical parameters have been determined for DBR Laser, the functional block 

diagram for simulation is proposed. As shown in Fig. 2 it is from right to left are the Grating Region, 

the Phase Region and the Active Region and the input currents Ig, Ip and Ia are injected into the 

regions respectively. 

The current Ia in the Active Region is fixed at 40 mA and since the Grating Region current Ig makes 

the wavelength varying in a wider range, we will gradually increase the current Ig and then fix it to 

observe how the wavelength varies when Ip is gradually increasing.  

 
 

Fig. 2 The Simulation Functional Block Diagram 

of Current Sweeping. 

Fig. 3 The Simulation Functional Block 

Diagram for Wavelength Switching. 

The Switching Simulation of Current Combinations 

From the resulting current combinations (Ig and Ip), we will perform the simulations of the channel 

switching time when one current combination is switched from one channel into another current 

combination for another channel with the purpose of finding the switching time required and their 

steady state behavior, the simulation has the functional block diagram as shown in Fig. 3. 

We then measure the required switching time when one current combination is switched into 

another current combination, as shown in Fig. 4 is the sample simulation when one current 

combination in CH1 is switched into CH3. In the calculation of the switching time it starts from the 

transformation time of the driving current until the wavelength is completely jumping into the range 

of the CH3 wavelength ± 0.02nm and this time, 51.2 ns, is the switching time of switching from CH1 

to CH3. Different current combinations have different switching times even they are switched from 

the same CH1 to CH3. 

The Optimization of Wavelength Switching 

In the previous section we discussed the conventional method in the selection and the 

determination of current combinations. It selects a fixed current combinations Ig and Ip for each 

channel. But in this method of selection it has a problem in the switching from CH1 to CH4, as shown 

in Fig. 5, the best current combinations of Ig and Ip, is A1 switching to D1 but when switching from 

A1 to CH3 the current combinations selected by using the conventional method is not the best current 

combinations when it switches from CH1 to CH3, in other words the best current combinations 

switching from CH1 to CH3 is not A1 switching to C1 (for example it might be A2 switching to C2). 

And by the same reason the best current combinations is not necessarily D1 switching to B1 (for 

example it might be D2 switching to B2). 

The Optimal Control Method in the Wavelength Switching 

As described in the above section it appears that when it switches CH1 to CH2 the best current 

combinations is A1 switching to B1 but the reverse is not true the best current combinations is not B1 

to A1 when CH2 is switched to CH1. In order to impair this situation in the reverse operation we 

increase the number of current combinations for each channel and by proper control of the current 

combinations to attain the possibility of effectively reducing the channel switching time. 
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From the simulation results as described in Section 3.1 and for easy in the following demonstration 

we select five sets of current combinations for each channel, as shown in Table 1.  

 

  

Fig. 4 The Simulation Result of Wavelength 

Switching from CH1 to CH 3. 

Fig. 5 The Illustration of the Selection of Current 

          Combinations in Wavelength Switching 

in the Conventional Method. 

 

Table. 1. The Current Combinations Generating ITU Band Channels 
(Set) Ig (mA) Ip (mA) Wavelength(nm) 

CH1(1545.32nm) 

A1 2.6 5.2 1545.32569 

A2 2.8 2.4 1545.32798 

A3 3 5.2 1545.32205 

A4 3.6 5 1545.32604 

A5 4.4 8.6 1545.32133 

CH2(1544.53nm) 

B1 4.8 5.4 1544.53517 

B2 5 5.4 1544.53461 

B3 5.2 5.4 1544.53215 

B4 6 5.2 1544.53769 

B5 6.2 5.2 1544.53164 

CH3(1543.73nm) 

C1 8.2 9.4 1543.73301 

C2 11 5 1543.73192 

C3 12 4.8 1543.73639 

C4 12.2 4.8 1543.73181 

C5 13 4.6 1543.73809 

CH4(1542.94nm) 

D1 14 2.2 1542.94834 

D2 15.2 8.4 1542.94918 

D3 18.2 4.4 1542.94711 

D4 18.4 4.4 1542.94233 

D5 18.4 7.8 1542.94811 

The Optimal Control Method in the Wavelength Switching 

As described in Section 4.1 we know that if we increase the number of current combinations it is 

possible to reduce the channel switching time comparing with the conventional method by using only 

one current combination for each channel. But after we find the best current combinations for the 

round trip switching between any two channels and try to combine these currents together it reveals 

that it will have some time wasted in the switching in the same channel as shown in Fig. 6. It becomes 

more complicate as more channels are considered. 

From simulation tests we realized that they are many current combinations that having 0 ns 

switching times in each channel, we then try to find the current combinations that having zero 

switching times in the same channel before we are trying to find the best current combinations in the 

two channels switching; we then use these current combinations and follow the method as described 

in Section 4.1 to find the best current combinations in the round trip switching between two channels, 

it has results as shown in Fig. 7. 
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Conclusion 

 

 
Fig. 7 Current Combinations for the 

Shortest Time Switching. 

Fig. 6 The Possible Problem when it Increase 

Two Channels to Three. 

 

In this paper we simulated in DBR Laser all those current combinations of Ig and Ip that generated 

channels with wavelengths conforming to the ITU band when the current Ia is fixed at 40 mA, Ig is 

varied from 0 mA to 20 mA and Ip is varied from 0 mA to 10 mA. It has determined that in these 

currents ranges it has four channels conforming to the ITU band. We then simulated the channel 

switching times when different current combinations are considered; we increased the number of 

current combinations in each channel to resolve the possible problems of using only one current 

combination in each channel. We then verified that the optimal average switching time is around 8.5 

ns comparing with the switching time of 15.5 ns of using the conventional method when switching 

from channel A to channel B, it has improved and reduced the optimized switching time by almost 

half when comparing with the conventional method and we also anticipate that the difference in 

switching time will become larger when the number of channels is increased. 
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