
A PKC-based Node Revocation Scheme in Wireless Sensor Networks

Po-Jen Chuang, Shao-Hsuan Chang, and Chih-Shin Lin
Department of Electrical Engineering

Tamkang University
Tamsui, Taipei County
Taiwan 25137, R. O. C.

E-mail: pjchuang@ee.tku.edu.tw

Abstract

Generally deployed in an unattended environment,
a sensor network can be easily assaulted or
compromised by adversaries. Network security
becomes a major problem. A distributed node
revocation scheme is effective in reducing the damages
a compromised node may cause to a sensor network,
but its operation tends to consume large-scale memory
space of the hardware-constrained sensor nodes. To
reduce such complexity, this paper presents a new
distributed voting revocation scheme based on the
one-way hash chain, the concept of threshold secret
sharing, the certificate revocation list and the
public-key cryptography.

1. Introduction

Generally deployed in unattended environments to
collect the needed information, a sensor network can
be easily assaulted by adversaries. Network security
becomes a major problem. A number of security
devices, including key management [e.g., 1-5], are
established to enhance the security. Key management
involves key distribution and revocation [6]. Key
distribution disseminates secret information to the
principals to initialize secure communications. Key
revocation, on the other hand, aims to remove secrets
that may have been snapped by attackers from a
compromised node and thus results in revocation of the
compromised node.

Node revocation is critical in reducing the damage
(e.g. information leakage) a compromised node may
cause to a sensor network. A node revocation scheme
is designed mainly to cut off all links between
compromised nodes and normal nodes. A node
revocation scheme can work in a centralized way,
such as the EG scheme [6], in which the base station
(BS) is responsible for conducting and broadcasting

revocation decisions. It can also work in a distributed
way, i.e., the compromised node’s neighbor nodes will
initiate and broadcast revocation decisions without the
assistance of the BS. The CPS [7], CGPM [8] and CC
[9] are all distributed node revocation schemes. A
distributed node revocation scheme can react more
quickly than a centralized scheme and as a result
reduce both delay time and communication cost.

This paper introduces a new distributed node
revocation scheme based on the one-way hash chain
[10], the certificate revocation list (CRL) [11] and the
public key cryptography (PKC) [2]. In our scheme, the
BS first signs a certificate to each node before
deployment. Each certificate has a unique ID which
allows a node to prove it is authorized to access such
services as data authentication or node revocation.
When a node detects another node in the network has
been compromised, it can broadcast the CRL with the
compromised node’s certificate ID to all neighbor
nodes. Receiving such a broadcast packet, a neighbor
node will authenticate its validity by the attached hash
value. If the validity is verified, the neighbor node will
increase the revocation vote count. When the
revocation votes against a node exceed the threshold
value t, each neighbor node will cut off their links to
the revoked node to protect the network from an
adversary’s further attack. To reduce the calculation
cost, we bring in the one-way hash function and the
XOR operation. Performance evaluation shows that our
scheme outperforms the other target schemes in
enhancing network security at reasonable calculation
cost which is acceptable to the sensor nodes.

2. The PKC and CRL in Our Scheme

2.1. The PKC for Sensor Networks

Pursuing secure performance of a sensor network is
quite a technical challenge as security mechanisms

must work under the very limited processing and
bandwidth constraints of the sensor nodes. PKC is thus
considered an inappropriate security mechanism for the
sensor network as it needs a lot of calculation and
energy resources. Instead, the less complex symmetric
encryption is widely taken to maintain the security of a
sensor network. Key management for symmetric-key
based protocols is nevertheless complicated and prone
to adversaries’ attacks as it can not pre-load all master
keys (due to the high mobility and a limited memory
space) which sensor nodes need if to communicate
with security managers. By contrast, a public-key
based protocol yields more flexibility and scalability,
especially in large sensor networks where new devices
keep entering the cluster.

Public key authentication, one important PKC
operation, is to verify the authenticity of another
node’s public key, i.e., to make certain a public key
truly belongs to its claimed owner. In original PKC,
such a public-key-authentication operation involves
expensive signature verification on a certificate. To
authenticate a public key in a more efficient way, [12]
manage to save the needed memory space by letting
each node carry a one-way hash value of those public
keys. When two nodes exchange their public keys,
each can simply compute the one-way hash value of
the received public key and check if the result matches
the value stored in their memory, to save energy.

A public-key based node revocation scheme, such
as the elliptic curve cryptography (ECC) [2] or RSA
[13], works better in many ways in a sensor
environment than the symmetric cryptography.

2.2. Employing the CRL in Our Scheme

The dynamic multicast group management protocol
in [11] is proposed to solve such problems as mobility,
unreliable links and multi-hop communication cost
which are specific to the ad hoc networks. The main
idea is to let group members actively involve in the
security of the multicast group, thus reducing the
communication and computation load on the source.
As group members are in charge of group security, a
service right certificate is used to verify that a node is
authorized to join the group and the group members
(nodes) can use it to exchange keys without contacting
a public-key center (such as the BS). A service right
certificate has the following properties. Any participant
can read a certificate to determine its owner’s name
and public key, and to verify the authenticity of the
certificate (originating from the certificate authority,
i.e., the CA) as well as its currency. The CA will be the
only party to create and update the certificates.

The idea of the service right certificate and its
corresponding node revocation scheme helps initiate
and shape our new node revocation scheme. In our
initial design, we assume a CA pre-distributes
certificates to every node before deployment and each
certificate has its own sequence number. When a node
discovers another node has been compromised, it will
broadcast a certificate revocation list (CRL, whose
format is [MinS

) with the sequence number of
the compromised node to the neighbor nodes.
Receiving the list, the neighbor nodes can authenticate
it by the attached signature and, if the signature is
correct, cut off the links with the compromised node.
Cutting links to a compromised node in this way helps
the network avoid an adversary’s further attacks and
maintain its normal performance. The digital signature
in a CRL employs the asymmetric cryptographic
technology to produce the private keys. As a private
key can not be copied by other nodes and is not open,
the signature signed by a private key can not be copied
either. The node receiving the cryptographic digital
signature thus can use the attached public key to verify
the contents of the signature.

3. The Proposed Node Revocation Scheme

Verifying the digital signature in a CRL is indeed
quite a burden for the energy-constrained sensor
networks. To conserve the limited resources of a sensor
network, our node revocation scheme adopts a new and
efficient verifying approach based on the one-way
hash chain in [10] to replace the costly verification of
the digital signature. The one-way hash function is
adopted as it can map an input of an arbitrary length to
an output of a certain fixed length, such as 20 bytes for
the SHA-1 algorithm and 32 bytes for the SHA-2
algorithm. Compared with traditional PKC which
consists of a signature (at least 256 bytes) and other
data including the public key (at least 128 bytes), the
hashing value of the one-way hash function is clearly
shorter. The computation and communication cost for
verifying a CRL can be thus significantly reduced.

3.1. The Operation of the New Scheme

First define the one-way hash chain. Assuming H is
a one-way hash function and r is a randomly selected
number, a hash chain can be derived by iteratively
hashing r: Hi(r) = H (Hi-1(r)) (i = 1, 2, …). With r being
the trust root, the one-way hash chain includes a
sequence of hashed values, denoted by h1= H(r), h2 = H
(h1), …, hi = H (hi-1) (i = 1, 2,…). Our node revocation

scheme includes the generation of PKC, verification of
the status and revocation vote.
Generating the PKC

Note that in an ad hoc network, a node’s PKC will
be generated by itself and authenticated by an offline
CA. In our design for a sensor network, however, the
BS becomes the CA to distribute the PKC to each node
before deployment and each node will authenticate the
PKC via the BS after deployment.

To be more specific, the BS in our scheme will
pre-distribute a public key PKU and a private key SKU
to a node U before it is deployed to a sensor
environment. Assuming all system clocks are
synchronized in the sensor network, the maximal
lifetime T for every PKC will be the same, and so will
be the update interval L (T / L = j (j > 1)). Node U then
defines the starting valid date as D when receiving the
public key and the private key. The update point for the
ith period [Di-1, Di] is denoted as Di : Di = D + i * L (i
= 1,2,…, j; D0 = D). U moves on to select a random
number r and generate the corresponding one-way hash
chain by hashing r j times. Node U then sends a PKC
request containing PKU, D and hj to the BS. The BS
will authenticate the received PKC request and, if the
authentication is built, examine the hash values
submitted by the other nodes. If finding another hj’= hj,
the BS will inform Node U that the r it sends over is
unqualified. U needs to select anther random number
and generate its corresponding one-way hash chain.
After re-examining the hash value, the BS then issues
node U a PKC, denoted as PKCU = SIGNCA(CID, U,
PKU, D, hj), where CID represents the certificate’s ID.
Verifying the Status

After deployment, nodes build secure links between
each other by exchanging their certificates. As
mentioned, nodes in our scheme use the one-way hash
chain, instead of the digital signature, to authenticate
each other’s certificate and thus to maintain the
security of the network with reduced
energy-consumption. The process of certificate
verification is listed below.
1. When a node (the certificate verifier) needs to

verify a PKCU, it will send a query including the
CID to the corresponding certificate owner (i.e.,
node U) which then sends its PKCU to the
requesting node.

2. Upon receiving the requested certificate, the node
obtains the starting valid date D and the hash value
hj from the PKCU.

3. If the current time is T’, the node computes
parameter i = [(T’-D)/L] by T’.

4. The node then calculates the value hEND by hashing
hj-i i times, and checks if hEND = hj. If yes, PKCU is
considered valid at present and remains valid until
the next updating point. Otherwise, it is invalid.

3.2. Node Revocation Using Traditional CRL

To revoke a compromised node, a traditional
certificate revocation scheme uses the CRL, a signature
structure containing the revocation message. When a
node finds out another node is compromised, it takes
the following two steps.
1. The node first broadcasts to the neighbor nodes a

CRL whose format is [U, D, RevocationCID hj,
Timestamp]. RevocationCID hj contains the ID of
the certificate to be revoked. Each certificate has its
own ID. The timestamp is used to prevent repeated
broadcasting of a list, thus saving the energy.

2. When a neighbor node receives the CRL packet and
finds that hj of RevocationCID hj is correct, it will
calculate the RevocationCID by RevocationCID
hj hj. The hj to be used later can be authenticated
by the value received during the connection time
and if RevocationCID hj hj is correct, the value
of RevocationCID can be thus obtained to revoke
the compromised node.
In such a scheme, it is likely that an attacker gathers

the CRL, alters the value of RevocationCID hj and
broadcasts the altered value to the neighbor nodes to
confuse them into revoking the wrong (normal) nodes.
To give an example, suppose the original revocation ID
is 0001 and the previous hj stored in a node’s memory
is 0010. In the regular situation, the node will figure
out RevocationCID hj as 0011. However, if an
attacker intrudes a neighbor node or eavesdrops in the
communication range and finds out the 0011 value, it
can alter 0011 to 0100 and broadcast 0100 out. Such an
altered false value will mislead the other nodes to
obtain a wrong CID 0110 and proceed to revoke the
normal node whose CID = 0110 by mistake.

To prevent similar mistakes from happening, our
new scheme adopts the voting way to revoke the
compromised nodes: When the number of wrong
revocation votes is below the threshold t, node
revocation will not be conducted.

3.3. Our Distributed Voting Certificate
Revocation Scheme

Our new scheme sets a voting threshold value t to
carry out the requested node revocation. Each node
will have m voting participants, m>>t, and d secure
links with the neighbor nodes, d being its dimension
degree. Out of security consideration, we define d>>t.
The value of t should exceed 1 (revocation vote) at
least and is so defined as d = m>>t>1. The actual value
should be set according to the number of deployed
nodes in the network. Setting up a proper value of t is
important as it can substantially affect the performance

of a node revocation scheme. An improperly large t
will make the voting scheme difficult to operate,
whereas an unfeasibly small t will shake the security of
such a scheme and draw more attacks from adversaries.

The value of RevocationCID hj in a CRL indicates
a revocation vote. When a node receives a number of
votes to revoke a compromised node by its voting
members and the number exceeds the threshold t, it
will revoke the key shared with the compromised node
in the key ring and cut off its link with the target node.
As the voting members of the node may not be its
neighbors, how to inform all of them of this revocation
event becomes a critical problem. To solve the problem,
we consult an approach in [8] which enables all voting
members to receive the revocation list through
broadcast propagation, even if they are not neighbors
with each other.

To conserve the limited resources of a sensor
network, our scheme also employs the XOR operation,
instead of other encryption algorithms. Energy
consumption of an XOR operation is so small that it is
nearly negligible at performance evaluation. To put our
distributed voting node revocation scheme into work,
we let each node store the r hash values of the r nodes
in its key ring, thus generating O(r) space complexity.
Compared with the space complexity O(Stotalr log r) of
[8], our scheme apparently needs less storing device.

Now assume D suspects A has been compromised
and thus broadcasts CIDA hjD to B and C. After
receiving the packet, B and C use the preloaded
information to authenticate CIDA hjD. If the value is
correct, they will take it down as the first received
revocation vote against A. If, some time later, C also
broadcasts CIDA hjC to neighbor nodes B and D and
the value of CIDA hjC is also authenticated, node B
now holds two valid revocation votes against A and
will thus move on to revoke the key shared with A and
cut off its link to A.

4. Performance Evaluation

Performance evaluation is conducted to compare
certain existing node revocation schemes and our
distributed voting revocation scheme. As mentioned
earlier, our scheme is expected to generate higher
computation and communication cost than the other
schemes due to its employment of the PKC mechanism.
Such cost is acceptable given the enhanced network
security it brings about; it is also affordable as the
chance to pay such a cost is rare but critical.

4.1. Complexities for Our New Scheme

Before node deployment, the space complexity for
our node revocation scheme will be O(r) because each
node is set to preload its own private key and the
public keys of its r neighbors. After deployment, each
node must reserve rooms for the r hash values of the r
nodes in its key ring – to maintain the normal operation
of the distributed voting revocation scheme. The space
complexity for our scheme remains O(r). Compared
with the space complexity O (Stotalr log r) of [8], our
scheme apparently needs less storing space.

4.2. Energy Consumption

Table 1 gives energy consumption on the sensor
side for our scheme and the scheme in [2] which also
involves the PKC mechanism. To evaluate energy
consumption, we adopt the following processing time
on the sensor side [2].
1. The random point scalar multiplication is 480 msec

and the fixed point multiplication is 130 msec.
2. The SHA-1 algorithm takes 2 msec to digest a

128-bit binary string on the M16C.
3. The Cipher Block Chaining mode takes less than 3

msec to decrypt a 256-bit ciphertext.
4. The sensor does a 160-bit modular multiplication,

which takes less than 3 msec, and a 160-bit modular
addition, which takes less than 3 msec.

Table 1. Energy consumption on the sensor side

Processing time on
sensor

Communication
complexity

Our scheme 17+2t msec 352 bits

Reference[2] 760 msec 1437 bits

[2] replaces the scalar multiplication of fixed points
P and PKCA by a pre-computed look-up table in the
ROM area and needs at least one expensive
elliptic-curve scalar multiplication of a random point in
the key exchange phase. On the sensor side, the time
taken in the key exchange phase will be 480 msec for a
random point scalar multiplication, 130 msec for a
fixed point multiplication. Thus the entire protocol
execution time on M16C is about 480 msec + 130
mesc * 2 + 20 msec = 760 msec, which is also taken as
the time complexity for the key distribution phase in
our scheme.

After key distribution, the calculation time for a
node to accept a certificate issued by the BS or to
return the certificate to the BS will be far less than the
time consumed in the key distribution phase. At this
phase, instead of calculating the time-consuming fixed
point multiplication and random point scalar
multiplication, we will conduct only the modular

Table 2. Comparison among our scheme and the schemes in [9] and [8]

 The CC Scheme [9] The CGPM Scheme [8] Our scheme

Basic concept Using threshold secret sharing to
vote Using threshold secret sharing to vote Using CRL to vote

Encryption type Symmetric cryptography Symmetric cryptography Asymmetric cryptography

Preload
information in
sensor nodes

q(x) = D+a1x1+…+at-1xt-1

q(x), x
Hq(x)=H(D || a1 || a2 || ...|| at-1)

maskBas and H2(qBs)
a path of log r hash tree values for
each of B’s neighbors and RB

EmaskABs[qBs(xABs), xABs)]

The hash value of neighbor nodes
The certificate revocation vote
from other nodes

Space complexity O(t) O(Stotalrlogr) O(r)

Votes
authentication No Using the Merkle tree to

authenticate votes
Using the hash value in a certificate to

authenticate votes

Network Security low medium high

multiplication, the modular addition and the hash
function hj to verify the signature issued by the BS.
According to [2], in a sensor network implemented on
Mitsubishi’s M16C microprocessor with the size of
5.2Kbyte code/data, the time taken for one 160-bit
modular multiplication and one 160-bit modular
addition are both less than 3 msec. Our analysis on the
ECC algorithm shows that the algorithm uses two
modular multiplications to verify the signature, two
modular multiplications + one modular addition to sign
the signature, and 2 msec to hash hj , a total of 3*2 +
3*2 + 3 + 2 = 17 msec. Then our distributed voting
scheme needs to hash the one-way hash function and
the needed time is subject to the value of the threshold
t, which will be 2t msec. A larger t will cost more but
will ensure higher system security. Thus the total time
to process the revocation information at the sensor side
will be 17 + 2t msec. 17 + 2t msec may be longer than
the symmetric cryptography takes but is definitely
much shorter than the traditional PKC scheme requires,
and we believe the hardware of sensor nodes can afford
this amount of calculation time.

A f t e r node dep loy me nt and secu re - l ink
establishment, the revocation mechanism will be put
into work when a node is compromised. According to
[2], the time for setting up the communication key will
be 1437 bits or 180 bytes, which is considered close to
the communication complexity of our scheme,
acceptable to the sensor nodes and thus not to be
included in our discussion here. As mentioned, when a
sensor node detects a neighbor node may have been
compromised, it will broadcast a CRL to other
neighbor nodes to inform of the attack. A CRL will
consume 352 bits or 44 bytes bandwidth, in which the
node ID, the valid date D of the certificate, the
t i mes t a mp toge the r t akes 64 b i t s and the
RevocationCID hj value alone consumes 160 bits or

20 bytes. 44 bytes, the amount of communication
bandwidth our scheme needs for the revocation
operation, is feasible for a sensor network.

4.3. Performance Comparison

Table 2 lists our comprehensive comparison
between our new scheme and two other distributed
revocation schemes, i.e., the CGPM scheme in [8] and
the CC scheme in [9].

As the table indicates, our new scheme outperforms
the other two schemes in enhancing network security
because it is the only scheme to employ the PKC
mechanism for key-distribution and the asymmetric
cryptography for encryption. The CGPM scheme [8]
achieves higher network security than the CC scheme
mainly because it uses the Merkle tree to authenticate
the validity of votes while the CC scheme sets no
mechanisms to authenticate the revocation votes.

5. Conclusions

In wireless sensor networks, a node revocation
scheme conducted in a distributed way is effective in
reducing the damages caused by a compromised node,
however, the operation of such a distributed revocation
scheme tends to consume large-scale memory space of
the resource-constrained sensor nodes. To reduce such
complexity, this paper presents a new distributed
voting revocation scheme based on the one-way hash
chain, the concept of threshold secret sharing, the
certificate revocation list (CRL) and the public-key
cryptography (PKC). Performance evaluation shows
that, when compared with related node revocation
schemes, our scheme achieves stronger network
security at higher calculation cost due to its PKC
distributed voting mechanism. To reduce the cost, we

bring in the one-way hash function and the XOR
operation and manage to reduce energy consumption to
an acceptable level for the hardware-constrained sensor
nodes.

Node revocation is indeed a rare case which
happens only when the system is under attack, but
when it happens, how to maintain network security
becomes a critically important issue. As security
analysis shows our new revocation scheme
outperforms the other target schemes in resisting
adversaries’ advanced attacks, we consider it feasible
and practical to earn such enhanced network security at
reasonable and acceptable calculation cost.

6. References

[1] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D.
Tygar, “SPINS: Security Protocols for Sensor Networks,”
Proc. 7th Annual ACM Int’l Conf. on Mobile Computing and
Networks, July 2001, pp. 189-199.

[2] Q. Huang, J. Cukier, H. Kobayashi, B. Liu, and J. Zhang,
“Fast Authenticated Key Establishment Protocols for
Self-Organizing Sensor Networks,” Proc. 2nd ACM Int’l
Conf. on Wireless Sensor Networks and Applications, Sept.
2003, pp. 141-150.

[3] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient
Security Mechanisms for Large-Scale Distributed Sensor
Networks,” Proc. 10th ACM Conf. on Computer and
Communication Security, Oct. 2003, pp. 62-72.

[4] D. Liu and P. Ning, “Establishing Pairwise Keys in
Distributed Sensor Networks,” Proc. 10th ACM Conf. on
Computer and Communications Security, Oct. 2003, pp.
52-61.

[5] A. Wadaa, S. Olariu, L. Wilson, and M. Eltoweissy,
“Scalable Cryptographic Key Management in Wireless
Sensor Networks,” Proc. 24th Int’l Conf. on Distributed
Computing Systems Workshops, Mar. 2004, pp. 796-802.

[6] L. Eschenauer, and V. D. Gligor, “A Key-Management
Scheme for Distributed Sensor Networks,” Proc. 9th ACM
Conf. on Computer and Communication Security, Nov. 2002,
pp. 41-47.

[7] H. Chan, A. Perrig, and D. Song, “Random Key
Predistribution Schemes for Sensor Networks,” Proc. 2003
IEEE Symp. on Security and Privacy, May 2003, pp.
197–213.

[8] H. Chan, V. D. Gligor, A. Perrig, and G. Muralidharan,
“On the Distribution and Revocation of Cryptographic Keys
in Sensor Networks,” IEEE Trans. on Dependable and
Secure Computing, Vol. 2, pp. 233-247, July-Sept. 2005.

[9] P.-J. Chuang and T.-H. Chao, “A Node Revocation
Scheme for Sensor Networks,” Proc. IASTED Int’l Conf. on
Wireless Sensor Networks, July 2006.

[10] J. Li, Y. Zhu, H. Pan, and S. Liu, “A Distributed
Certificate Revocation Scheme Based on One-Way Hash
Chain for Wireless Ad Hoc Networks,” Proc. 2nd IEEE Int’l
Conf. on Mobile Technology, Applications and Systems, Nov.
2005.

[11] T. Kaya, G. Lin, G. Noubir, and A. Yilmaz, “Secure
Multicast Groups on Ad Hoc Networks,” Proc. 1st ACM
Workshop on Security of Ad Hoc and Sensor Networks,
2003, pp. 94-102.

[12] W. Du, R. Wang, and P. Ning, “An Efficient Scheme for
Authenticating Public Keys in Sensor Networks,” Proc. 6th
ACM Int’l Symp. on Mobile Ad Hoc Networking and
Computing, 2005, pp. 58-67.

[13] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P.
Kruus, “TinyPK Securing Sensor Networks with Public Key
Technology,” Proc. 2nd ACM Workshop on Security of
Ad Hoc and Sensor Networks, Oct. 2004, pp. 59-64.

