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Abstract: In this paper3 an efficient Optimization 
algorithm for solving the inverse problem of a 

trapped in a local extreme. In contrast, the second approach 

two-dimensional homogeneous lossy dielectric object is is based On the genetic [61,[71. It - 
investigated. A homogeneous lossy dielectric cylinder of 
unknown permittivity scatters the incident wave in free 
space and the scattered fields are recorded. Based on the 
boundary condition and the incident field, a set of 
nonlinear surface integral equation is derived. The imaging 

converges to the global extreme of the problem, no matter 

what the initial estimate is [8]. 
By using the equivalent surface current technique [9], 

the inverse problem is efficiently solved in this study. 
problem is reformulated into optimization problem and the 
genetic algorithm is employed to reconstruct the shape and 
the dielectric constant of the ob-iect. Numerical results 

Instead of dividing the cross-section of the tested object 

into many cells, the object surface is dividing into small 

show that the permittivity of the cylinders can be segments such that the equivalent surface electric and 
successfully reconstructed even when the Permittivity is 
fairly large. The effect of random noise on imaging 
reconstruction is also investigated. 

magnetic current distributions can be obtained numerically 
by solving the one-dimensional integral equation. 

Kevword: lnverse scattering, Genetic algorithm, Lossy 

dielectric object 
I. Introduction 

In this paper, the inverse problem of the lossy 

dielectric cylinder with unknown cross-section and 

dielectric constant is investigated. The inverse scattering 

problem of lossy dielectric objects has been a subject of 

considerable importance in noninvasive measurement, 

medical imaging, and biological application. In the past 20 

years, many rigorous methods have been developed to 

solve the exact equation. However, inverse problem of this 
type are difficult to solve because of its ill-posedness and 
nonlinearity. As a result, many inverse problems axe 

reformulated as optimization problems. General speaking, 
two main kinds of approaches have been developed. The 

first is based on the gradient search approach such as the 

Newton-Kantorovitch method [ 1],[2], the 
Leveberg-Marguart algorithm [3],[4] and the 
successive-overrelaxation method [SJ. This method is 
highly dependent on the initial guess and tends to get 
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By applying the genetic algorithm and the moment 
method, the inverse problem can be solved as optimization 

problem. We need only define the range of the parameter 
corresponding to the shape function and the permittivity of 

the cylinder. Good reconstruction is obtained as 

multi-incident waves are applied to get the measured data. 

In Section 11, the theoretical formulation is presented. In 

Section Ill, numerical results for lossy objects are given. 

Finally, some conclusions are drawn in Section 1V. 

Fig. 1 Geometry of problernbn (hy) plane. 
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11. Theoretical Formulation 

Consider a homogeneous lossy dielectric cylinder 
located in free space as shown in Fig.1. The cross section 

of the object is of starlike shape, such that it can be 

described in polar coordinates by p=F(e) . The 
permittivity and permeability of free space and the lossy 
dielectric object are denoted by ( E ~ ,  P o )  and ( E , ,  ,U2) , 
respectively. In our case, E2 is complex number. 

The dielectric object is illuminated by an incident 
plane wave whose electric field vector is parallel to the z 
axis (i.e., TM polarization). We assume that time 
dependence of the field is harmonic with the factor e . 
Then, the incident electric and magnetic fields can be given 

jut 

bY 

-Iko(xsin@-ycos@) PnC (x, y> = Eoe z 

where (b is the incident angle and k, is the free-space 

wave number. - - 
Since the tangential components of E and H 

fields should be continuous across the surface of the 
dielectric object, we can derive two integral equations as 
follows. 

k, = w f i ,  i=0,2 

P",(O) = J F 2 W  + F" (B)P,,(@ 2 p ,  = Lv A?, 
w 

where js(8) and a,y(e) are the equivalent surface 

electric and magnetic current densities, ;is the outward 

unit normal on the object surface, and 

G,,(k,,r,,) , G2(k2r0)  are the Green's functions in 
free-space and in a homogeneous space with relative 

dielectric constant E,. = E, / E o  respectively. Here 

H i 2 )  stands for the Hankel function of the second kind of 

zeroth order. 

For TM case, the electric field has only one 

component along the Z axis such that the scattered 

electric field E' at the point ( x , ~ )  outside the scatterer 
can be expressed by 

p ( x , y )  = ~ [ j ~ , G o ( k o ~ ) ~ ( O ' ) +  fi(O')~v'G,,(k,{)]dO' 

In order to solve the direct problem for a given 

F(8)  and E, ( let ,Uz =Po ), the moment method 

i s  applied. By using pulse basis functions {pn(8)} for 

expanding the unknown functions 5(e) and &?(e) 
into N ,  terms, we have 

1 ,onAe, 
0 ,otherwise p, (0) = 
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( A t ,  means the arc length of the object surface from 
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2z(n - 1) 2nz  e =  to e=- 1 
N d  N d  

By employing the point-matching technique, the 

above integral equations ( 1 )  and (2) can be transformed 

into matrix form as 

For the direct scattering problem, the scattered field 

i s  calculated by assuming that the shape functions 

are known. This can be achieved by first solving ,I($) 
and a($) using ( I )  and (2) and then the scattered field 

outside the scatterer can be calculated from Eqn. ( 5 ) .  It 

serves as the measured data of the inverse problem for the 

purpose of numerical simulation. 

E "  . 

For the inverse problem, we assume the approximate 

center of the scatter, which in fact can be any point inside 

the scatterer, is known. Then the shape F ( 6 )  function 

can be expanded as: 
N iv 

F(8)  = 

where Bn and c,, are real number to be determined, 

and 2N+1 is the number of unknown coefficients for shape 

function. In the inversion procedure, the steady-state 
genetic algorithm is used to minimize the following cost 

function: 

B, cos(n8) + ZC, sin(&) 
n=O n=l 

where M, is the total number of the measurement. 

Es'exp(F) and E"""'(F) are the measured scattered 

field and the calculated scattered field respectively. 

The parameters B,, and cn are coded using Gray 

code, and the processes of reproduction, mutation and 

crossover are employed to optimize B,, and c,, . Here, 

we use the steady-state genetic algorithm for our image 

problem. The variance of steady-state genetic algorithm is 

to insert a temporary population which composes of the 

parent populations and the new individuals generated by 

crossover and mutation. Offspring individuals are then 

reproduced using rank selection scheme until the original 

population size is reached again. Steady-state genetic 

algorithm has not only the characteristic of faster 

convergence [IO][ 113, but also the lower rate of crossover. 

As a result, it is a suitable scheme to effectively save the 

calculation time for the inverse problem as compared with 

the generational G.A.. 

III. Numerical Results 

In this section, we report some numerical results of 

using the scheme described in Section 11. Lossy 

homogeneous dielectric objects are taken into account. The 

sensitivity of this method to random noise in the scattered 

field is also investigated. 
Let us consider a dielectric cylinder located in the 

free space. The permittivity of the dielectric object E, is 
assumed in the following examples. The frequency of the 
incident wave is chosen to be 3 GHz and the corresponding 

free-space wavelength is 2 = 0. h . To reconstruct the 

shape and the permittivity, the dielectric objects in the 

following examples are illuminated by plane waves of unit 

amplitude from three directions ( 4 = O0,12Oo,24O0 ), 
and the measurement points ( M,  = 16 ) are equally 

separated on a circle of radius r, = 0.5m. The size of 

the object considered in each example is on the order of 

half wavelength. Note that the simulated result using only 
one incident wave is much worse than that using two 

incident waves. However, in order to get accurate results, 

three incident waves are used here. Numerically, for direct 

and inverse problems, Nd = 100 is set for the direct 
problem and N ,  = 50 for the inverse problem. The 

number of unknowns, including the shape function 
coefficients (2N+1) and the relative permittivity E,. and 
the loss term, is 2N+3, in total. 

The first example, the shape function (object A) is 
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chosen to be F (e) =0.04+0.01 *sin (48) m, and the relative 

permittivity of the object is E, = 2.56 - J * 1.12 . 
The reconstructed shape function of the best population 

member is plotted in Fig.2 (a). The r.m.s. error (DF) of the 

reconstructed shape Fca' (6) and the relative error 

(DIPE) of E:' (include real part and image part) with 

respect to the exact values versus generation are shown in 

Fig. 2(b). The r.m.s. error DF is about 1.2%, DIPE,,l 

=3.8%, and DZPE,,,,=4.2% in final. 

In Fig.3 object B with the shape 

F(0)=0.04+0.015*sin(30) m is considered and the dielectric 

constant of the object is E, = 5 - j * 1.2 . The result that 

DF=6.2%, DIPE,,,, =1.1%, and DIPE,,,,=3.5% in final. 

The Fig. 4 shows the reconstructed results under the 

condition that the measured scattered field is contaminated 

by noise c+jd, where c and d are independent random 

variables with uniform distribution. The values of c and d 
are distributed from -a, t o a , ,  where a,, is defined 

as the r.m.s value of the scattered field times the relative 
noise level. The relative noise levels include 0.04, 0.08, 0.1, 

0.2, and 0.3 for simulation purpose. In here, it can be seen 

that good reconstruction is obtained when the relative noise 

level is below 0.1. 

-006 -004 402 0 002 OM 006 
x -  

Fig. 2 Reconstructed results for shape A. 
(a) Shape function for first example. The solid curve 

represents the exact shape, while the star curves 
are calculated shape in iteration process. 
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Fig. 2 Reconstructed results for shape A. 

(b) Shape-function error and permittivity error in 

each generation. 
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Fig. 3 Reconstructed results for shape B. 
(a) Shape function for second example. The solid 

curve represents the exact shape, while the star 
curves are calculated shape in iteration process. 
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Fig. 3 Reconstructed results for shape B. 
(b) Shape-function error and permittivity error in 

each generation. 
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Fig. 4 Shape error and the relative permittivity errors 

as functions of noise level. 
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1V. Conclusions 

We have presented a study of applying the genetic 
algorithm to reconstruct the shapes and relative 
permittivity of a homogeneous lossy dielectric cylinder. 
Based on the equivalence principle, boundary condition 
and measured scattered fields, we have derived a set of 
nonlinear surface integral equations and reformulated the 
imaging problem into an optimization problem. By using 
the genetic algorithm, the shape and dielectric constant of 
the object can be successhlly reconstructed even when the 
dielectric constant is fairly large. Numerical results are 
presented and good reconstruction is obtained. 
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