
Processor Allocation in k-ary n-cube Multiprocessors

Po-Jen Chuang and Chih-Ming Wu
Department of Electrical Engineering

Tam kang University
Tamsui, Taipei Hsien, Taiwan 25137, R. 0. (2.

Abstract
Composed of various topologies, the k -ary n-cvbe

system is desirable f o r accepting and executing topo-
logically different tasks. I n this paper, we propose a
new allocation strategy to .utilite the large amount of
processor resources in the k - a r y n-cubes. Our strategy
is an extension of the TC' strategy on hypercubes an,d
is able io recognize all subcubes with different topolo-
gies. Simulatton results sh0.w that with such full sub-
cube recognition ability and no internal fragmentation,
o'ur strategy depicts consiantly better performance than
the other sirategies, such as the Free-list strategy on IC-
a r y n-cubes and the Srizfing strategy.

1 Introduction
Composed of various topologies, such as the multi-

dimensional toris, meshes and binary cubes, the k-
ary n-cube is a generalized form in the multiprocessor
system [1,2]. As in real practice the incoming tasks
to a system can involve different topologies, the k-
ary n-cube becomes very desirable for accepting and
executing topologically different tasks. To utilize its
large amount of processor resources, processor alloca-
tion strategies play quite an important role. When a
task arrives dynamically a t a k-ary n-cube system re-
questing processors connected in a specific topology, a
good processor allocation strategy makes it possible to
find a subsystem swift,ly with the right topology and
size. As a n incoming task has a proper r (2 5 r 5 k)
and m(0 5 m 5 n) , an exact amount of processors
with a particular topology must be allocated to it.

A k-ary n-cube, denoted by H k , n , comprises k"
nodes, each with 2n connection links serving as com-
munication channels directly to 2n immediate neigh-
bors. The parameter n is the dimension of the cube
and k is the radix or the number of nodes along each
dimension. A 4-ary 3-cube is shown in Fig. 1. A
node in the k-ary n-cube can be identified by an n-
digit radix-k address An-lAn-2.. .A1Ao, where Ai
represents the node's position in the i th dimension.
Rings, meshes, tori, binary n-cubes (hypercubes), and
Omega networks are topologically isomorphic to the
family of k-ary n-cubes [2]. The computation pat-
tern (topology) and the size of the corresponding sub-
cube requested by each incoming task must be spec-
ified first. The processors in an H k , n must be thus
allocated to all such tasks so that processor utiliza-
tion is maximized (or equivalently, a task is assigned
an available subcube whenever it exists). Due to the

1087-4089/97 $10.00 0 1997 IEEE

special structure of the k-ary n-cube, it is nontrivial
to detect the availability of a subcube. To accomplish
this, several previous strategies have been proposed.
The Free-list strategy on k-ary n-cubes [3] is an ex-
tension of the Free-list strategy on hypercubes. It can
recognize all the free subcubes, but its k is restricted
to the power of two. The Sniffing strategy [4] performs
an exhaustive search under some subcube representa-
tions and is unable to achieve full subcube recogni-
tion. The k-ary Partner strategy [5] is based on the
concept of "partners" in the k-ary tree representation
and can allocate only r-ary subcubes with r = k. To
achieve full subcube recognition ability with no limita-
tions, we propose a new processor allocation strategy
which is an extension .from the Tree-Collapsing (TC)
strategy on hypercubes [6]. Our new strategy recog-
nizes either cubic or non-cubic subcubes and allocates
the exact amount of processors to an incoming task.
By allocating the exact amount of processors, internal
fragmentation can be substantially eliminated.

2 Our Proposed Strategy
Our strategy is indeed the generalization of the TC

Strategy for processor allocation in hypercubes [SI.
The TC Strategy uses an n-bit nofa t ion to represent
exactly 2n-m distinct m-dimensional subcubes in an
n-dimensional hypercube. For example, a 4-bit nota-
tion 0 * U* represents 4 distinct 2-dimensional sub-
cubes O*O*, O* 1*, 1 *O*, and 1* I* in a 4-dimensional
hypercube. Algorithm G*, the basis of the T C Strat-
egy, is used to generate: the complete search space for
an incoming request (ix . , all the possible distinct sub-
cubes of the requested subcube dimension, say m) by
repeating the process 'of right rotating transform on
the n-bit notation starting from the pr imary notation
O O . . . O * * . . - * , with the leftmost n - m bits be-
ing the select bits and the rightmost m bits being
the don't care bits. The Right Rotating Transform
(R-transform), as stated in [6] , operates on an n-bit
notation, say A = aoal . . . u n - l . Specifically, an R-
transform from bit i, (denoted by p i , performs right
rotation on the rightmost n - i bits of A and produces
a rotated notation A/ = a O / a l / . . .an- l / such that

(i) a i / = a i , for 0 5 j < i,
(ii) a i / = aj-1, for i < j 5 n - 1, and
(iii) ai/ = an- l .
To give an example, the rotated notation of per-

forming p2 on a 6-bit notation U * 0 * U* is U * *U * U.

21 1

Algorithrn G* for the TC: S t r akgy is given in the fol-
lowing.

Algorithm G*:
Input: the primary notation (stored in

primary-notation) and the dimension of a subcube
to be allocated. m.

Procedure main(n, m, prirnarynotation)
begin

if(m = 0 or m = n) then stop;
for i := n - m - 1 down t80 0

call rotate(i, primarynotation, new-notation);
call subsequent-rotate(i, 0 , newnota t ion) ;

end for
end;
Procedure subsequent-rot,at,e(pre-level, pre-step,

begin
p re -11 o t a t ion)

s t p p := prest ,ep + 1:
i f s t e p 2 ~n then ret .urn
else

for i := pre-level to n - m - 1
call rotate(i+ st ep, pre-notation , new -notation) ;
call subsequent-rotate(i, step, new-notation);

end for
end if

end:
It is clear that there are C (n , m) x 2"-" possible

distinct. m-dimensional subcubes i n a n n-dimensional
hypercube. As .Algorithm G* can generate a corn-
plete search space for any request,ed m-dimensional
subcubes in an n-dimensional hypercube with the pri-
mary notation and the C(n. , m.)- 1 rotmated notations it
produces, we believe the same notation can be general-
ized and applied to an Hk," (k > 2) by using the n-bit
notafion (with m don't care bits *'s and n - m select
bits 0 's) to represent exactly k"-" distinct S k , m ' s .
For t.he hypercubes, the select bits ca.n be 0 or 1; for
the H k , , z , they c a n be 0, 1 , 2 > . . ' , k - 1. It is easy to
derive that Algorithm G* can be used to generate the
complete search space for a n y requested S k , , in H k , "

.i.e., to generate the C (n , m.) x L'"" possible distinct

Our proposed strategy, to be called the ex-
tended TC strategy, uses Algorithm G* to gener-
a te the complete search space and is able to rec-
ognize any Sk,,,'s with radices being the same as
the system's in the Hk,n. To recognize subcubes
of the other topologies, such as meshes, hyper-
cubes, and multi-dimensional meshes, our extended
T C strategy makes use of subnotations, each rep-
resenting a subset of possible subcubes which may
have different dimension radices. To give an ex-
ample, for notation 0 0 . . . O * * . . . *, the subset of
possible subcubes with different dimension radices
("-1, "-2,. . ., mo) can be represented by subno-
tation m n - l ...Om(*pm-l),.,,,-l where 0 E
{ 0 , 1 , . . ., k - l } ; pi (0 5 i 5 m-1) represents the start-
ing node position in dimension i, thus 0 < pi < k - 1;
r, (0 5 j m. - 1) is the requested radices (number
of nodes) in dimension j and 2 5 rj 5 k . Assuming
the incoming t a s k is a two-dimensional 4 x 2 mesh and
the system is a 4-ary 3-cube, a subset of t,he possible

Sk ,m 'S.

subcubes (noted by 0 * *) can be represented by sub-
notation O (* O) ~ (* O) ~ . The starting node of dimension
0 is 0 and the dimension needs two neighboring nodes,
say node 0 and node 1. Likewise, dimension 1 can take
nodes 0 , 1, 2, and 3. A possible 4 x 2 mesh O(*o 4(*0)2
(tha t is, when 0 =O in the above subnotation I has 8
nodes (0,0,0), (0,0,1), (0,1,0), (0,1,1), (0,2,0), (Oq2,1),
(0,3,od) and (0,3,1). If all the 4 x 2 meshes repre-
sente by the subnotation are busy, another subno-
tation 0(*0)4 (*1) . . O (* O) 4 (* 2) 2 , . . I , or 0 (* 3) 4 (* 3 h is
considered subsequently. (Note that the combinations
0 0 , 0 1 , 0 2 , 0 3 , 1 0 , 1 1 , ~ . . ,32,33 of all the possible start-
ing node positions in the dimensions with don'tcure
bits are considered, and beginning from the starting
node position, the requested numbers of nodes in those
dimensions are t.aken in a "wraparound" way.) All the
possible subcubes (4 x 2 meshes) represented by eac,h
of the above subnotations are to be said in a subset
of subcubes dicfafed by the primary notation 0 * *. If
neit.her of the subcubes i n a n y subcube subsets (rlic-
tat.ed by the primary n o t d o n) satisfies t,he incoming
t a s k , start performing Algorithm G* to get t,he rotated
notations. one by one, from 0 * *. Repeat the above
process for each rotated notation until a free requested
subc,ube is found.

The operation of processor allocation using our ex-
tended T C strategy is provided below.

Processor Allocation
step 1: Set, m := the dimension and ri := t.he ra.clis

for dimension i of the subcube required to accornmo-
date task I . .

step 2: {et notation := priniarynot,ation.
step 3: Search all the subsets (represented by sub-

notations) of the possible subcubes (wit.11 the required
dimension and radix in each dimension) dictated by
notation until a n available subcube is found. When
found, go to step 5.

st.ep 4: Perform Algorithm G* and do the same
search process as Step 3 for one rotated notation (if
any) at a time. If an available subcube is found, go to
the next step; otherwise, go to Step 6.

step 5: Set t.he corresponding allocation bits for
each node of the available subc.ube to 1's and allocate
the subcube to task ij. Stop.

Step 6: Attach Ij to the task queue and wait unt,il
a subcube is released.

Processor Relinquishment:
Reset those allocation bits for each node of the re-

leased subcube to 0's .

3 Performance Evaluation
Extended simulation runs have been conducted to

collect performance results for the extended TC strat-
egy, the Free-list strategy on k-ary n-cubes and the
Sniffing strategy. (The /&Partner strategy is excluded
due to its inability to allocate topologically different
tasks.) The simulation is carried out in a 4-ary 3-
cube system and task allocation is handled by a task
dispatcher independent of the system. All processors
are initialized to be free and the 100 tasks are gen-
erated and queued at. the dispatcher (no new tasks
are generated during t.he course of simulation). T w o
residence time distribut,ions of uniform(5.0, 10.0) and

212

uiiiform(10.0, 1.5.0) as well as an FCFS scheduling dis-
cipline are considered. The dimensions and radices
of subcubes requested by the 100 tasks are respec-
tively governed by two distributions, Uniform (U) and
Normal (N). Thus there are four combinations of the
dimension-radix distribution: U*U, U*N, N*U and
N*N, and they are able to form subcubes of various
topologies.

Performance measures such as the completion time,
processor utilization, external fragmentation and in-
ternal fragmentation are collected for analysis and
comparison. All the results are the average values
of 10 random seeds; given 95% of confidence, they
will be correct. with the error range falling between
3 4 . 4 % . Simulation results of the four performance
measures (under the residence time distribut,ion of uni-
form(5.0, 10.0) and the four dimension-radix distribu-
tions with tasks requesting different topologies) are
respectively depicted in Figs. 2 (a)-(d). A s observed,
for the U * U distribution, the extended TC strategy
depicts higher processor utilizat,ion t8han the Sniff-
ing strategy by 20.56?6. This is mainly because our
strategy is implemented wit.h ful l subcube recognition
ab i I i t y and wit, liou t, i n t.er nal fragment at, ion , while the
Sniffing strategy repeatedly allocates excessive proces-
sors to tasks due to its singular internal fragmentation
(44.34%’. the result of its special subcube represen-
t.at,ions). Processor utilization for the extended TC
strategy is also higher than that of the Free-list strat-
egy (by 7.28%) because the Free-list strategy has to
allocate more than needed free processors to a task
when t,he requested radix is not the power of two, re-
sult ing i n reniarkable int~ernal fragnient.ation (28.66%).
N0t.e that, both internal and external fragmentations
can affect. processor utilization i n the system but the
former is more dominat,ing. I n fact,, substantial in-
ternal fragmentation has enact.ecl obvious impact on
processor utilizat,ion and completion t.ime for both the
Sniffing and Free-list strategies as theL.simulation re-
sults dem0nstrat.e.

For t.he \I*N distribution, processor utilization for
the extended T C strategy is better than t.he Sniffing
strategy (by 13.66%) and the Free-list strate y

t,ribution). The markdown for the Free-list Strategy is
apparently the result of its uprising internal and exter-
nal fragmentations because when the dimension-radix
distribution is U*N, the most frequently requested
subcubes will be subcubes whose radices are three. In
this case, the internal fragmentation for the Free-list
strategy worsens and as a result external fragmenta-
tion also takes a turn for the worse.

For the N*U distribution, processor utilization for
the extended TC strategy is still higher than the other
two strategies (19% higher than the Sniffing strategy
and 7.72% higher than the Free-list strat.egy). As can
be seen. the value for the Free-list strategy rises to
t.he same level as in the U*U distribut,ion because
the radix dist,ribut.ion becomes uniform again, cutting
down t,he probability of prompting internal fragmen-
tation for the strategy. However, when the dimension-
radix distribution turns N*N, processor utilization for
the Free-list strategy plunges again due to the same

16.15%) - a significant lift from 7.28% for the U $ U jb! is

reason noted before for the U * N distribut,ion.
With the same (climension-radix) distributions,

simulation results under the residence time distribu-
tion of uniform (10.0, 15.0) are also collected to see
the effect of different residence times. As it turns out,
the results follow almost the same trend as what is
collected for the residence time distribution of uni-
form (5.0, 10.0). The only difference is: The longer
the residence time (1C1.0, 15.0), the larger the exter-
nal fragmentation for all the strategies under all the
dimension-radix distributions. This is because extend-
ing the residence time of each task tends to prompt
external fragment a t ion.

4 Conclusion
In this paper we propose a new processor alloca-

tion strategy for the le-ary n-cube with no limitation
on the requested dimensions and radices. Our pro-
posed strategy c a n recognize either cubic or non-cubic
subcubes and allocate the exact amount of processors
to an incoming task. Tha t is, our strategy is able
to achieve ful l subcube recognition for tasks request-
ing different. topologies. Under such a strategy, in-
ternal fragmentation can be substantially eliminated.
As simulation results demonstrate, in spite of hav-
ing larger external fragmentation, our strategy depicts
constantly better proclssor utilization than the other
investigated strat,egies due to its ability to achieve
full subcube recognition under different topologies and
also due to the absence of internal fragmentation. It. is
also noted that internal fragmentation plays quite a n
important role in dominating processor utilization in
a syst.em. Hence, besides pursuing full subcube recog-
nition and preventing external fragmentation, a good
processor allocation strategy should first concentrate
on the elimination of internal fragmentation.
Acknowledgments

This work was supported in part by the National
Science Council, Taiwan, R. 0. C., under Grant No.
NSC85-22 13-E-032-006.

References
LV. J . Dally, “Performance Analysis of k-ary n.-
cube Interconnection Networks,” IEEE Trans. on
Computers , Vol. 39, No. 6, pp. 775-785, June 1990.

Ii. Hwang, Advanced Computer Architecture: Par-
allelism, Scalability, Programmability, McGraw-.
Hill, 1993, pp. 86-87.

H.-L. Chen and C.-T. King, “An Efficient Dy-
namic Processor Allocation Scheme for K-ary n-
cube Multicomputers,” Proc. 1993 Int’l Conf. on
Parallel and Distributed Systems, Dec. 1993, pp.

V. Gautam and V. Chaudhary, “Subcube Allo-
cation Strategies in a K-ary N-cube,” Proc. 1993
ISCA Int’l Conf. o n Parallel and Distributed Com-
puting Sys tems , Oct. 1993, pp. 141-146.

E;. Windisch, Virginia Lo, and B. Bose, “Con-
tiguous and Non-Contiguous Processor Allocation
AIgorit,hms for K-ary N-cubes,” Proc. 1995 In2 ’I

217-22 1.

213

[6] P.-J. Chuang arid N.-F. Tzeng, "A Fast
Recognition-Complete Processor Allocation Strat-
egy for Hypercube Computers," IEEE Trans. on.
Compufprs. Yol. 41, No. 4 , pp . 467-479, Apr. 1992.

Fig. 1 . A 4-ary 3-cube.
(Hidden nodes and connection links are not shown.)

70

60

.o 50

5 40

30

C

3

g 20
0.

IO

0
U'U U'N N'U N'N

TC
m Sniffing
m Free-list

U+U U" N'U N'N

U'U U'N N*U N*N U'U U'N N'U N'N

Fig. 2 . (a) Processor utilization (b) Completion time (c) External fragmentation
(d) Internal fragmentation for different strategies

under the residence time distribution of uniform(5.0, 10.0).

214

