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Abstract— This work presents new algorithms and hardware 
architectures to improve the critical issues of the 2-D dual-mode 
(supporting 5/3 lossless and 9/7 lossy coding) lifting-based 
discrete wavelet transform (LDWT). The proposed 2-D dual-
mode LDWT architecture has the advantages of low-transpose 
memory, low latency, and regular signal flow, which is suitable 
for VLSI implementation. The transpose memory requirement 
of the N×N 2-D 5/3 mode LDWT is 2N, and that of 2-D 9/7 mode 
LDWT is 4N. According to the comparison results, the proposed 
hardware architecture surpasses previous architectures in the 
aspects of lifting-based low-transpose memory size. It can be 
applied to real-time visual operations such as JPEG2000, 
MPEG-4 still texture object decoding, and wavelet-based 
scalable video coding. 

Keywords-lifting-based discrete wavelet transform (LDWT), 
interlaced read scan algorithm (IRSA), low-transpose memory, 2-D 
5/3 mode LDWT, 2-D 9/7 mode LDWT. 

I. INTRODUCTION 
Among the variety of DWT algorithms, the LDWT 

provides a new approach for constructing biorthogonal 
wavelet transforms, and it also provides a more efficient 
scheme for calculating classical wavelet transforms [1]-[15]. 
By factoring the classical wavelet filter into lifting steps, the 
computational complexity of the corresponding DWT can be 
reduced by up to 50%. The lifting steps can be easily 
implemented, which is different from the direct finite impulse 
response (FIR) implementations of Mallat’s algorithm. Diou 
et al. [1] presented an architecture that performs the LDWT 
with the 5/3 filter based on the interleaving technique. Andra 
et al. [2] proposed a block-based simple four-processor 
architecture that compute several stages of the DWT at a time. 
Chen et al. [3] proposed a folded and pipelined architecture 
for the 2-D LDWT implementation, and this LDWT needs 
memory size of 2.5N for an N×N 2-D DWT. This lifting 
architecture for vertical filtering is divided into two parts, and 
each part consists of one adder and one multiplier. Because 
both parts are activated in different cycles, they can share the 
same adder and multiplier to increase the hardware utilization 
and reduce the latency. However, according to the 
characteristics of the signal flow it increases the complexity 
as well. Chen et al. [4] proposed a flexible and folded 
architecture for 3-level 1-D LDWT to achieve higher 
hardware utilization. Chiang et al. [5] proposed a 2-D DWT 
folded architecture to improve the hardware utilization. Jung 
et al. [6] presents an efficient VLSI architecture of dual-mode 
LDWT that is used by lossy or lossless compression of 

JPEG2000. Chen et al. [7] used a 1-D folded architecture to 
improve the hardware utilization for 5/3 and 9/7 filters. The 
recursive architecture is a general scheme to implement any 
wavelet filter that is decomposed into lifting steps in smaller 
hardware complexity. The architecture in [11] implements 2-
D DWT only with transpose memory by using recursive 
pyramid algorithm (PRA). In [10] it has the average of N2

computing time for all DWT levels. However, it uses many 
multipliers and adders. Huang et al. [13] proposed generic 
RAM-based architecture of high efficiency and feasibility for 
2-D DWT. In [14], the pipelined signal path is regular and 
practicable. This work presents a high-performance and low-
memory architecture to implement the 2-D dual-mode 
LDWT. Wu et al. [15] proposed an efficient VLSI 
architecture for the direct 2-D LDWT, in which the poly-
phase decomposition method and the coefficient folding 
method are employed to increase the hardware utilization. 
Despite these efficient improvements of the existed 
architecture, further improvements in the algorithm and 
architecture are still needed. Some VLSI architectures of 2-D 
LDWT reduce the transpose memory requirements and 
communication between the processors, such as the 
architectures presented in [1]-[15]. However, these hardware 
architectures still need large transpose memory. 

Low transpose memory requirement is the major concern in 
space-frequency domain implementation. For an N×N 2-D 
LDWT, people like to use raster scan signal flow operation. 
Under this approach the memory requirement ranges from 2N
to N2 [1]-[15] (in 2-D 5/3 and 9/7 modes LDWT). In order to 
solve the problem of transpose memory access, a high-
performance and low-memory architecture for multi-level 2-
D DWT is proposed in this paper. This work presents a new 
architecture to improve the 2-D dual-mode LDWT. In this 
paper, we revise the signal flow from row-wise to mixed row 
and column-wise, and further propose a new approach, 
interlaced read scan algorithm (IRSA), to reduce the transpose 
memory requirement for a 2-D dual-mode LDWT. In the 
IRSA approach, for an N×N DWT, a transpose memory size 
of 2N or 4N (5/3 or 9/7 mode) are required. Our 2-D LDWT 
is based on parallel and pipelined schemes to reduce the 
transpose memory and increase the operating speed. For 
hardware implementation, we use shifters and adders to 
replace multipliers in the computation to accomplish high 
hardware utilization. This 2-D LDWT includes the 
characteristics of higher hardware utilization, less memory 
requirement, and regular signal flow. A 256×256 2-D dual-
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mode LDWT was designed and simulated by VerilogHDL, 
and further synthesized by the Synopsys design compiler with 
TSMC 0.18 m 1P6M CMOS process technology to verify the 
performance of the proposed hardware architecture.

II. DISCRETE WAVELET TRANSFORM AND LIFTING-
BASED METHOD 

The lifting-based scheme proposed by Daubechies and 
Sweldens requires fewer computations than the traditional 
convolution-based approach. The lifting-based scheme is an 
efficient implementation for DWT. The lifting-based scheme 
can easily use integer operations and avoids the problems 
caused by the finite precision or rounding. A lifting-based 
scheme has the following four stages:
1) Split phase: The original signal is divided into two disjoint 
subsets. Significantly, the variable Xe denotes the set of even 
samples and Xo denotes the set of odd samples. This phase is 
called lazy wavelet transform because it does not decorrelate 
the data, but only subsamples the signal into even and odd 
samples. 
2) Predict phase: The predicting operator P is applied to the 

subset Xo to obtain the wavelet coefficients d[n] as in (1). 

                    d[n]=Xo[n]+P×(Xe[n])                       (1) 

3) Update phase: The Xe[n] and d[n] can be combined to 
obtain the scaling coefficients s[n] after an update 
operator U as in (2). 

                            s[n]=Xe[n]+U×(d[n])                         (2) 

4) Scaling: In the final step, the normalization factor is 
applied on s[n] and d[n] to obtain the wavelet 
coefficients. For example, Equations (3) and (4) describe 
the implementation of the 5/3 integer lifting analysis 
DWT and are used to calculate the odd coefficients 
(high-pass coefficients) and even coefficients (low-pass 
coefficients), respectively. 

2/)22()2()12(][* ++−+= nXnXnXnd             
(3) 

4/2)12()12()2(][* +++−+= ndndnXns             
(4) 

Although the lifting-based scheme involves low 
complexity, the long and irregular signal paths are the major 
limitations for efficient hardware implementation. 
Additionally, the increasing number of pipelined registers 
increases the internal memory size of the 2-D DWT 
architecture [9]. The 2-D LDWT uses a vertical 1-D LDWT 
subband decomposition and a horizontal 1-D LDWT subband 
decomposition to obtain the 2-D LDWT coefficients. 
Therefore, the memory requirement dominates the hardware 
cost and complexity of the architectures for 2-D LDWT. The 
default wavelet filters used in JPEG2000 are the dual-mode 
LDWT [9]. The lifting-based steps associated with dual-mode 

wavelets are shown in Figs. 1 and 2, respectively. Assuming 
that the original signals are infinite in length, we first apply 
the first stage lifting to perform the DWT. 

Figure 1 shows the lifting-based step associated with the 
wavelet. The original signals including s0, d0, s1, d1, s2,
d2,…, are the original input pixel sequences. If the original 
signals are infinite in length, the first stage lifting is first 
applied to update the odd index data s0, s1,…. In (5), the 
parameters -1/2 and Hi denote the first stage lifting parameter 
and outcome, respectively. Equation (5) shows the operation 
of the 5/3 integer LDWT. 

Fig. 1: 5/3 LDWT algorithm. 

Fig. 2: 9/7 LDWT algorithm. 

Hi=[(Si+Si+1)× +di]×K0
Li=[(Hi+Hi-1)× +Si]×K1                                 

(5) 

where = -1/2, = 1/4, and K0= K1= 1. 
Together with the high-frequency lifting parameter, , and the 
input signal we can find the first stage high-frequency wavelet 
coefficients, Hi. After Hi is found, Hi together with the low-
frequency parameter, , and the input signals of the second 
stage low-frequency wavelet coefficients, Li, can be found. 
The third and fourth stages lifting can be found in a similar 
manner. 

Similar to the 1-level 1-D 5/3 mode LDWT, the calculation 
of a 1-level 1-D 9/7 mode LDWT is shown in (6). 

ai=[(Si+Si+1)× +di]
bi=[(ai+ai-1)× +Si]
Hi=[(bi+bi+1)× +ai]×K0
Li=[(Hi+Hi-1)× +bi]×K1                        

(6) 
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where = 1.586134142, = 0.052980118, =
+0.882911075, = +0.443506852, K0=1 and K1=
1.230174104. 

The calculation includes four lifting steps and two scaling 
steps. 

III. INTERLACED READ SCAN ALGORITHM (IRSA) 
In recent years, many 2-D LDWT architectures have been 
proposed to meet the requirements of among on-chip memory 
for real-time processing. However, the hardware utilization of 
these architectures needs to be further improved. In DWT 
implementation, a 1-D DWT needs very massive computation 
and therefore the computation unit takes most of the hardware 
cost [1]-[5][7][10][13]-[15]. A 2-D DWT is composed of two 
1-D DWTs and a block of transpose memory. In the 
conventional approach, the size of the transpose memory is 
equal to the size of the processed image signal. The proposed 
architecture is described in detail in the following subsections, 
and we focuses on the 2-D dual-mode LDWT. 

Compared to the computation unit, the transpose memory 
becomes the main overhead in the 2-D DWT. Without loss of 
generality, the 2-D 5/3 mode LDWT is considered for the 
description of the 2-D LDWT. If the image dimension is
N×N, during the transformation we need a large block of 
transpose memory (order of N2) to store the DWT coefficients 
after the computation of the first stage 1-D DWT 
decomposition. The second stage 1-D DWT then uses the 
stored signal to compute the 2-D DWT coefficients of the 
four subbands [1][7]. The computation and the access of the 
memory may take time and therefore the latency is long. 
Since memory size of N2 is a large quantity, this work tries to 
use a new approach, interlaced read scan algorithm (IRSA), to 
reduce the required transpose memory to an order of 2N or 4N
(5/3 or 9/7 mode). 

Without loss of generality, let us take a 6×6-pixel image to 
describe the 2-D 5/3 mode LDWT operation and the proposed 
IRSA. Figure 3 shows the schematic diagram of the 2-D 5/3 
mode LDWT operations of a 6×6 image. In Fig. 3, x(i,j), i = 0 
to 5 and j = 0 to 5, represents the original image signal. The 
left most two columns are the left boundary extension 
columns, and the right most column is the right boundary 
extension column. The details of the boundary extension are 
described in the previous section. The upper half of Fig. 3 
shows the first stage 1-D DWT operations. The lower half of 
Fig. 3 shows the second stage 1-D DWT operations for 
finding the four subband coefficients, HH, HL, LH, and LL. 
In the first stage 1-D DWT, three pixels are used to find a 1-D 
high-frequency coefficient. For example, x(0,0), x(0,1), and 
x(0,2) are used to find the high-frequency coefficient b(0,0), 
and b(0,0) = −[x(0,0) + x(0,2)]/2 + x(0,1). To calculate the 
next high-frequency coefficient b(0,1), we need pixels signal 
x(0,2), x(0,3), and x(0,4). Here x(0,2) is used to calculate both 
of b(0,0) and b(0,1) and is called the overlapped pixel. The 
low-frequency coefficient is calculated using two consecutive 
high-frequency coefficients and the overlapped pixel. For 
example, b(0,0) and b(0,1) cope with x(0,2) to find the low-
frequency coefficient c(0,1), c(0,1) = [b(0,0) + b(0,1)]/4 + 

x(0,2). The calculated high-frequency coefficients, b(i,j), and 
low-frequency coefficients, c(i,j), are then used in the second 
stage 1-D DWT to calculate the four subband coefficients, 
HH, HL, LH, and LL. 

In the second stage 1-D DWT in Fig. 3, the first HH 
coefficient, HH(0,0), is calculated by using b(0,2), b(0,1), and 
b(0,0), HH(0,0) = −[b(0,0) + b(0,2)]/2 + b(0,1). The other HH 
coefficients can be computed in the same manner using 3 
column consecutive b(i,j) signals. For two column 
consecutive HH coefficients we have an overlapped b(i,j)
signal. For example b(0,3) is the overlapped signal for 
computing HH(0,0) and HH(0,1). To compute HL 
coefficients, we need two column consecutive HH 
coefficients and an overlapped b(i,j) signal. For example, 
HL(0,1) is computed from HH(0,0), HH(0,1), and b(0,3), 
HL(0,1) = [HH(0,0) + HH(0,1)]/4 + b(0,3). The LH 
coefficients are computed from the c(i,j) signal, and each LH 
coefficient needs the calculation of three c(i,j) signals. For 
example, LH(0,1) is computed from c(0,2), c(0,3), and c(0,4), 
LH(0,1) = −[c(0,2) + c(0,4)]/2 + c(0,3). For two column 
consecutive LH coefficients we have an overlapped c(i,j)
signal. For example, c(0,3) is the overlapped signal of 
computing LH(0,0) and LH(0,1). To compute LL coefficients, 
we need two column consecutive LH coefficients and an 
overlapped c(i,j) signal. For example, LL(0,1) is computed 
from LH(0,0), LH(0,1), and c(0,2), LL(0,1) = [LH(0,0) + 
LH(0,1)]/4 + c(0,2). 

x(i,j): original image, i = 0~5 and j = 0~5 
b(i,j): high frequency wavelet coefficient of 1-D LDWT 
c(i,j): low frequency wavelet coefficient of 1-D LDWT 
HH: high-high frequency wavelet coefficient of 2-D LDWT 
HL: high-low frequency wavelet coefficient of 2-D LDWT 
LH: low-high frequency wavelet coefficient of 2-D LDWT 
LL: low-low frequency wavelet coefficient of 2-D LDWT 

Fig. 3: Example of 2-D 5/3 mode LDWT operations. 

H part L part 
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From the description of the operations of the 2-D 5/3 mode 
LDWT we find that each 1-D high-frequency coefficient, 
b(i,j), is calculated from three image signals, and one of the 
image signal is overlapped with the previous b(i,j). The 1-D 
low-frequency coefficient, c(i,j), is calculated from two row 
consecutive b(i,j)’s and an overlapped pixel. The HH, HL, 
LH, and LL coefficients are computed from b(i,j)’s and 
c(i,j)’s. If we can change the scanning order of the first stage 
1-D LDWT and the output order of the second stage 1-D 
LDWT, during the 2-D LDWT operation we need only to 
store the b(i,j)’s to the transpose memory (FIFO size of N)
and the overlapped pixels to the internal memory (R4+R9 size 
of N). For an N×N image, the transpose memory block can be 
reduced to only size of 2N as shown in Fig. 4. Based on this 
idea, the IRSA is proposed. The IRSA can reduce the 
requirement of the transpose memory significantly. The block 
diagram of the IRSA with several pixels of an image is shown 
in Fig. 4. In Fig. 4, the numbers on top and left represent the 
coordinate indexes of a 2-D image. In order to increase the 
operation speed, the IRSA scans two pixels in the consecutive 
rows a time. IN1 and IN2 are the scanning inputs at the 
beginning. At the first clock, the system scans two pixels, 
x(0,0) and x(1,0), from IN1 and IN2, respectively. At the 
second clock, IN1 and IN2 read pixels x(0,1) and x(1,1), 
respectively. At clock 3, IN1 and IN2 read pixels x(0,2) and 
x(1,2), respectively. After IN1 and IN2 have read three pixels, 
the DWT tries to compute two 1-D high-frequency 
coefficients, b(0,0) and b(0,1), and these two high-frequency 
coefficients are stored in the transpose memory for the 
subsequent computation of the low-frequency coefficients. 
Pixels x(0,2) and x(1,2) are stored in the internal memory for 
the subsequent computation of the 1-D high-frequency 
coefficients. 

At clock 4, the DWT scans pixels on row 2 and row 3, and 
IN1 and IN2 read pixels x(2,0) and x(3,0), respectively. At 
clock 5, IN1 and IN2 read pixels x(2,1) and x(3,1), 
respectively. At clock 6, IN1 and IN2 read pixels x(2,2) and 
x(3,2), respectively. At this moment the DWT tries to 
compute the two high-frequency coefficients, b(2,0) and 
b(3,0), upon pixels x(2,0) to x(2,2) and x(3,0) to x(3,2) 
respectively and these two high-frequency coefficients are 
stored in the transpose memory for the subsequent 
computation of the low-frequency coefficients. Pixels x(2,2) 
and x(3,2) are stored in the internal memory for the 
subsequent computation of the high-frequency coefficients. 
Then (at clock 7) the DWT jumps to the subsequent 2 rows to 
read three consecutive pixels in each row and compute the 
high-frequency coefficients. The coefficients are stored in the 
transpose memory and pixels x(4,2) and x(5,2) are stored in 
the internal memory. This procedure will continue to read 
three pixels and compute the high-frequency coefficients and 
store the coefficients to the transpose memory and store pixels 
x(2,j) and x(2,j+1) to the internal memory in each row until 
the last row.  

Then IN1 and IN2 of the DWT will jump to row 0 and row 
1 to read pixels x(0,3) and x(1,3), respectively. At the next 
clock, IN1 and IN2 read pixels x(0,4) and x(1,4), respectively. 

The DWT of IN1 then copes with pixels x(0,3), x(0,4), and 
x(0,2) that were stored previously to compute the high-
frequency coefficient. Simultaneously the DWT of IN2 copes 
with pixels x(1,3), x(1,4), and x(1,2) that were stored 
previously to compute the high-frequency coefficients, b(0,1) 
and b(1,1). As soon as b(0,1) and b(1,1) are found, b(0,0), 
b(0,1), and x(0,2) are used to generate the low-frequency 
coefficient c(0,1), and b(1,0), b(1,1), and x(1,2) are used to 
generate the low-frequency coefficient c(1,1). The computed 
high-frequency coefficients are then stored in the transpose 
memory, and pixels x(0,4) and x(1,4) replace pixels x(0,2) and 
x(1,2) to be stored in the internal memory. IN1 and IN2 then 
jump to rows 2 and 3 to process the same operations until the 
end of the last pixel. The detail operations are shown in Fig. 
5.

The second stage 1-D DWT works in the similar manner as 
the first stage 1-D DWT. In the HH and HL operations, when 
three column consecutive b(i,j)’s are found in the first stage 1-
D DWT, an HH coefficient can be computed. As soon as two 
column consecutive HH coefficients are found, the two HH 
coefficients can cope with the overlapped b(i,j)’s to compute 
an HL coefficient. Similarly, when three column consecutive 
c(i,j)’s are found in the first stage 1-D DWT, an LH 
coefficient can be computed. As soon as two LH coefficients 
are found, the two LH coefficients can cope with the 
overlapped c(i,j) to compute an LL coefficient. The detailed 
operations for the second stage 1-D DWT are shown in Fig. 6. 

Fig. 4: IRSA of the 2-D LDWT. 

IV. PROPOSED VLSI ARCHITECTURE AND 
IMPLEMENTATION FOR THE 2-D DUAL-MODE LDWT 
We have discussed the IRSA in the previous section, and the 
architecture of IRSA is described in this section. We can 
manipulate the control unit to read off-chip memory. In IRSA, 
two pixels are scanned concurrently, and the system needs 
two processing units. For the 2-D LDWT processing, the 
pixels are processed by the first stage 1-D DWT first. The 
outputs are then fed to the second stage 1-D DWT to find the 
four subband coefficients, HH, HL, LH, and LL. Using our 
approach, the transpose memory can be reduced significantly. 
There are two parts in the architecture, the first stage 1-D 
DWT and the second stage 1-D DWT. Here we concentrate 
on the 2-D 5/3 mode LDWT. 
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A. The First Stage 1-D LDWT 
The first stage 1-D LDWT architecture consists of the 
following units: signal arrangement, multiplication and 
accumulation cell (MAC), multiplexer (MUX), and first-in-
first-out (FIFO) register. The block diagram is shown in Fig. 
7.

The signal arrangement unit consists of three registers, R1, 
R2, and R3. The pixels are input to R1 first, and subsequently 
the content of R1 is transferred to R2 and then R3, and R1 
keeps reading the following pixels. The operation is like a 
shift register. As soon as R1, R2, and R3 get signal data, 
MAC starts operating. 

Fig. 5: The detail operations of the first stage 1-D DWT. 

(a)                                       (b) 
Fig. 6: The detailed operations of the second stage 1-D DWT. 

(a) The HF (HH and HL) part operations. (b) The LF 
(LH and LL) part operations. 

Fig. 7: The architecture of the first stage 1-D DWT. 

For the low-frequency coefficients calculation we need two 
high-frequency coefficients and an original pixel. Internal 
register R4 is used to store the original even pixel (N1) and 
internal register R9 is used to store the original odd pixel 
(N2). We can simply shift the content of R3 to R4 after the 
MAC operation. FIFO is used to store the high-frequency 
coefficients to calculate the low-frequency coefficients. 
Register R5 has two functions: 1) It can store the high-
frequency coefficients for the low-frequency coefficient 
calculation. 2) It is used to be a signal buffer for MAC. MAC 
needs time to compute the signal, and the output of MAC 
cannot directly feed the result to the output or the following 
operation may be incorrect due to the synchronization 
problems. R5 acts as an output buffer for MAC to prevent the 
error in the following operations. In the 5/3 integer lifting-
based operations, MAC is used to find the results of the high 
frequency output, −(a1+a3)/2 + a2, and the low frequency 
output, (a1+a3)/4+a2. There are two multiplication 
coefficients, −1/2 and 1/4. To save hardware, we can use 
shifters to implement the −1/2 and 1/4 multiplications. 
Therefore the MAC needs adders, complementer, and shifters. 

B. The Second Stage 1-D LDWT 
Similar to the first stage 1-D DWT, the second stage 1-D 
DWT consists of the following units: signal arrangement, 
MAC, and MUX, as shown in Fig. 8. Due to the parallel 
architecture, two outputs are generated concurrently from the 
first stage 1-D DWT, and these two outputs must be merged 
in the second stage 1-D DWT. At the beginning, signal H0 
and H1 are from IN1 and IN2 and these two signals are stored 
in R3 and R4 respectively. At the next clock, H0 and H1 are 
moved to R1 and R2 respectively, and concurrently new 
signals H3 and H4 from IN1 and IN2 are stored to R3 and R4 
respectively. The signal arrangement unit operates repeatedly 
to input signal for the second stage 1-D DWT. 

C. 2-D LDWT Architecture 
In our IRSA operation, IN1 and IN2 read signals of even row 
and odd row in zig-zag orders, respectively. The block 
diagram of the proposed 2-D LDWT is shown in Fig. 9. It 
consists of two stages, the first stage 1-D DWT and the 
second stage 1-D DWT. This architecture needs only a small 
amount of the transpose memory. 

The signal processing of the second stage 1-D DWT is 
shown in Fig. 8. The 2×4 signals in each second stage 1-D 
DWT are then processed, and then HH, HL, LH, and LL are 
generated and each has 2×2 signal data. The complete 
architecture of the 2-D LDWT is shown in Fig. 9. The 
complete 2-D LDWT consists of four parts, two sets of the 
first stage 1-D DWT, two sets of the second stage 1-D DWT, 
control unit, and MAC unit. 

According to (5) and (6), the proposed IRSA architecture 
can be also applied to the 9/7 mode LDWT. From Figs. 5 and 
6 in section IV, the original signals (denoted as black circles) 
for both 5/3 and 9/7 modes LDWT can be processed by the 
same IRSA for the first stage 1-D DWT operation. The high-
frequency signals (denoted as grey circles) and the correlated 
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low-frequency signals together with the results of the first 
stage are used to compute the second stage 1-D DWT 
coefficients. Compared to the 9/7 mode LDWT computation, 
the 5/3 mode LDWT is much easier for computation, and the 
registers arrangement in Figs. 7 and 8 is simple. For 9/7 mode 
LDWT implementation with the same system architecture of 
5/3 mode LDWT, we have to do the following modifications: 
1) The control signals of the MUX in Figs. 7 and 8 must be 
modified. We have to rearrange the registers for the MAC 
block to process the 9/7 parameters. 2) The wavelet 
coefficients of dual-mode LDWT are different. The 
coefficients are = -1/2 and = 1/4 for 5/3 mode LDWT, but 
the coefficients are = 1.586134142, = 0.052980118, =
+0.882911075, and = +0.443506852 for 9/7 mode LDWT. 
For calculation simplicity and good precision, we can use the 
integer approach proposed by Hwang et al. [8] for 9/7 mode 
LDWT calculation. Similar to the multiplication 
implementation by shifters and adders in the 5/3 mode LDWT, 
we can adopt the shifters approach proposed in [11] further to 
implement the 9/7 mode LDWT. 3) According to the 
characteristics of the 9/7 mode LDWT, the control unit in Fig. 
9 must be modified accordingly. 

Fig. 8: The block diagram of the second stage 1-D LDWT. 

Fig. 9: The complete 2-D DWT block diagram.

The multilevel DWT computation can be implemented in a 
similar manner by our proposed high performance 1-level 2-D 
LDWT. For the multi-level computation, this architecture 

needs N2/4 off-chip memory. The off-chip memory is used to 
temporarily store the LL subband coefficients for the next 
iteration computations. The second level computation requires 
N/2 counters and N/2 FIFO’s for the control unit. The third 
level computation requires N/4 counters and N/4 FIFO’s for 
the control unit. Generally in the jth level computation, we 
need N/2j-1 counters and N/2j-1 FIFO’s. 

V. EXPRIMENTAL RESULTS AND COMPARISONS 
The 2-D dual-mode LDWT considers the trade-off between 
low transpose memory and low complexity in the design of 
VLSI architecture. The performance comparisons of our 
architecture and other similar architectures are listed in Tables 
I and II. According to the compression results, the proposed 
VLSI architecture outperforms previous works in the aspects 
of transpose memory size that we can reduce about 50% 
memory in comparison with JPEG2000 standard [9] 
architecture. Moreover, the 2-D LDWT is frame-based with 
the implementation bottleneck being the huge amount of the 
transpose memory size. The proposed IRSA approach has the 
advantages of memory-efficient and high-speed. The 
proposed 2-D dual-mode LDWT adopts parallel and pipeline 
schemes to reduce the transpose memory and increase the 
operating speed. The shifters and adders replace multipliers in 
the computation to reduce the hardware cost. A 256×256 2-D 
dual-mode LDWT is designed and simulated with 
VerilogHDL, and further synthesized by the Synopsys design 
compiler with TSMC 0.18 m 1P6M CMOS standard process 
technology to verify the performance of the proposed 
hardware architecture; the performance specifications are 
listed in Table III. 

VI. CONCLUSIONS 
In this paper, we proposed a new architecture of the 2-D 
LDWT for JPEG2000 and developed an efficient hardware 
architecture based on the proposed IRSA and a parallel 
scheme. Compared to previous architectures of the 2-D 
LDWT, the proposed 2-D architecture are efficient 
alternatives in tradeoff low transpose memory requirement, 
output latency, control complexity, and regular memory 
access order. Our proposed architecture reduces transpose 
memory significantly to a memory size of only 2N or 4N (5/3 
or 9/7 mode), and reduce the latency to (3/2)N+3. Based on 
the hardware architecture for the 2-D LDWT is designed by 
the TSMC 0.18μm 1P6M standard CMOS technology. The 
design is regular, simple, and well suited for VLSI 
implementation. Finally, the 5/3 and 9/7 filters with the 
different lifting steps can be realized by cascading the four 
(split phase, predict phase, update phase, scaling) modules.

Table I. COMPARISON OF 2-D ARCHITECTURE FOR 5/3 LDWT 
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Proposed Ours [1] [2] [3] [4] [5] [9] [12] [13] [14] 

T.M.(bytes) 2N 3.5N 3.5N 2.5N 3N N2/4+5N N2 2N 3.5N 3.5N

Latency (3/2)N+3 --- 2N+5 3 --- 3 --- --- Yes Yes 

C.T. (3/4)N2+

(3/2)N

+7 

--- (N2/2)+N

+5 

N2 (N2/2)+N

+5 

N2 --- --- --- --- 

1 Transpose memory (T.M.) size is used to store frequency coefficients in the 1-L 2-D DWT. 
2 In a system, latency is often used to mean any delay or waiting time that increases real or perceived response time beyond the response time desired. For example, specific contributors to 2-D DWT 
latency include from original image input to first subband output in signal. 

3 In a system, computing time ( C.T.) represents the time used to compute an image of size N×N.
4 Suppose image is of size N×N.

Table II: COMPARISON OF 2-D ARCHITECTURE FOR 9/7 LDWT 

Proposed Ours [2] [6] [7] [10] [11] [13] [14] [15] 

T.M. 4N N2 12N N2/4+LN+L 22N 14N 5.5N 5.5N N2+4N+4 

Latency (3/2)N+3 --- --- --- --- --- --- --- --- 

C.T. (3/4)N2+(3/

2)N +7

4N2/3+2 N2 N2/2~(2/3)

N

N2 --- --- --- 2N2/3 

5 L is filter length. 

Table III: DESUGN SPECIFICATION OF THE 

PROPOSED 2-D DWT 

CHIP SPECIFICATION N= 256, TILE SIZE = 256×256

POWER SUPPLY 1.8V 

TECHNOLOGY TSMC 0.18μM 1P6M (CMOS) 

ON-CHIP MEMORY SIZE 

(TRANSPOSE+ INTERNAL) 

2-D 5/3 DWT: 512 BYTES 

2-D 9/7 DWT: 1,024 BYTES

LATENCY (3/2)N+3 = 387 

COMPUTING TIME (3/4)N2+(3/2)N+7 = 49,543 
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