
New Memory-Efficient Hardware Architecture of 2-
D Dual-mode Lifting-Based Discrete Wavelet

Transform for JPEG2000
Chih-Hsien Hsia

Dept. of Electrical Engineering
Tamkang University

Taiwan, ROC
E-mail: chhsia@ee.tku.edu.tw

Jen-Shiun Chiang, Member, IEEE
Dept. of Electrical Engineering

Tamkang University
Taiwan, ROC

E-mail: chiang@ee.tku.edu.tw

Abstract— This work presents new algorithms and hardware
architectures to improve the critical issues of the 2-D dual-mode
(supporting 5/3 lossless and 9/7 lossy coding) lifting-based
discrete wavelet transform (LDWT). The proposed 2-D dual-
mode LDWT architecture has the advantages of low-transpose
memory, low latency, and regular signal flow, which is suitable
for VLSI implementation. The transpose memory requirement
of the N×N 2-D 5/3 mode LDWT is 2N, and that of 2-D 9/7 mode
LDWT is 4N. According to the comparison results, the proposed
hardware architecture surpasses previous architectures in the
aspects of lifting-based low-transpose memory size. It can be
applied to real-time visual operations such as JPEG2000,
MPEG-4 still texture object decoding, and wavelet-based
scalable video coding.

Keywords-lifting-based discrete wavelet transform (LDWT),
interlaced read scan algorithm (IRSA), low-transpose memory, 2-D
5/3 mode LDWT, 2-D 9/7 mode LDWT.

I. INTRODUCTION
Among the variety of DWT algorithms, the LDWT

provides a new approach for constructing biorthogonal
wavelet transforms, and it also provides a more efficient
scheme for calculating classical wavelet transforms [1]-[15].
By factoring the classical wavelet filter into lifting steps, the
computational complexity of the corresponding DWT can be
reduced by up to 50%. The lifting steps can be easily
implemented, which is different from the direct finite impulse
response (FIR) implementations of Mallat’s algorithm. Diou
et al. [1] presented an architecture that performs the LDWT
with the 5/3 filter based on the interleaving technique. Andra
et al. [2] proposed a block-based simple four-processor
architecture that compute several stages of the DWT at a time.
Chen et al. [3] proposed a folded and pipelined architecture
for the 2-D LDWT implementation, and this LDWT needs
memory size of 2.5N for an N×N 2-D DWT. This lifting
architecture for vertical filtering is divided into two parts, and
each part consists of one adder and one multiplier. Because
both parts are activated in different cycles, they can share the
same adder and multiplier to increase the hardware utilization
and reduce the latency. However, according to the
characteristics of the signal flow it increases the complexity
as well. Chen et al. [4] proposed a flexible and folded
architecture for 3-level 1-D LDWT to achieve higher
hardware utilization. Chiang et al. [5] proposed a 2-D DWT
folded architecture to improve the hardware utilization. Jung
et al. [6] presents an efficient VLSI architecture of dual-mode
LDWT that is used by lossy or lossless compression of

JPEG2000. Chen et al. [7] used a 1-D folded architecture to
improve the hardware utilization for 5/3 and 9/7 filters. The
recursive architecture is a general scheme to implement any
wavelet filter that is decomposed into lifting steps in smaller
hardware complexity. The architecture in [11] implements 2-
D DWT only with transpose memory by using recursive
pyramid algorithm (PRA). In [10] it has the average of N2

computing time for all DWT levels. However, it uses many
multipliers and adders. Huang et al. [13] proposed generic
RAM-based architecture of high efficiency and feasibility for
2-D DWT. In [14], the pipelined signal path is regular and
practicable. This work presents a high-performance and low-
memory architecture to implement the 2-D dual-mode
LDWT. Wu et al. [15] proposed an efficient VLSI
architecture for the direct 2-D LDWT, in which the poly-
phase decomposition method and the coefficient folding
method are employed to increase the hardware utilization.
Despite these efficient improvements of the existed
architecture, further improvements in the algorithm and
architecture are still needed. Some VLSI architectures of 2-D
LDWT reduce the transpose memory requirements and
communication between the processors, such as the
architectures presented in [1]-[15]. However, these hardware
architectures still need large transpose memory.

Low transpose memory requirement is the major concern in
space-frequency domain implementation. For an N×N 2-D
LDWT, people like to use raster scan signal flow operation.
Under this approach the memory requirement ranges from 2N
to N2 [1]-[15] (in 2-D 5/3 and 9/7 modes LDWT). In order to
solve the problem of transpose memory access, a high-
performance and low-memory architecture for multi-level 2-
D DWT is proposed in this paper. This work presents a new
architecture to improve the 2-D dual-mode LDWT. In this
paper, we revise the signal flow from row-wise to mixed row
and column-wise, and further propose a new approach,
interlaced read scan algorithm (IRSA), to reduce the transpose
memory requirement for a 2-D dual-mode LDWT. In the
IRSA approach, for an N×N DWT, a transpose memory size
of 2N or 4N (5/3 or 9/7 mode) are required. Our 2-D LDWT
is based on parallel and pipelined schemes to reduce the
transpose memory and increase the operating speed. For
hardware implementation, we use shifters and adders to
replace multipliers in the computation to accomplish high
hardware utilization. This 2-D LDWT includes the
characteristics of higher hardware utilization, less memory
requirement, and regular signal flow. A 256×256 2-D dual-

1-4244-2424-5/08/$20.00 ©2008 IEEE ICCS 2008 766

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225218475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

mode LDWT was designed and simulated by VerilogHDL,
and further synthesized by the Synopsys design compiler with
TSMC 0.18 m 1P6M CMOS process technology to verify the
performance of the proposed hardware architecture.

II. DISCRETE WAVELET TRANSFORM AND LIFTING-
BASED METHOD

The lifting-based scheme proposed by Daubechies and
Sweldens requires fewer computations than the traditional
convolution-based approach. The lifting-based scheme is an
efficient implementation for DWT. The lifting-based scheme
can easily use integer operations and avoids the problems
caused by the finite precision or rounding. A lifting-based
scheme has the following four stages:
1) Split phase: The original signal is divided into two disjoint
subsets. Significantly, the variable Xe denotes the set of even
samples and Xo denotes the set of odd samples. This phase is
called lazy wavelet transform because it does not decorrelate
the data, but only subsamples the signal into even and odd
samples.
2) Predict phase: The predicting operator P is applied to the

subset Xo to obtain the wavelet coefficients d[n] as in (1).

 d[n]=Xo[n]+P×(Xe[n]) (1)

3) Update phase: The Xe[n] and d[n] can be combined to
obtain the scaling coefficients s[n] after an update
operator U as in (2).

 s[n]=Xe[n]+U×(d[n]) (2)

4) Scaling: In the final step, the normalization factor is
applied on s[n] and d[n] to obtain the wavelet
coefficients. For example, Equations (3) and (4) describe
the implementation of the 5/3 integer lifting analysis
DWT and are used to calculate the odd coefficients
(high-pass coefficients) and even coefficients (low-pass
coefficients), respectively.

2/)22()2()12(][* ++−+= nXnXnXnd
(3)

4/2)12()12()2(][* +++−+= ndndnXns
(4)

Although the lifting-based scheme involves low
complexity, the long and irregular signal paths are the major
limitations for efficient hardware implementation.
Additionally, the increasing number of pipelined registers
increases the internal memory size of the 2-D DWT
architecture [9]. The 2-D LDWT uses a vertical 1-D LDWT
subband decomposition and a horizontal 1-D LDWT subband
decomposition to obtain the 2-D LDWT coefficients.
Therefore, the memory requirement dominates the hardware
cost and complexity of the architectures for 2-D LDWT. The
default wavelet filters used in JPEG2000 are the dual-mode
LDWT [9]. The lifting-based steps associated with dual-mode

wavelets are shown in Figs. 1 and 2, respectively. Assuming
that the original signals are infinite in length, we first apply
the first stage lifting to perform the DWT.

Figure 1 shows the lifting-based step associated with the
wavelet. The original signals including s0, d0, s1, d1, s2,
d2,…, are the original input pixel sequences. If the original
signals are infinite in length, the first stage lifting is first
applied to update the odd index data s0, s1,…. In (5), the
parameters -1/2 and Hi denote the first stage lifting parameter
and outcome, respectively. Equation (5) shows the operation
of the 5/3 integer LDWT.

Fig. 1: 5/3 LDWT algorithm.

Fig. 2: 9/7 LDWT algorithm.

Hi=[(Si+Si+1)× +di]×K0
Li=[(Hi+Hi-1)× +Si]×K1

(5)

where = -1/2, = 1/4, and K0= K1= 1.
Together with the high-frequency lifting parameter, , and the
input signal we can find the first stage high-frequency wavelet
coefficients, Hi. After Hi is found, Hi together with the low-
frequency parameter, , and the input signals of the second
stage low-frequency wavelet coefficients, Li, can be found.
The third and fourth stages lifting can be found in a similar
manner.

Similar to the 1-level 1-D 5/3 mode LDWT, the calculation
of a 1-level 1-D 9/7 mode LDWT is shown in (6).

ai=[(Si+Si+1)× +di]
bi=[(ai+ai-1)× +Si]
Hi=[(bi+bi+1)× +ai]×K0
Li=[(Hi+Hi-1)× +bi]×K1

(6)

 767

where = 1.586134142, = 0.052980118, =
+0.882911075, = +0.443506852, K0=1 and K1=
1.230174104.

The calculation includes four lifting steps and two scaling
steps.

III. INTERLACED READ SCAN ALGORITHM (IRSA)
In recent years, many 2-D LDWT architectures have been
proposed to meet the requirements of among on-chip memory
for real-time processing. However, the hardware utilization of
these architectures needs to be further improved. In DWT
implementation, a 1-D DWT needs very massive computation
and therefore the computation unit takes most of the hardware
cost [1]-[5][7][10][13]-[15]. A 2-D DWT is composed of two
1-D DWTs and a block of transpose memory. In the
conventional approach, the size of the transpose memory is
equal to the size of the processed image signal. The proposed
architecture is described in detail in the following subsections,
and we focuses on the 2-D dual-mode LDWT.

Compared to the computation unit, the transpose memory
becomes the main overhead in the 2-D DWT. Without loss of
generality, the 2-D 5/3 mode LDWT is considered for the
description of the 2-D LDWT. If the image dimension is
N×N, during the transformation we need a large block of
transpose memory (order of N2) to store the DWT coefficients
after the computation of the first stage 1-D DWT
decomposition. The second stage 1-D DWT then uses the
stored signal to compute the 2-D DWT coefficients of the
four subbands [1][7]. The computation and the access of the
memory may take time and therefore the latency is long.
Since memory size of N2 is a large quantity, this work tries to
use a new approach, interlaced read scan algorithm (IRSA), to
reduce the required transpose memory to an order of 2N or 4N
(5/3 or 9/7 mode).

Without loss of generality, let us take a 6×6-pixel image to
describe the 2-D 5/3 mode LDWT operation and the proposed
IRSA. Figure 3 shows the schematic diagram of the 2-D 5/3
mode LDWT operations of a 6×6 image. In Fig. 3, x(i,j), i = 0
to 5 and j = 0 to 5, represents the original image signal. The
left most two columns are the left boundary extension
columns, and the right most column is the right boundary
extension column. The details of the boundary extension are
described in the previous section. The upper half of Fig. 3
shows the first stage 1-D DWT operations. The lower half of
Fig. 3 shows the second stage 1-D DWT operations for
finding the four subband coefficients, HH, HL, LH, and LL.
In the first stage 1-D DWT, three pixels are used to find a 1-D
high-frequency coefficient. For example, x(0,0), x(0,1), and
x(0,2) are used to find the high-frequency coefficient b(0,0),
and b(0,0) = −[x(0,0) + x(0,2)]/2 + x(0,1). To calculate the
next high-frequency coefficient b(0,1), we need pixels signal
x(0,2), x(0,3), and x(0,4). Here x(0,2) is used to calculate both
of b(0,0) and b(0,1) and is called the overlapped pixel. The
low-frequency coefficient is calculated using two consecutive
high-frequency coefficients and the overlapped pixel. For
example, b(0,0) and b(0,1) cope with x(0,2) to find the low-
frequency coefficient c(0,1), c(0,1) = [b(0,0) + b(0,1)]/4 +

x(0,2). The calculated high-frequency coefficients, b(i,j), and
low-frequency coefficients, c(i,j), are then used in the second
stage 1-D DWT to calculate the four subband coefficients,
HH, HL, LH, and LL.

In the second stage 1-D DWT in Fig. 3, the first HH
coefficient, HH(0,0), is calculated by using b(0,2), b(0,1), and
b(0,0), HH(0,0) = −[b(0,0) + b(0,2)]/2 + b(0,1). The other HH
coefficients can be computed in the same manner using 3
column consecutive b(i,j) signals. For two column
consecutive HH coefficients we have an overlapped b(i,j)
signal. For example b(0,3) is the overlapped signal for
computing HH(0,0) and HH(0,1). To compute HL
coefficients, we need two column consecutive HH
coefficients and an overlapped b(i,j) signal. For example,
HL(0,1) is computed from HH(0,0), HH(0,1), and b(0,3),
HL(0,1) = [HH(0,0) + HH(0,1)]/4 + b(0,3). The LH
coefficients are computed from the c(i,j) signal, and each LH
coefficient needs the calculation of three c(i,j) signals. For
example, LH(0,1) is computed from c(0,2), c(0,3), and c(0,4),
LH(0,1) = −[c(0,2) + c(0,4)]/2 + c(0,3). For two column
consecutive LH coefficients we have an overlapped c(i,j)
signal. For example, c(0,3) is the overlapped signal of
computing LH(0,0) and LH(0,1). To compute LL coefficients,
we need two column consecutive LH coefficients and an
overlapped c(i,j) signal. For example, LL(0,1) is computed
from LH(0,0), LH(0,1), and c(0,2), LL(0,1) = [LH(0,0) +
LH(0,1)]/4 + c(0,2).

x(i,j): original image, i = 0~5 and j = 0~5
b(i,j): high frequency wavelet coefficient of 1-D LDWT
c(i,j): low frequency wavelet coefficient of 1-D LDWT
HH: high-high frequency wavelet coefficient of 2-D LDWT
HL: high-low frequency wavelet coefficient of 2-D LDWT
LH: low-high frequency wavelet coefficient of 2-D LDWT
LL: low-low frequency wavelet coefficient of 2-D LDWT

Fig. 3: Example of 2-D 5/3 mode LDWT operations.

H part L part

 768

From the description of the operations of the 2-D 5/3 mode
LDWT we find that each 1-D high-frequency coefficient,
b(i,j), is calculated from three image signals, and one of the
image signal is overlapped with the previous b(i,j). The 1-D
low-frequency coefficient, c(i,j), is calculated from two row
consecutive b(i,j)’s and an overlapped pixel. The HH, HL,
LH, and LL coefficients are computed from b(i,j)’s and
c(i,j)’s. If we can change the scanning order of the first stage
1-D LDWT and the output order of the second stage 1-D
LDWT, during the 2-D LDWT operation we need only to
store the b(i,j)’s to the transpose memory (FIFO size of N)
and the overlapped pixels to the internal memory (R4+R9 size
of N). For an N×N image, the transpose memory block can be
reduced to only size of 2N as shown in Fig. 4. Based on this
idea, the IRSA is proposed. The IRSA can reduce the
requirement of the transpose memory significantly. The block
diagram of the IRSA with several pixels of an image is shown
in Fig. 4. In Fig. 4, the numbers on top and left represent the
coordinate indexes of a 2-D image. In order to increase the
operation speed, the IRSA scans two pixels in the consecutive
rows a time. IN1 and IN2 are the scanning inputs at the
beginning. At the first clock, the system scans two pixels,
x(0,0) and x(1,0), from IN1 and IN2, respectively. At the
second clock, IN1 and IN2 read pixels x(0,1) and x(1,1),
respectively. At clock 3, IN1 and IN2 read pixels x(0,2) and
x(1,2), respectively. After IN1 and IN2 have read three pixels,
the DWT tries to compute two 1-D high-frequency
coefficients, b(0,0) and b(0,1), and these two high-frequency
coefficients are stored in the transpose memory for the
subsequent computation of the low-frequency coefficients.
Pixels x(0,2) and x(1,2) are stored in the internal memory for
the subsequent computation of the 1-D high-frequency
coefficients.

At clock 4, the DWT scans pixels on row 2 and row 3, and
IN1 and IN2 read pixels x(2,0) and x(3,0), respectively. At
clock 5, IN1 and IN2 read pixels x(2,1) and x(3,1),
respectively. At clock 6, IN1 and IN2 read pixels x(2,2) and
x(3,2), respectively. At this moment the DWT tries to
compute the two high-frequency coefficients, b(2,0) and
b(3,0), upon pixels x(2,0) to x(2,2) and x(3,0) to x(3,2)
respectively and these two high-frequency coefficients are
stored in the transpose memory for the subsequent
computation of the low-frequency coefficients. Pixels x(2,2)
and x(3,2) are stored in the internal memory for the
subsequent computation of the high-frequency coefficients.
Then (at clock 7) the DWT jumps to the subsequent 2 rows to
read three consecutive pixels in each row and compute the
high-frequency coefficients. The coefficients are stored in the
transpose memory and pixels x(4,2) and x(5,2) are stored in
the internal memory. This procedure will continue to read
three pixels and compute the high-frequency coefficients and
store the coefficients to the transpose memory and store pixels
x(2,j) and x(2,j+1) to the internal memory in each row until
the last row.

Then IN1 and IN2 of the DWT will jump to row 0 and row
1 to read pixels x(0,3) and x(1,3), respectively. At the next
clock, IN1 and IN2 read pixels x(0,4) and x(1,4), respectively.

The DWT of IN1 then copes with pixels x(0,3), x(0,4), and
x(0,2) that were stored previously to compute the high-
frequency coefficient. Simultaneously the DWT of IN2 copes
with pixels x(1,3), x(1,4), and x(1,2) that were stored
previously to compute the high-frequency coefficients, b(0,1)
and b(1,1). As soon as b(0,1) and b(1,1) are found, b(0,0),
b(0,1), and x(0,2) are used to generate the low-frequency
coefficient c(0,1), and b(1,0), b(1,1), and x(1,2) are used to
generate the low-frequency coefficient c(1,1). The computed
high-frequency coefficients are then stored in the transpose
memory, and pixels x(0,4) and x(1,4) replace pixels x(0,2) and
x(1,2) to be stored in the internal memory. IN1 and IN2 then
jump to rows 2 and 3 to process the same operations until the
end of the last pixel. The detail operations are shown in Fig.
5.

The second stage 1-D DWT works in the similar manner as
the first stage 1-D DWT. In the HH and HL operations, when
three column consecutive b(i,j)’s are found in the first stage 1-
D DWT, an HH coefficient can be computed. As soon as two
column consecutive HH coefficients are found, the two HH
coefficients can cope with the overlapped b(i,j)’s to compute
an HL coefficient. Similarly, when three column consecutive
c(i,j)’s are found in the first stage 1-D DWT, an LH
coefficient can be computed. As soon as two LH coefficients
are found, the two LH coefficients can cope with the
overlapped c(i,j) to compute an LL coefficient. The detailed
operations for the second stage 1-D DWT are shown in Fig. 6.

Fig. 4: IRSA of the 2-D LDWT.

IV. PROPOSED VLSI ARCHITECTURE AND
IMPLEMENTATION FOR THE 2-D DUAL-MODE LDWT
We have discussed the IRSA in the previous section, and the
architecture of IRSA is described in this section. We can
manipulate the control unit to read off-chip memory. In IRSA,
two pixels are scanned concurrently, and the system needs
two processing units. For the 2-D LDWT processing, the
pixels are processed by the first stage 1-D DWT first. The
outputs are then fed to the second stage 1-D DWT to find the
four subband coefficients, HH, HL, LH, and LL. Using our
approach, the transpose memory can be reduced significantly.
There are two parts in the architecture, the first stage 1-D
DWT and the second stage 1-D DWT. Here we concentrate
on the 2-D 5/3 mode LDWT.

 769

A. The First Stage 1-D LDWT
The first stage 1-D LDWT architecture consists of the
following units: signal arrangement, multiplication and
accumulation cell (MAC), multiplexer (MUX), and first-in-
first-out (FIFO) register. The block diagram is shown in Fig.
7.

The signal arrangement unit consists of three registers, R1,
R2, and R3. The pixels are input to R1 first, and subsequently
the content of R1 is transferred to R2 and then R3, and R1
keeps reading the following pixels. The operation is like a
shift register. As soon as R1, R2, and R3 get signal data,
MAC starts operating.

Fig. 5: The detail operations of the first stage 1-D DWT.

(a) (b)
Fig. 6: The detailed operations of the second stage 1-D DWT.

(a) The HF (HH and HL) part operations. (b) The LF
(LH and LL) part operations.

Fig. 7: The architecture of the first stage 1-D DWT.

For the low-frequency coefficients calculation we need two
high-frequency coefficients and an original pixel. Internal
register R4 is used to store the original even pixel (N1) and
internal register R9 is used to store the original odd pixel
(N2). We can simply shift the content of R3 to R4 after the
MAC operation. FIFO is used to store the high-frequency
coefficients to calculate the low-frequency coefficients.
Register R5 has two functions: 1) It can store the high-
frequency coefficients for the low-frequency coefficient
calculation. 2) It is used to be a signal buffer for MAC. MAC
needs time to compute the signal, and the output of MAC
cannot directly feed the result to the output or the following
operation may be incorrect due to the synchronization
problems. R5 acts as an output buffer for MAC to prevent the
error in the following operations. In the 5/3 integer lifting-
based operations, MAC is used to find the results of the high
frequency output, −(a1+a3)/2 + a2, and the low frequency
output, (a1+a3)/4+a2. There are two multiplication
coefficients, −1/2 and 1/4. To save hardware, we can use
shifters to implement the −1/2 and 1/4 multiplications.
Therefore the MAC needs adders, complementer, and shifters.

B. The Second Stage 1-D LDWT
Similar to the first stage 1-D DWT, the second stage 1-D
DWT consists of the following units: signal arrangement,
MAC, and MUX, as shown in Fig. 8. Due to the parallel
architecture, two outputs are generated concurrently from the
first stage 1-D DWT, and these two outputs must be merged
in the second stage 1-D DWT. At the beginning, signal H0
and H1 are from IN1 and IN2 and these two signals are stored
in R3 and R4 respectively. At the next clock, H0 and H1 are
moved to R1 and R2 respectively, and concurrently new
signals H3 and H4 from IN1 and IN2 are stored to R3 and R4
respectively. The signal arrangement unit operates repeatedly
to input signal for the second stage 1-D DWT.

C. 2-D LDWT Architecture
In our IRSA operation, IN1 and IN2 read signals of even row
and odd row in zig-zag orders, respectively. The block
diagram of the proposed 2-D LDWT is shown in Fig. 9. It
consists of two stages, the first stage 1-D DWT and the
second stage 1-D DWT. This architecture needs only a small
amount of the transpose memory.

The signal processing of the second stage 1-D DWT is
shown in Fig. 8. The 2×4 signals in each second stage 1-D
DWT are then processed, and then HH, HL, LH, and LL are
generated and each has 2×2 signal data. The complete
architecture of the 2-D LDWT is shown in Fig. 9. The
complete 2-D LDWT consists of four parts, two sets of the
first stage 1-D DWT, two sets of the second stage 1-D DWT,
control unit, and MAC unit.

According to (5) and (6), the proposed IRSA architecture
can be also applied to the 9/7 mode LDWT. From Figs. 5 and
6 in section IV, the original signals (denoted as black circles)
for both 5/3 and 9/7 modes LDWT can be processed by the
same IRSA for the first stage 1-D DWT operation. The high-
frequency signals (denoted as grey circles) and the correlated

 770

low-frequency signals together with the results of the first
stage are used to compute the second stage 1-D DWT
coefficients. Compared to the 9/7 mode LDWT computation,
the 5/3 mode LDWT is much easier for computation, and the
registers arrangement in Figs. 7 and 8 is simple. For 9/7 mode
LDWT implementation with the same system architecture of
5/3 mode LDWT, we have to do the following modifications:
1) The control signals of the MUX in Figs. 7 and 8 must be
modified. We have to rearrange the registers for the MAC
block to process the 9/7 parameters. 2) The wavelet
coefficients of dual-mode LDWT are different. The
coefficients are = -1/2 and = 1/4 for 5/3 mode LDWT, but
the coefficients are = 1.586134142, = 0.052980118, =
+0.882911075, and = +0.443506852 for 9/7 mode LDWT.
For calculation simplicity and good precision, we can use the
integer approach proposed by Hwang et al. [8] for 9/7 mode
LDWT calculation. Similar to the multiplication
implementation by shifters and adders in the 5/3 mode LDWT,
we can adopt the shifters approach proposed in [11] further to
implement the 9/7 mode LDWT. 3) According to the
characteristics of the 9/7 mode LDWT, the control unit in Fig.
9 must be modified accordingly.

Fig. 8: The block diagram of the second stage 1-D LDWT.

Fig. 9: The complete 2-D DWT block diagram.

The multilevel DWT computation can be implemented in a
similar manner by our proposed high performance 1-level 2-D
LDWT. For the multi-level computation, this architecture

needs N2/4 off-chip memory. The off-chip memory is used to
temporarily store the LL subband coefficients for the next
iteration computations. The second level computation requires
N/2 counters and N/2 FIFO’s for the control unit. The third
level computation requires N/4 counters and N/4 FIFO’s for
the control unit. Generally in the jth level computation, we
need N/2j-1 counters and N/2j-1 FIFO’s.

V. EXPRIMENTAL RESULTS AND COMPARISONS
The 2-D dual-mode LDWT considers the trade-off between
low transpose memory and low complexity in the design of
VLSI architecture. The performance comparisons of our
architecture and other similar architectures are listed in Tables
I and II. According to the compression results, the proposed
VLSI architecture outperforms previous works in the aspects
of transpose memory size that we can reduce about 50%
memory in comparison with JPEG2000 standard [9]
architecture. Moreover, the 2-D LDWT is frame-based with
the implementation bottleneck being the huge amount of the
transpose memory size. The proposed IRSA approach has the
advantages of memory-efficient and high-speed. The
proposed 2-D dual-mode LDWT adopts parallel and pipeline
schemes to reduce the transpose memory and increase the
operating speed. The shifters and adders replace multipliers in
the computation to reduce the hardware cost. A 256×256 2-D
dual-mode LDWT is designed and simulated with
VerilogHDL, and further synthesized by the Synopsys design
compiler with TSMC 0.18 m 1P6M CMOS standard process
technology to verify the performance of the proposed
hardware architecture; the performance specifications are
listed in Table III.

VI. CONCLUSIONS
In this paper, we proposed a new architecture of the 2-D
LDWT for JPEG2000 and developed an efficient hardware
architecture based on the proposed IRSA and a parallel
scheme. Compared to previous architectures of the 2-D
LDWT, the proposed 2-D architecture are efficient
alternatives in tradeoff low transpose memory requirement,
output latency, control complexity, and regular memory
access order. Our proposed architecture reduces transpose
memory significantly to a memory size of only 2N or 4N (5/3
or 9/7 mode), and reduce the latency to (3/2)N+3. Based on
the hardware architecture for the 2-D LDWT is designed by
the TSMC 0.18μm 1P6M standard CMOS technology. The
design is regular, simple, and well suited for VLSI
implementation. Finally, the 5/3 and 9/7 filters with the
different lifting steps can be realized by cascading the four
(split phase, predict phase, update phase, scaling) modules.

Table I. COMPARISON OF 2-D ARCHITECTURE FOR 5/3 LDWT

 771

Proposed Ours [1] [2] [3] [4] [5] [9] [12] [13] [14]

T.M.(bytes) 2N 3.5N 3.5N 2.5N 3N N2/4+5N N2 2N 3.5N 3.5N

Latency (3/2)N+3 --- 2N+5 3 --- 3 --- --- Yes Yes

C.T. (3/4)N2+

(3/2)N

+7

--- (N2/2)+N

+5

N2 (N2/2)+N

+5

N2 --- --- --- ---

1 Transpose memory (T.M.) size is used to store frequency coefficients in the 1-L 2-D DWT.
2 In a system, latency is often used to mean any delay or waiting time that increases real or perceived response time beyond the response time desired. For example, specific contributors to 2-D DWT
latency include from original image input to first subband output in signal.

3 In a system, computing time (C.T.) represents the time used to compute an image of size N×N.
4 Suppose image is of size N×N.

Table II: COMPARISON OF 2-D ARCHITECTURE FOR 9/7 LDWT

Proposed Ours [2] [6] [7] [10] [11] [13] [14] [15]

T.M. 4N N2 12N N2/4+LN+L 22N 14N 5.5N 5.5N N2+4N+4

Latency (3/2)N+3 --- --- --- --- --- --- --- ---

C.T. (3/4)N2+(3/

2)N +7

4N2/3+2 N2 N2/2~(2/3)

N

N2 --- --- --- 2N2/3

5 L is filter length.

Table III: DESUGN SPECIFICATION OF THE

PROPOSED 2-D DWT

CHIP SPECIFICATION N= 256, TILE SIZE = 256×256

POWER SUPPLY 1.8V

TECHNOLOGY TSMC 0.18μM 1P6M (CMOS)

ON-CHIP MEMORY SIZE

(TRANSPOSE+ INTERNAL)

2-D 5/3 DWT: 512 BYTES

2-D 9/7 DWT: 1,024 BYTES

LATENCY (3/2)N+3 = 387

COMPUTING TIME (3/4)N2+(3/2)N+7 = 49,543

REFERENCES
[1] C. Diou, L. Torres, and M. Robert, “An embeded core for the 2-D

wavelet transform,” IEEE on Emerging Technologies and Factory
Automation Proceedings, vol. 2, pp. 179-186, 2001.

[2] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture
for lifting-based forward and inverse wavelet transform,” IEEE
Trans. on Signal Processing, vol. 50, no.4, pp. 966-977, 2002.

[3] S.-C. Chen and C.-C. Wu, “An architecture of 2-D 3-level lifting-
based discrete wavelet transform,” Proc. of the VLSI Design/ CAD
Symposium, pp. 351-354, 2002.

[4] P.-Y. Chen, “VLSI implementation of discrete wavelet transform
using the 5/3 filter,” IEICE Trans. on Information and Systems,
vol. E85-D, no.12, pp. 1893-1897, 2002.

[5] J.-S. Chiang and C.-H. Hsia, “An efficient VLSI architecture for 2-
D DWT using lifting scheme” IEEE Int. Conference on Systems
and Signals, pp. 528-531, 2005.

[6] G.-C Jung and S.-M. Park, “VLSI implement of lifting wavelet
transform of JPEG2000 with efficient RPA (recursive pyramid
algorithm) realization,” IEICE Trans. on Fundamentals, vol.
E88-A, no. 12, pp. 3508-3515, 2005.

[7] P.-Y. Chen, “VLSI implementation for one-dimensional multilevel
lifting-based wavelet transform,” IEEE Trans. on Computer, vol.
53, no. 4, pp. 386-398, 2004.

[8] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Flipping structure: An
efficient VLSI architecture for lifting-based discrete wavelet
transform,” IEEE Trans. on Signal Processing, vol. 52, no.4, pp.
1080-1089, 2004.

 [9] JPEG 2000 Part 1 Final Committee Draft Version 1.0, ISO/IEC
15444-1 JTC1/SC29 WG1, Information Technology, March 2000.

[10] M. Vishwanath, R. M. Owens, and M. J. Irwin, “VLSI
architecture for the discrete wavelet transform,” IEEE Trans. on
Circuits and Systems II, vol. 42, no. 5, pp. 305-316, 1995.

[11] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Efficient VLSI
architecture of lifting-based discrete wavelet transform by
systematic design method,” IEEE Int. Symposium Circuits and
Systems, vol. 5, pp. 26-29, 2002.

[12] K. Mei, N. Zheng, and H. van de Wetering, “High-speed and
memory-efficient VLSI design of 2-D DWT for JPEG2000
applications,” IET Electronics Letter, vol. 42, no. 16, 2006.

[13] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Generic RAM-based
architecture for two-dimensional discrete wavelet transform with
line-based method,” IEEE Trans. on Circuits and Systems for
Video Technology, vol. 15, no.7, pp. 910-919, 2005.

[14] B.-F. Wu and C.-F. Lin, “A high-performance and memory-
efficient pipeline architecture for the 5/3 and 9/7 discrete wavelet
transform of JPEG2000 codec,” IEEE Trans. on Circuits and
Systems for Video Technology, vol. 15, no.12, pp. 1615-1628,
2005.

 [15] P.-C. Wu and L.-G. Chen, “An efficient architecture for two-
dimensional discrete wavelet transform,” IEEE Trans. on Circuits
and Systems for Video Technology, vol. 11, no.4, pp. 536-545,
2001.

 772

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

