
ay

1

incE

X
Y

Z

1region

2region

),( 11

),( 22

e-mail chiu@ee.tku.edu.tw  phone +886226215656 # 2737  Fax: +886226209814

Abstract -- In this paper we address an inverse scattering 
problem whose aim is to discuss the CPU time for 
recovering a perfectly conducting cylindrical object buried 
in a half-space. First, we use Fourier-series or cubic-spline 
methods to describe the shape and reformulate the inverse 
problem into an optimization one. Then we solved it by the 
improved Steady State Genetic Algorithm (SSGA) and 
Simple Genetic Algorithm (SGA) respectively and compare 
the cost time in finding out the global extreme solution of 
the objective function. It is found the searching ability of 
SSGA is much powerful than that of the SGA. Even when 
the initial guess is far away from the exact one, the cost time 
for converging to a global extreme solution using by SSGA 
is much less than that by SGA. Numerical results are given 
to show that the inverse problem by using SSGA is much 
better than SGA in time costing.

I. Introduction 

  Due to the large area of applications such as 
non-destructive problems, geophysical prospecting and 
determination of underground tunnels and pipelines, etc., 
the inverse scattering problems related to the buried 
bodies are of particular importance in the scattering 
theory. In the past 20 years, many rigorous methods have 
been developed to solve the exact equations [1]-[8]. 
However, inverse problems of this type are difficult to 
solve because they are ill-posed and nonlinear [9]. As a 
result, many inverse problems are reformulated into 
optimization ones and then numerically solved by 
different iterative methods such as the 
Newton-Kantorovitch method [1]-[4], the 
Levenberg-Marquardt algorithm [5]-[7], and the 
successive-overrelaxation method [8]. Most of these 
approaches employ the gradient-based searching scheme 
to find the extreme of the cost function, which are highly 
dependent on the initial guess and usually get trapped in 
the local extreme. The GA [10] is an evolutionary 
algorithm that uses the stochastic mechanism to search 

through the parameter space. Although we can get good 
reconstruction by using SGA to solve the inverse 
problem, we found that SGA will need a lot of time to 
get the accurate result, since repeated calculating 
scattered field will take over the great part of time, 
especially in half-space inverse problem that Green 
function converges slowly. As a result, a lot of CPU time 
is needed to deal with the half-space case. In such a case, 
it is more suitable by using SSGA, since the features of 
SSGA are using less function calls (In the inverse 
problem, function calls mean to calculate the scattered 
field) to get the same result. In this paper, inverse 
problem of the half space case solved by an improved 
SSGA using non-uniform probability density function 
(pdf) is proposed and compared with SGA. In Section II, 
a theoretical formulation for the inverse scattering is 
presented. The general principles of SGA, and the way 
we applied them to the inverse problem are described. In 
section III, numerical results for reconstructing objects of 
different shapes are given. Finally, some conclusions are 
drawn in Section IV. 

II. Theoretical Formulation 

Fig. 1 Geometry of the problem in (x,y) plane.
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Let us consider a perfectly conducting cylinder 
buried in a lossy homogeneous half-space, as shown in 
Fig 1. The media in regions 1 and 2 are characterized by 
the permittivities and conductivities ),( 11  and 

),( 22  , respectively, while the permeability 0  is 
used for each region, i.e., only nonmagnetic media are 
concerned here. The cross section of the cylinder is 
described by polar coordinates in the xy  plane 
through the shape function )(F . The cylinder is 
illuminated by a plane wave with time dependence 
exp )( tj , of which the electric field is assumed 
parallel to the z -axis (i.e., transverse magnetic or TM 
polarization). Let incE  denote the incident E  field 
from region 1 to region 2 with incident angle 1 . Owing 
to the interface between region 1 and region 2, the 
incident plane wave would generate two waves in the 
absence of the conducting object: the reflected wave (for 

ay ) and the transmitted wave (for ay ). 
Thus the unperturbed field is given by 

            )(rEi = zyxEi ˆ),(       (1) 
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According to the equivalent induced current concept, the 
scattered field can be expressed by 
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Note that the same point cause expressed as ,,'r  in 
polar coordinate or ',' yx  in Cartesian coordinate. 
Here )(sJ  is the induced surface current density that 
is proportional to the normal derivative of the electric 
field on the conductor surface.  
The boundary condition for a perfectly conducting object 

is

             0ˆ En                 (4) 
where n̂  is the outward unit vector normal to the 
surface of the scatterer. The boundary condition at the 
surface of the scatterer given by (4) then leads to an 
integral equation for )(J :
         

2
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The total field outE  in region 1 is given by 
2

0 11 ')'()'),'(;()()( dJFrGrErE out   (6) 
The direct problem is to compute the total field in region 
1 when the shape function )(F  is given. This can be 
achieved by first solving for J  from equation (5) and 
then calculating outE  by equation (6). 
      Let us consider the following inverse 
problem: given the scattered electric field sE
measured outside the scatterer, determine the 
shape function )(F  of the object.  

III. Numerical Results 

     Let us consider a perfectly conducting cylinder 
buried in a lossless half-space ( 021

).The 
permittivities in region 1 and region 2 are characterized 
by 01  and 02 56.2 , respectively. A TM 
polarization plane wave of unit amplitude is incident 
from region 1 upon the object in region 2 as shown in 



Fig. 1. The frequency of the incident wave is chosen to 
be 3GHz, of which the wavelength 0  in free space is 
0.1m. The object is buried at a depth a 0  and the 
scattered fields are measured on a probing line along the 
interface between region 1 and region 2. To reconstruct 
the shape of the object, the object is illuminated by three 
incident waves from different directions, while 20 
measurement points at equal spacing are used along the 
interface ay  for each incident angle. There are 
60 measurement points in each simulation.  

In both algorithms, the population size are chosen 
as 100 (i.e. X =100). The binary string length of the 
unknown coefficient, i  is set to be 20 bits (i.e., L=20). 
The search range for the unknown coefficient of the 
shape function is chosen to be from 0 to 0.1. The extreme 
value of the coefficient of the shape function can be 
determined by the prior knowledge of the objects. Here, 
the prior knowledge means that we can get the 
approximate position and the size of the buried cylinder 
by first using tomography technique, and then get the 
exact solution by the genetic algorithm. The crossover 
probability cp  is set to be 0.05 in NU-SSGA and 0.5 in 
SGA. Note that, in a typical GA, it use the crossover and 
mutation operator to generate all the new population in 
each new generation. On the contrary, NU-SSGA only 
need to generate a few new population in each new 
generation. The mutation probability mp  is set to be 
0.5 in both algorithms. The value of  is chosen to be 
0.001. The efficient NU-SSGA is then applied to 
enhance the convergence and increase the converging 
rate of finding the global extreme of the inverse 
scattering problems.  

The maximum number of generation is set 1000 in 
SGA and 5000 in NU-SSGA. However, when the change 
of fitness value is less than 1% in 500 generations, the 
simulation will also stop. 

     In the first example, the shape function is selected 

by the cubic-spline expand to be 02.00 m, 

302.01 m, 302.02 m, 02.03 m, 

302.04 m and 302.05 m. Here, the 

spline ranges are defined as 

011h , 122h ,…and 1Nnnh . We 

set the same spline range to expand the shape in the 

simulation. In this example, the cubic-spline expand is 

also chosen to recover the shape function. The 

reconstructed shape function at 6000 function call using 

by SGA and NU-SSGA are plotted in Fig. 5(a) 

respectively with the relative errors shown in Fig. 5(b). 

Here DR, which is called shape function discrepancy 

respectively, are defined as 
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where 'N  is set to 60. The quantities DR provides 
measures of how well calF  approximates )(F
respectively. From Fig. 2(a) and Fig. 2(b), it is clear that 
the efficiency of the NU-SSGA is much better than that 
of SGA. We can save more than 90% CPU time by using 
NU-SSGA. To investigate the sensitivity of the imaging 
algorithm against random noise, two independent 
Gaussian noises with zero mean have been added to the 
real and imaginary parts of the simulated scattered fields. 
We use the normalized standard deviations of 210  to 
test the SGA and NU-SSGA. The normalized standard 
deviation is defined as the standard deviation of the 
Gaussian noise divided by the rms value of the scattered 
fields. Here, the signal-to-noise ratio (SNR) is inversely 
proportional to the normalized standard deviation. The 
numerical result is plotted in Fig. 2(c). 

IV. Conclusions 

We have presented a study of comparing the 
efficiency of the SGA and NU-SSGA to reconstruct the 
shape of a buried metallic object through knowledge of 
scattered field. Based on the boundary condition and 
measured scattered field, we have derived a set of 
nonlinear integral equations and reformulated the 
imaging problem into an optimization problem. Besides, 
the contours of the cylinders are expanded by the 
cubic-spline for the inverse problem instead of the 
trigonometric series to guarantee the nonnegative 
definition of the shape. Experiment results show that the 
searching ability and efficiency of NU-SSGA are much 
powerful than that of SGA. We can save more than 90% 
CPU time to get the satisfied result for all the examples.  
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Fig. 2 (a) Shape function for example. The star curve 
represents the exact shape, while the curves of short 
and long imaginary lines are the results at 6000 
function call by using SGA and NU-SSGA 
respectively. 

Fig. 2 (b) The trend of relative error for SGA and 
NU-SSGA method.

Fig. 2 (c) The trend of relative error for SGA and 
NU-SSGA method with noise level at 210 .




