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Abstract 

 
Wavelet coding has been shown to be better than 

Discrete Cosine Transform (DCT) in image/video 
processing. Moreover, it has the feature of scalability, 
which is involved in modern video standards. This work 
presents novel algorithms, namely 2-D Symmetric 
Mask-based Discrete Wavelet Transform (SMDWT), to 
improve the critical issue of the 2-D Lifting-based Discrete 
Wavelet Transform (LDWT), and then obtains the benefit of 
low latency, high-speed operation, and low temporal 
memory. The SMDWT also has the advantages of 
high-performance embedded periodic extension boundary 
treatment, reduced complexity, regular signal coding, short 
critical path, reduced latency time, and independent 
subband coding processing. Moreover, the 2-D 
lifting-based DWT performance can also be easily 
improved by exploiting appropriate parallel method 
inherently in SMDWT. Comparing with the normal 2-D 5/3 
integer lifting-based DWT, the proposed method 
significantly improves lifting-based latency and complexity 
in 2-D DWT without degradation in image quality. The 
algorithm can be applied to real-time image/video 
applications, such as JPEG2000, MPEG-4 still texture 
object decoding, and wavlet-based Scalable Video Coding 
(SVC). 

 
Keywords:  critical path, latency, discrete wavelet 
transform, lifting-based discrete wavelet transform, 
symmetric mask-based discrete wavelet transform, 
temporal memory. 
 

1. Introduction 

 
In recent years, the development of communication and 

multimedia is more and more speedy. A variety of digital 
media and services are around our daily life, such as digital 
camera, VCD, DVD, HDTV, and video conference. Some 
well-known compression schemes, such as Differential 
Pulse Code Modulation (DPCM)-based method [1], 
DCT-based methods [2], [3], and Wavelet-based methods 
[4]-[13] have been well-developed in the past few decades. 
Recently, the lifting-based scheme offers a low-complexity 
solution for image/video applications, e.g., JPEG2000 

[7]-[13] or MC-EZBC [19]. However, the real-time 2-D 
DWT is still difficult to be achieved. Hence, an efficient 
transformation scheme for the large amount of multimedia 
is highly demanded. 

Filter banks for the applications of subband image/video 
coding were introduced in the 1990s. Since then, the 
wavelet coding has been studied extensively. There has 
been great success in applying wavelet coding to many 
applications. The most notable applications include 
subband coding for audio, image, and video, signal analysis 
and representation using wavelets, and so forth. In the past 
few years, DWT [4] has been used for a wide range of 
applications including image coding and video compression, 
such as speech analysis, numerical analysis, signal analysis, 
image coding, pattern recognition, computer vision, 
biometric, and etc. The DWT can be viewed as a 
multiresolution decomposition of a signal, which means 
that it decomposes a signal into several components in 
different wavelet frequency bands. Moreover, the 2-D 
DWT is a modern tool for compression, such as JPEG2000 
still images compression standard, denoising, region of 
interest, and watermarking applications. 

Low temporal memory requirement and latency 
reduction are the major concerns in 2-D DWT 
implementation. In this work, a new approach, 2-D 
Symmetric Mask-based DWT algorithm (SMDWT), is 
proposed to improve the 2-D lifting-based DWT (LDWT), 
and is further applied to 2-D DWT real-time applications. 

The rest of this paper is organized as follows. In Section 
2, the LDWT is briefly introduced. The proposed SMDWT 
is presented in Section 3. Section 4 demonstrates the 
performance comparisons. The conclusions are given in 
Section 5. 
 

2. Lifting-based DWT (LDWT) 

 
The filtering and convolution are applied to achieve the 

signal decomposition in classical DWT. In 1986, Meyer 
and Mallat [4] found that the orthonormal wavelet 
decomposition and reconstruction could be implemented in 
the multiresolution signal analysis framework. The 
multiresolution analysis is now a standard to construct the 
orthonormal wavelet bases. In the decomposition process, 
the low-pass filter H and high-pass filter G represent the 
scaling functions and the corresponding wavelets, 
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respectively. If we have a filter of length four, the 
corresponding transfer functions of filters H and G can be 
represented as, 

 
H(z)=h0+h1z-1+h2z-2+h3z-3,                        (1) 
 
G(z)=g0+g1z-1+g2z-2+g3z-3.                        (2) 
 

The downsampling operation is then applied to the 
filtered results. A pair of filters are applied to the signal to 
decompose the image into the low-low (LL), low-high 
(LH), high-low (HL), and high-high (HH) wavelet 
frequency bands. Suppose an image of size N×N each band 
is subsampled by a factor of two, so that each wavelet 
frequency band contains N/2×N/2 samples. The four bands 
can be combined to create an output image with the same 
number of samples as the original. 

In most image compression applications, the 2-D wavelet 
decomposition described above can be applied again to the 
LL sub-image, forming four new subband images, and so 
on to achieve more compact energy in the lower frequency 
bands. 

 
2.1. Lifting-based DWT Algorithm 
 

The lifting-based scheme proposed by Daubechies and 
Sweldens [5], [6] requires fewer computations than the 
conventional convolution-based approach. The 
lifting-based scheme is an efficient implementation of 
DWT. Using the lifting-based scheme, the integer operation 
is easily employed and avoids the problems caused by the 
finite precision or rounding. The Euclidean algorithm can 
be used to factorize the poly-phase matrix of a DWT filter 
into a sequence of alternating upper and lower triangular 
matrices and a diagonal matrix. In Eq. 3, the variables h(z) 
and g(z) denote the low-pass and high-pass synthesis filters, 
which can be divided into even and odd parts to form a 
poly-phase matrix P(z) as in Eq. 4. 

 
g(z)=ge(z2)+ z-1go(z2), 
h(z)=he(z2)+z-1ho(z2).                            (3) 
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Using the Euclidean algorithm, it recursively finds the 
greatest common divisors of the even and odd parts of the 
original filters. Since h(z) and g(z) form a complementary 
filter pair, P(z) can be factorized into Eq. 5. Therefore, the 
filter bank can be factorized into three lifting steps. 
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where si(z) and ti(z) are Laurent polynomials 
corresponding to the prediction and update steps, 
respectively, and k is a nonzero constant. 

A lifting-based scheme composes the following four 
stages: 

1) Split phase: Divide the original signal into two disjoint 
subsets. Notably, the variable Xe stands for the set of 
even samples and Xo stands for the set of odd samples. 
This is also referred to as the lazy wavelet transform 
because it does not decorrelate the data, but only 
subsamples the signal into even and odd samples. 

2) Predict phase: The predicting operator P is applied on the 
subset Xo to obtain the wavelet coefficients d[n] as in Eq. 
6. 

 
d[n]=Xo[n]+P×(Xe[n]).                         (6) 

 
3) Update phase: The Xe[n] and d[n] can be combined to 

obtain the scaling coefficients s[n] after an update 
operator U as in Eq. 7. 

 
s[n]=Xe[n]+U×(d[n]).                                (7) 

 
4) Scaling: In the last step, we apply the normalization 

factor on s[n] and d[n] to obtain the wavelet coefficients. 
Equations 8 and 9 describe the implementation of the 5/3 
integer lifting analysis DWT. Equations 8 and 9 are used 
for calculating the odd coefficients (high-pass 
coefficients) and even coefficients (low-pass 
coefficients), respectively. 

 

⎣ ⎦2/)22()2()12(][* ++−+= nXnXnXnd .          (8) 

⎣ ⎦4/2)12()12()2(][* +++−+= ndndnXns .          (9) 

Although the lifting-based scheme involves low 
complexity, the long and irregular data path is the major 
limitations for the efficient hardware implementation. In 
addition, the increasing pipeline registers increases the 
internal memory size of the 2-D DWT architecture [15]. 
 
2.2. Lossless 2-D 5/3 lifting-based DWT structure 
 

The 2-D DWT uses a vertical 1-D DWT subband 
decomposition and a horizontal 1-D DWT subband 
decomposition to obtain the 2-D DWT coefficients. Hence, 
the memory requirement dominates the hardware cost and 
complexity of the architectures for 2-D DWT. 

The lifting step associated with the wavelet is shown in 
Fig. 1. The original signals, s0, d0, s1, d1, s2, d2, and etc., 
are the original input pixel sequences. Assuming that the 
original data are infinite in length, the first stage lifting is 
first applied to update the odd index data s0, s1, …. In Eq. 
10, the parameters -1/2 and Hi represent the first stage 
lifting parameters and outcomes, respectively. After all the 
odd index data points are calculated, the second stage 
lifting can be performed with Eq. 11, where the parameters 
represent the second stage lifting parameters and outcomes, 
respectively. The variables Hn and Ln are the high-pass and 
low-pass coefficients. The values of the lifting parameters 
-1/2, 1, and 1/4 as shown in Fig. 1. are used for the 
prediction module (Hi), the update (Li) module and the Kn 
module (scaling by Kn=1). 

 
Hi= [(si+si+1)×-1/2+di]×K0,                       (10) 
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Li= [(Hi+Hi-1)×1/4+si]×K1,                       (11) 
 
k0 = k1 = 1.                                    (12) 
 

 
Fig. 1. Lifting-based 5/3 DWT algorithm. 

 

3. The proposed 2-D symmetric mask-based 
DWT (SMDWT) 

 
The LDWT is widely employed in the image/video 

subband coding, since it inherently has the well-known 
perfect reconstruction property. However, in 2-D transform, 
it has high temporal memory requirement and high critical 
path. In this work, we present an algorithm which processes 
one integer 2-D DWT by simply applying one matrix. The 
SMDWT has many advanced features, such as short critical 
path, high-speed operation, regular signal coding, and 
independent subband processing. The 2-D SMDWT is 
introduced step by step in the following subsections, and 
the coefficients of mask wavelet coefficient derivation is 
based on the 2-D 5/3 integer lifting-based DWT. 
 
3.1. The 2-D SMDWT structure 
 

In this sub-section, the proposed SMDWT is discussed in 
three aspects: lifting structure, transpose memory, as well 
as latency and critical path. The proposed SMDWT 
algorithm has the advantages: fast computational speed, 
reduced latency, lossless compression, and regular data 
flow. 

In speed and simplicity, generally, four masks, 3×3, 5×3, 
3×5, and 5×5, are used to perform spatial filtering tasks. 
Moreover, the four-subband processing can be further 
optimized to speed up and reduce the temporal memory of 
DWT coefficients. The four-matrix processors consist of 
four mask filters, and each filter is derived from one 2-D 
DWT of 5/3 integer lifting-based coefficients. In DWT 
implementation, a 1-D DWT needs massive computations 
and therefore the computation unit dominants the hardware 
cost [10]-[12]. A 2-D DWT composes two 1-D DWTs and a 
block of transpose memory, which is of the same size of the 
processed image. Regarding the computation unit, the 
transpose memory is the main overhead in the 2-D DWT. 
The block diagram of a conventional 2-D DWT is shown in 
Fig. 2. Without loss of generality, the 5/3 lifting-based 2-D 
DWT is adopted for comparison. Assuming that the image 
is of size N×N, during the transformation, a large amount of 
transpose memory (order of N2) is needed to store the 
temporary data after the first stage 1-D DWT 
decomposition. The second stage 1-D DWT is then applied 
to the stored data to obtain the four-subband (HH, HL, LH, 
and LL) results of the 2-D DWT. Since the memory 

requirement of size N2 is huge and the processing takes too 
much time, in this work, a new approach, 2-D SMDWT, is 
introduced to reduce the temporal computing latency and 
critical path, as shown in Fig. 3(b). 

 

 
Fig. 2. The block diagram of a conventional 2-D DWT. 

 

 
(a) 

 
(b) 

Fig. 3. Structure comparisons. (a) 2-D LDWT [18]. (b) 2-D 
SMDWT. 

 
Without loss of generality, a 6×6-pixel image is 

employed to demonstrate the 5/3 LDWT operations as 
shown in Fig. 4. In Fig. 4, the variable a(i,j) represents the 
original image. The upper part of Fig. 4 shows the first 
stage 1-D LDWT operations, and the lower part of Fig. 4 
shows the second stage 1-D LDWT operations for 
evaluating the four-subband coefficients, HH, HL, LH, and 
LL. In the first stage of 1-D LDWT, three pixels are used to 
evaluate a 1-D high frequency coefficient. For example, 
a(0,0), a(0,1), and a(0,2) are used to calculate the high 
frequency wavelet coefficient b(0,0), where 
b(0,0)=−[a(0,0)+a(0,2)]/2+a(0,1). The pixels, a(0,2), a(0,3), 
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and a(0,4), are used to calculate the next high frequency 
wavelet coefficient b(0,1). Here a(0,2) is used to calculate 
both of b(0,0) and b(0,1), and is called an overlapped pixel. 
The low frequency wavelet coefficient is calculated using 
two consecutive high frequency wavelet coefficients and 
the overlapped pixel. For example, b(0,0) and b(0,1) cope 
with a(0,2) to find the low frequency wavelet coefficient 
c(0,1), where c(0,1)=[b(0,0)+b(0,1)]/4+a(0,2). The 
calculated high frequency wavelet coefficients, b(i,j), and 
the low frequency wavelet coefficients, c(i,j), are then used 
in the second stage 1-D LDWT to calculate the four 
subbands coefficients, HH, HL, LH, and LL. The general 
form of the mask coefficients is derived first, and the 
complexity is further reduced by employing the symmetric 
feature of the mask. 
 

 
    
 

 

a(i,j): original image, i = 0~5 and j = 0~5 
b(i,j): high frequency wavelet coefficient of 1-D LDWT 
c(i,j): low frequency wavelet coefficient of 1-D LDWT 
HH: high-high frequency wavelet coefficient of 2-D LDWT 
HL: high-low frequency wavelet coefficient of 2-D LDWT 
LH: low-high frequency wavelet coefficient of 2-D LDWT 
LL: low-low frequency wavelet coefficient of 2-D LDWT 

Fig. 4. Example of 5/3 LDWT operations. 
 
3.2. Simplified 2-D SMDWT using symmetric 
features 
 
3.2.1. High-High (HH) band mask coefficients reduction 
for 2-D SMDWT. According to the 2-D 5/3 LDWT, the 
HH-band coefficients of the SMDWT can be derived as 
follows: 

 
HH(i,j)=x(2i+1,2j+1)+(1/4)∑1

u=0∑1
v=0x(2i+2u,2j+2v)+(-1/2

)∑2
u=-1x(2i+2|u|,2j+|1-u|).                 (13) 

 

β α β 
α γ α 
β α β 

(a) 

 
(b) 

Fig. 5. HH-band mask coefficients and the corresponding 
DSP architecture. (a) Coefficients. (b) DSP architecture. 
 

The mask as shown in Fig. 5(a) can be obtained via Eq. 
13, where the variables α, β, and γ are -1/2, 1/4, and 1, 
respectively. Figure 5(b) shows the DSP architecture. The 
complexity of the mask-based method is further reduced by 
employing the symmetric feature of the mask. First, the 
initial horizontal scan is expressed by: 

 
HH(0,0)=β×x(0,0)+α×x(0,1)+β×x(0,2)+α×x(1,0)+γ×x(1,1)

+α×x(1,2)+β×x(2,0)+α×x(2,1)+β×x(2,2).   (14) 
 
The next coefficient can be calculated by: 
HH(0,1)=β×x(0,2)+α×x(0,3)+β×x(0,4)+α×x(1,2)+γ×x(1,3)

+α×x(1,4)+β×x(2,2)+α×x(2,3)+β×x(2,4) 
=α×x(0,3)+β×x(0,4)+γ×x(1,3)+α×x(1,4)+α×x(2,3)+
β×x(2,4)+XMR 

=β×(x(0,4)+x(2,4))+α×(x(0,3)+x(1,4)+x(2,3))+γ×x(
1,3)+XMR,                                           (15) 

where the variable XMR denotes the repeated part after the 
horizontal third coefficient. The general form can be 
derived as:  
 
XMR=β×x(i,2j+2)+α×x(i+1,2j+2)+β×x(i+2,2j+2) .         (16) 
 
Since γ=1, the general form can be expressed as: 

H part L part 
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HH(i,j+1)=β×(x(i,2j+4)+x(i+2,2j+4))+α×(x(i,2j+3)+x(i+1,2j+4)+
x(i+2,2j+3))+x(i+1,2j+3)+XMR,                      (17) 

 
where i=0~N-1, j=0~N-2. 

The vertical scan can be done in the same way, where 
HH(0,0) is the same as that in Eq. 14. The next coefficient 
can be calculated by: 

 
HH(1,0)=β×x(2,0)+α×x(2,1)+β×x(2,2)+α×x(3,0)+γ×x(3,1)

+α×x(3,2)+β×x(4,0)+α×x(4,1)+β×x(4,2) 
=α×x(3,0)+β×x(4,0)+γ×x(3,1)+α×x(4,1)+α×x(3,2)+
β×x(4,2)+XMD,                               (18) 

 
where the variable XMD denotes the repeated part after the 
vertical third coefficient. The general form can be derived 
as: 
 
XMD=β×x(2i+2,j)+α×x(2i+2,j+1)+β×x(2i+2,j+2) .    (19) 
 
Since γ=1, the general form can be expressed as: 
 
HH(i+1,j)=β×(x(2i+4,j)+x(2i+4,j+2))+α×(x(2i+3,j)+x(2i+4,

j+1)+x(2i+3,j+2))+x(2i+3,j+1)+XMD.     (20) 
 
where i=0~N-1, j=0~N-2. 
Finally, the oblique oriented scan can be derived as: 
 
HH(1,1)=β×x(2,2)+α×x(2,3)+β×x(2,4)+α×x(3,2)+γ×x(3,3)

+α×x(3,4)+β×x(4,2)+α×x(4,3)+β×x(4,4) 
=γ×x(3,3)+α×x(3,4)+α×x(4,3)+β×x(4,4)+XMRD 
=β×x(4,4)+α×(x(3,4)+x(4,3))+γ×x(3,3)+XMRD, 

(21) 
 

where the variable XMRD denotes the repeated part after the 
vertical fifth coefficient. The general form can be expressed 
as: 
 
XMRD=β×x(2i+2,2j+2)+α×x(2i+2,2j+3)+β×x(2i+2,2j+4)+α

×x(2i+3,2j+2)+β×x(2i+4,2j+2).             (22) 
 
Since γ=1, the general form can be expressed as: 
 
HH(i+1,j+1)=β×x(2i+4,2j+4)+α×(x(2i+3,2j+4)+β×x(2i+4,2

j+3))+x(2i+3,2j+3)+XMRD.          (23) 
 
where i=0~N-1, j=0~N-2. 

The repeat part is only needed to be calculated once 
throughout the whole image. Hence it greatly reduces the 
complexity of the SMDWT. 

 
3.2.2. High-Low (HL), Low-High (LH) and Low-Low 
(LH) frequency coefficient reduction for 2-D SMDWT. 
The HL, LH, and LL bands can be derived in the same way. 
According to the 2-D 5/3 lifting-based DWT, HL, LH, and 
LL band coefficients of the mask-based DWT can be 
derived as in Tables 3 to 5. 
 

4. Experimental results and performance 

comparisons 

 
The proposed 2-D SMDWT algorithm is generally used 

for performing the 2-D DWT for still image. The schematic 
diagram of the 2-D SMDWT is shown in Fig. 6. The 
wavelet transform provides a multiscale representation of 
image/video in the space-frequency domain. Aside from the 
energy compaction and decorrelation properties that 
facilitate compression, a major advantage of the DWT is 
the scalability. The proposed algorithm is based on the 
four-subband matrices (HH, HL, LH, and LL) processing to 
achieve the same performance as the 5/3 LDWT algorithm. 
The SMDWT has been implemented into JPEG2000 
reference software VM 9.0 and is compared with the 
original JPEG2000. The test image, Lena of size 512×512, 
is used in this experiment. Experimental results show that 
the proposed algorithm not only significantly improves 
lifting-based latency but also has the same visual quality as 
the normal 2-D 5/3 LDWT [20] as shown in Fig. 7. 

The architecture of the 2-D SMDWT has great 
advantages compared to the 2-D LDWT. For example, the 
critical path of the 2-D LDWT is potentially longer than 
that of SMDWT. Moreover, the 2-D LDWT is basically 
frame-based; the huge amount of the temporal memory size 
is the bottleneck for implementation. In this work, the 
symmetric feature of the masks in SMDWT is employed to 
improve the design. Compared with the other works 
[7],[10]-[13],[15],[18], experimental results show that the 
proposed scheme is superior to most of the previous works 
as shown in Table 7. The proposed algorithm has efficient 
solutions in reducing critical path (A simple definition of 
the critical path of the operator is the longest, 
time-weighted sequence of events from the start of the 
program to its termination. Figures 8 are examples to show 
the critical path), latency (The latency is the time between 
the arrival of a new signal and its first signal output 
becomes available in the system), and hardware cost, we 

compute all registers used in XM(need max. is 17 for 

four-bands) as shown in Table 7, the proposed algorithm has 
efficient solutions in reducing critical path, latency, and 
hardware cost, as shown in Figures 5, 8, and Table 6. 

 
 

 
Fig. 6. Schematic diagram of the 2-D SMDWT. 

 
The multilevel DWT computation can be implemented 

to the proposed 2-D SMDWT in a similar manner. For the 
multilevel computation, this architecture needs N2/2 
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off-chip memory. The off-chip memory is used to 
temporarily store the LL subband coefficients for next 
iteration computations. The second level computation 
requires N/2 counters and N/2 FIFO’s for the control unit. 
The third level computation requires N/4 counters and N/4 
FIFO’s for the control unit. Generally, in the jth level 
computation, N/2j-1 counters and N/2j-1 FIFO’s are required. 
Therefore, the proposed architecture is suitable for 
multilevel DWT computations. The SMDWT also has the 
advantages of regular signal coding, short critical path, 
reduced latency time, and independent subband coding 
processing. Moreover, the temporal memory access time 
and power consumption of 2-D LDWT can also be easily 
improved by SMDWT.  
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Fig. 7. PSNR (dB) versus Rate (bpp) comparison between 
2-D LDWT and the proposed 2-D SMDWT. 
 

  
(a)                      (b) 

 
(c)                     (d) 

Fig. 8. 2-D LDWT critical path (a) HH band. (b) HL band. 
(c) LH band. (d) LL band. 

 

5. Conclusions 

 
A novel 2-D SMDWT fast algorithm, which superiors to 

the 5/3 LDWT, is proposed in this paper. It solves the 
latency problem in the previous schemes caused by 
multiple-layer temporal decomposition operation. 
Moreover, it provides real-time requirement and can be 
further applied to the 3-D wavelet video coding [21]. 

The proposed 2-D SMDWT algorithm has the 

advantages of fast computational speed, low cpmplexity, 
reduced latency, regular data flow, and is suitable for VLSI 
implementation. Moreover, based on the contributions in 
this work, the research of the future works can be divided 
as follows: 
1) The Dual-Mode 2-D SMDWT on JPEG2000: The 

dual-mode 2-D SMDWT can be developed to support 
5/3 (lossless) lifting and 9/7 (lossy) lifting using 
similar VLSI architecture, since the 5/3 and 9/7 are 
very similar and low cost. 

2) High Performance JPEG2000 Codec: Since part of the 
JPEG2000 encoder is symmetric to decoder. The 
complexity reduction can be considered on both 
encoder and decoder. 
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Table 1. 
The subband mask for DSP. 

Mask Shifters Clock cycles 
HH 8 2 
HL 15 2 
LH 15 2 
LL 25 2 

 
Table 2. 

HH-Band wavelet coefficient (mask of size 3×3). 
XMR of HH(i,j+1) β×x(i,2j+2)+α×x(i+1,2j+2)+β×x(i+2,2j+2). 
Complexity reduction original SMDWT: adder is 8, and multiplier is 9. 

simplified SMDWT: adder is 6, and multiplier is 2. 
complexity reduction ratio is around 47.06%. 

XMD of HH(i+1,j) β×x(2i+2,j)+α×x(2i+2,j+1)+β×x(2i+2,j+2). 
Complexity reduction original SMDWT: adder is 8, and multiplier is 9. 

simplified SMDWT: adder is 6, and multiplier is 2. 
complexity reduction ratio is around 47.06%. 

 
Table 3. 

HL-Band wavelet coefficient (mask of size 5×3). 
XMR+1 of HL(i,1) α×x(i,3)+γ×x(i+1,3)+α×x(i+2,3). 
Complexity reduction original SMDWT: adder is 14, and multiplier is 15. 

simplified SMDWT: adder is 12, and multiplier is 12. 
complexity reduction ratio is around 82.76%. 

XMR+n of HL(i,j+2) β×x(i,2j+4)+α×x(i,2j+5)+α×x(i+1,2j+4)+γ×x(i+1,2j+5)+β×x(i+2,2j+4)+α×x(i+2,2j+5). 
Complexity reduction original SMDWT: adder is 14, and multiplier is 15. 

simplified SMDWT: adder is 9, and multiplier is 9. 
complexity reduction ratio is around 62.07%. 

XMD of HL(i+1,j) β×x(2i+2,j)+α×x(2i+2,j+1)+δ×x(2i+2,j+2)+α×x(2i+2,j+3)+β×x(2i+2,j+4). 
Complexity reduction original SMDWT: adder is 14, and multiplier is 15. 

simplified SMDWT: adder is 10, and multiplier is 10. 
complexity reduction ratio is around 68.97%. 

 
Table 4. 

LH- Band wavelet coefficient (mask of size 3×5). 
XMR of LH(i,j+1) β×x(i,2j+2)+α×x(i+1,2j+2)+δ×x(2i+2,j+2)+α×x(i+3,2j+2)+β×x(i+4,2j+2). 
Complexity reduction original SMDWT: adder is 14, and multiplier is 15. 

simplified SMDWT: adder is 10, and multiplier is 10. 
complexity reduction ratio is around 68.97%. 

XMD+1 of LH(1,j) α×x(2i+3,0)+γ×x(2i+3,1)+α×x(2i+3,2). 
Complexity reduction original SMDWT: adder is 14, and multiplier is 15. 

simplified SMDWT: adder is 12, and multiplier is 12. 
complexity reduction ratio is around 62.76%. 

XMD+n of LH(i+2,j) β×x(2i+4,j)+α×x(2i+4,j+1)+β×x(2i+4,j+2)+α×x(2i+5,j)+γ×x(2i+5,j+1)+α×x(2i+5,j+2). 
Complexity reduction original SMDWT: adder is 14, and multiplier is 15. 

simplified SMDWT: adder is 9, and multiplier is 9. 
complexity reduction ratio is around 62.07%. 

 
Table 5. 

LL- Band wavelet coefficient (mask of size 5×5). 
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XMR+1 of LL(i,1) α×x(i,3)+γ×x(i+1,3)+ε×x(i+2,3)+γ×x(i+3,3)+α×x(i+4,3). 
Complexity reduction original SMDWT: adder is 24, and multiplier is 25. 

simplified SMDWT: adder is 20, and multiplier is 20. 
complexity reduction ratio is around 81.63%. 

XMR+n of LL(i,j+2) β×x(i,2j+4)+α×x(i,2j+5)+α×x(i+1,2j+4)+γ×x(i+1,2j+5)+δ×x(i+2,2j+4)+ε×x(i+2,2j+5)+α×x(i+3,2j+4)+γ×
x(i+3,2j+5)+β×x(i+4,2j+4)+α×x(i+4,2j+5). 

Complexity reduction original SMDWT: adder is 24, and multiplier is 25. 
simplified SMDWT: adder is 15, and multiplier is 15. 
complexity reduction ratio is around 61.22%. 

XMD+1 of LL(1,j) α×x(3,j)+γ×x(3,j+1)+ε×x(3,j+2)+γ×x(3,j+3)+α×x(3,j+4). 
Complexity reduction original SMDWT: adder is 24, and multiplier is 25. 

simplified SMDWT: adder is 20, and multiplier is 20. 
complexity reduction ratio is around 81.63%. 

XMD+n of LL(i+2,j) β×x(2i+4,j)+α×x(2i+4,j+1)+δ×x(2i+4,j+2)+α×x(2i+4,j+3)+β×x(2i+4,j+4)+β×x(2i+5,j)+γ×x(2i+5,j+1)+ε×
x(2i+5,j+2)+γ×x(2i+5,j+3)+α×x(2i+5,j+4). 

Complexity reduction original SMDWT: adder is 24, and multiplier is 25. 
simplified SMDWT: adder is 15, and multiplier is 15. 
complexity reduction ratio is around 61.22%. 

 
Table 6. 

Subband lifting-based v.s. mask-based for integer DWT. 
Subbands LDWT critical path [18] SMDWT critical path 

HH 2TM+2TA 1TM+1TA 

HL 3TM+3TA 1TM+1TA 
LH 3TM+3TA 1TM+1TA 
LL 4TM+4TA 1TM+1TA 

*TM: Multiplier operation time; TA: Adder operation time. 
 

TABLE 7. Performance comparisons. 
Methods 2-D DWT Wave 

stage 
Transpose 
memory 

Embedded 
extension 

Latency Computing 
time 

Complexity 

[7] LDWT Integer N Yes 7 (3/4)N2+7 Simple 
[10] LDWT Integer 3.5N No N/A N/A Simple 
[11] LDWT Integer 2.5N N/A N/A N2 Complexity 
[12] LDWT Integer 3.5N No 2N+5 (N2/2)+N+5 Simple 
[13] LDWT Integer 3N Yes N/A (N2/2)+N+5 Mediate 
[15] LDWT Integer N Yes 5 (N2/2)+5 Mediate 
[18] LDWT Integer N2 Yes N/A N/A Simple 

Proposed SMDWT Integer 17 Yes 2 N2/2 Simple 

* Transpose memory is used to store high and low-frequency wavelet coefficients in the 2-D DWT. 
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