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Abstract
Objectives: Cancer is a complex biological occur-
rence which is difficult to describe clearly and
explain its growth development. As such, novel
concepts, such as of heterogeneity and signalling
pathways, grow exponentially and many mathemat-
ical models accommodating the latest knowledge
have been proposed. Here, we present a simple
mathematical model that exhibits many characteris-
tics of experimental data, using prostate carcinoma
cell spheroids under treatment.
Materials and methods: We have modelled cancer
as a two-subpopulation system, with one subpopu-
lation representing a cancer stem cell state, and the
other a normal cancer cell state. As a first approxi-
mation, these follow a logistical growth model with
self and competing capacities, but they can
transform into each other by using an autocrine
signalling pathway.
Results and conclusion: By analysing regulation
behaviour of each of the system parameters, we
show that the model exhibits many characteristics
of actual cancer growth curves. Features repro-
duced in this model include delayed phase of
evolving cancer under 17AAG treatment, and
bi-stable behaviour under treatment by irradiation.
In addition, our interpretation of the system param-
eters corresponds well with known facts involving
17AAG treatment. This model may thus provide
insight into some of the mechanisms behind cancer.

Introduction

Cancer, a disease of a group of abnormal cells with lar-
gely uncontrolled proliferation, is still one of the main
lethal diseases of modern human societies. Concerning
its origin, no consensus has yet been reached, although
the cancer stem-cell hypothesis is gaining popularity (1);
this assumes that a malignant system with epigenetic
heterogeneity has at least one subpopulation with high
proliferation ability. In addition to this are recent discus-
sions that different subpopulations in cancer may trans-
form into other subpopulations as a result of autocrine
signalling pathways (2,3). In this regard, these subpopu-
lations thus may be treated as different phenotypes of
the cancer cells. Taken at face value, this implies that
one may be able to view cancer as a classical population
dynamic system of at least two variables, with each vari-
able representing a population of a species interacting
with other species in the system.

In view of the fact that a systemic mathematical model
of a carcinoma cell group can help us better understand the
cancer system (4), several mathematical models have been
proposed (5). For example, Garner et al. proposed a two-
subpopulation model, with one proliferation and one quies-
cent subpopulation, with transition potential (6). Ganguly
and Puri constructed a mathematical model on regulation of
signalling pathways with mutations based on the cancer
stem-cell hypothesis (7). Recently, the transition effect
between heterogeneous subpopulations of a tumour due to
auto/para-crine signalling pathways, has been discussed
(2,3). Mathematical models on tumourigenesis with auto/
para-crine signalling pathway effects have also been pro-
posed. For example, Bajzer and Vuk-Pavlović proposed a
population model in which a single species of cells can inter-
act under certain growth stimulation activity (8), and Ghosh
et al. further discussed a model allowing spatial variation
(9). In addition, a mathematical model used to interpret or
even provide guidance for experimental data of cancer treat-
ment, has also become a lively discussed topic (10–13).
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In this article, we present a simple two-subpopulation
mathematical model with logistic growth mode and transi-
tion effects due to an autocrine signalling pathway. To
compare this with actual experimental data, we have also
modelled the process of therapy phenomenologically,
with some of the system parameters. We show that numer-
ical results can be brought into correspondence with a ser-
ies of real tumour growth curves of prostate carcinoma
spheroids, treated with 17-N-allylamino-17-demethoxy
geldanamycin and acute irradiation, performed by Enmon
et al. (14). Specifically, characteristics such as presence of
a delay phase and bi-stable behaviour, are manifest in
some parameter regimes of the model.

The mathematical model

Figure 1 conveys the concept schematic of our model. It
is a two-subpopulation model, with x1 being the popula-
tion of the normal cancer cell state and x2, the popula-
tion of the cancer stem cell state. To simplify the
mathematics while at the same time capturing the
essence of what may be causing the observed behaviour,
we deliberately assigned the same proliferation rate r to
both states, leaving the more general case for later study.
Due to competition of cells in the same cell state, x1 has

a logistic suppressing capacity, C1. We assume that x1
and x2 are also competing with each other, and the ‘sup-
pressing capacity’ of x2 on x1 is C2 (Roughly, this
means that suppression from x2 on x1 becomes important
when x2 grows to a value which is of the same order of
magnitude of C2). If we would like state 1 to quickly
experience suppression from state 2 during the growth
process, then we will have to assume C1 >> C2, which
is precisely what we will adopt in the present model.
Self-suppressing capacity of x2 is aC2, with a being the
‘heterogeneity coefficient’. As we have taken state 2 to
be the cancer stem cell state, it must have a larger self-
suppressing capacity. We thus assume in our model that
a >> 1 in such a way that aC2 >> C1. For simplicity,
we also assume that suppressing capacity of x1 on x2 is
aC1. For convenience, variable and parameter setting of
our model is summarized in Table 1.

General mathematical form of the logistic growth
and competition model under an autocrine signalling
pathway, is assumed to take the form

_x1 ¼ r 1� x1
C1

þ x2
C2

� �� �
x1 � k12w2x1 þ k21w1x2;

_x2 ¼ r 1� 1
a

x1
C1

þ x2
C2

� �� �
x2 þ k12w2x1 � k21w1x2;

8<
:

ð1Þ

Figure 1. Schematic of the two-subpopulation tumour model with transition due to auto/para-crine signalling pathway. x1 and x2 are the
two subpopulations in a cancer system each of which follows the logistic growth mode with proliferation r. x1 has a self-suppressing capacity C1.
The growth of x1 is also suppressed by x2 due to competition. This is characterized by extra suppressing capacity C2 of x2 on x1. Heterogeneity
coefficient a introduces asymmetry between the two states: State 2 has a self-suppressing capacity aC2, and a corresponding suppressing capacity
aC1 from state 1. These two subpopulations have a transition effect due to autocrine signalling pathways. The strength of the autocrine effect from
x1 to x2 is k12, and k21 is that of x2 to x1.
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where wi � xi
x1þx2

is weighting of the i-th subpopula-
tion. In the above, the mathematical form of the autocrine
signalling pathway follows that suggested by Chang
et al. (15), for the stem cell model. The autocrine form
w2x1 or w1x2 means that an individual would change into
the other state with a probability proportional to the per-
centage of the other state in the system. Clearly, this can
be viewed as one kind of mean field effect of the auto-
crine signalling pathway. Also, k12 is the autocrine transi-
tion rate strength of x1 to x2, and k21 is that of x2 to x1.
We chose to adopt this form from the work of Ref. (15)
for two reasons: (i) it conveys the very idea of how a cell
state can transform into another in a mathematically suc-
cinct manner and (ii) non-linearity introduced by these
authors is not so overly complicated as to render analyti-
cal treatments impossible in our model.

As the term modelling the autocrine signalling path-
way from x1 to x2 and from x2 to x1 is the same, that is,
w2x1 ¼ w1x2 ¼ x1x2

xt
, we can follow Chang et al. (15) to

set an autocrine strength coefficient k ≡ k21 � k12 to
substitute for the two coefficients k12 and k21, where
xt ≡ x1 + x2. Then, growth and transition equations
become

_x1 ¼ r 1� x1
C1

þ x2
C2

� �� �
x1 þ k x1x2

xt
;

_x2 ¼ r 1� 1
a

x1
C1

þ x2
C2

� �� �
x2 � k x1x2

xt
:

8<
: ð2Þ

To facilitate comparison of our model with experi-
mental data, it is more convenient to change the variables
from (x1, x2) to ðxt � x1 þ x2; w1 � x1

xt
Þ. Transformed

equations read (see Appendix A for the derivation)

_xt ¼ rxt 1� w1 þ 1�w1

a

� �
w1

C1
þ 1�w1

C2

� �h i
xt

� �
;

_w1 ¼ k 1� r
k 1� 1

a

� �
w1

C1
þ 1�w1

C2

� �
xt

n o
ðw1 � w2

1Þ:

8<
:

ð3Þ

Listed in Table 2 are the numerical values we have
adopted for our model, when a cancer system has not
received any treatment. Later, we will investigate how
the parameters can be modified to better fit growth curve
data of prostate carcinoma spheroids, with treatment dis-
cussed by Enmon et al. (14).

Results and discussion

Some simple properties of this model

As we have adopted a simple model, interpretation of
each of its system parameters becomes more transparent.
For example, the reciprocal of r is the characteristic time
of the system, and it determines duration of the total
growth period. Larger r clearly corresponds to shorter
growth time. But from the mathematical point of view, r
can always be absorbed into the time so that its absolute
value will not really concern us.

A simple analysis shows that the autocrine parameter
k can be used to regulate final dominant state (see
Appendix C). When k > (a � 1)r, species 1 dominates
the final scene, whereas the opposite is true, if
k 1� 1

a

� �
r. (This should appear plausible with a view of

eqn 2 if we consider the limiting cases k ? ∞ and
k ? 0.) But for an intermediate value of k, that is, when
1� 1

a

� �
rkða� 1Þr, the system goes into a bi-stable situ-

ation, with the final state being dominated by either x1
or x2, depending on initial conditions. With all other
parameters fixed, Fig. 2 shows a series of growth curves
for different values of k. Here, we see that final size of
xt is 104, which is the self-suppressing capacity of x1,
when k = 10 (In this sense, k can be considered to be
large in this parameter regime). But when we tune k to
a lower value, the transition effect may switch the final
dominant state, depending on initial values. If we fix the
initial value of w1 and tune initial total population xt,
then x2 will eventually dominate if xt(0) is larger than a
certain critical initial size. Value of the critical size
depends on strength of k in a reciprocal manner: critical
size increases when k decreases (This can be better seen
by looking at the terms inside the curly brackets of
eqn 3). As kð1� 1

aÞr, final dominant state is always x2.

Table 2. Parameter values of the cancer system without treatment

Parameters Symbols Values Units

Proliferation rate of x1 and x2 r 0.3 1/day
Self carrying capacity of x1 C1 104 lm3

Suppressing capacity of x2 on x1 C2 2 lm3

Heterogeneity coefficient a 106 None
Autocrine strength k 2.5 1/day

Table 1. Variables and parameters used in general growth and transi-
tion model

Variables and parameters Symbols

Population of normal cancer cells x1
Population of cancer stem cells x2
Total population of the cancer system xt
Weighting of x1 w1

Weighting of x2 w2

Proliferation rate x1 r
Proliferation rate x2 r
Self carrying capacity x1 C1

Suppressing capacity of x2 on x1 C2

Heterogeneity coefficient a
Autocrine strength of x1 to x2 k12
Autocrine strength of x2 to x1 k21
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By our construction, C1 >> C2, so that typically,
terms in eqn 3 involving C1 can be ignored when com-
pared to those containing C2; also, with regard to the role
played by the suppressing capacity C2, we may say that
it provides us with a mechanism to exhibit a ‘delay’ fea-
ture that might exist between initial growth stage and
final settling state. This is so because C2 acts to suppress
growth of species 1, and whenever species 1 is destined
to be the final dominant population, C2 will simply act to
fight against that unavoidable trend. This is particularly

true when C2 is small, as then a small population of
species 2 is enough to effectively inhibit initial growth of
species 1. Therefore, it will take a longer time for species
1 to grow to a significant percentage in the population
(via the autocrine parameter k) before the suppressing
effect from species 2 can be quenched (at a later time,
the effect of C2 diminishes simply because the popula-
tion of species 2 is reduced, again, by the autocrine
parameter k). All this is reflected in duration of time evo-
lution before the system eventually settles. Detailed anal-
ysis of this aspect is provided in Appendix B, together
with an approximate mathematical form of this property
presented in Appendix D. In Fig. 3, we show growth
curves for various values of C2 when all other parameters
and initial values are fixed. Once again, we note that the
delay is more pronounced when C2 is small.

Finally, we notice that the heterogeneity coefficient a
is the key factor deciding which species is the prolifera-
tion state. When a > 1, x2 is the proliferating subpopula-
tion, and the reverse is true when a < 1. This is obvious
as we have constructed our model so that the roles of x1
and x2 are exchanged when a is replaced by 1/a. How-
ever, if we insist on adopting the same parameter
regimes for other system parameters, but simply allow a
to be less than unity, then delayed evolution, such as
described above, is not expected to occur as now the
associated suppressing capacity of species 1 on species
2 (as characterized by the coefficient aC1) is not small.

Comparison of numerical results and real data
from tumour growth, with treatment

By associating our system parameters with the various
different aspects related to medical treatment for cancer,
we are able to fit our numerical results with the
experimental data of prostate carcinoma spheroids with
treatment with 17-N-allylamino-17-demethoxy geldana-
mycin, and acute irradiation (14); below, we discuss
such possibilities.

17AAG

17-N-allylamino-17-demethoxy-geldanamycin (17AAG),
a geldanamycin analogue, can inhibit activity of heat
shock protein 90, which may provide a mechanism to
evade apoptosis of tumour cells (16). As 17AAG can
inhibit evading the apoptotic mechanism of tumour cells,
we can naturally associate it with one of the capacity
parameters of our model. Specifically, a cancer system
receiving this treatment might correspond to having a
smaller value of C2. From comparison with the actual
treatment data of Ref. (14) and our numerical results,
we found that dosage concentration of 17AAG and C2

Figure 2. A demonstration that autocrine parameter k can regu-
late the dominant state and the bi-stable behavior. Series of xt
growth curves with fixed system parameters (r = 0.3, a = 106,
C1 = 104, C2 = 2) and initial conditions (xt(0) = 1, 10, 20, 30;
w1(0) = 0.1), but with different k. (a) k ¼ 10 1� 1

a

� �
r: all curves satu-

rate at 104, self-suppressing capacity of x1, meaning state 1 eventually
dominates. (b) k = 2.5: As k becomes smaller, the final state of each
growth curve depends on the size of the total initial population xt(0).
Species 1 dominates for small xt(0); but state 2 dominates when xt(0)
exceeds a certain critical size (growth curves all saturate at 106). (c)
As k becomes much smaller k ¼ 0:1ð Þ, critical xt 0ð Þ size is also larger.
When k is large enough, the critical size no longer exists and state 2
dominates the final scene.
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seemed to have a power law relationship. With this in
mind, we tentatively choose treatment function
C2 = 19.2 9 M0.6, where M is dose concentration of
17AAG in nM. As we have no access to the experimental
value of w1, we simply have to make an educated guess.
Now that we are assuming that the effect of 17AAG is to
inhibit population of x1, we can hypothesize that the initial
weighting w1 is small. To be specific, we have taken the
initial weighting w1 of carcinoma spheroids treated with
17AAG to be w1(0) = 0.01. Figure 4 shows the compari-
son between numerical results of our simulation concern-
ing17AAG treatment and the actual experimental data.
We have used Fig. 1 of Ref. (14) to extract data and plot
them in juxtaposition with our fit. In Fig. 4a are shown
the numerical fit (curves) and experimental data of
17AAG treatment (markers). Apparent in this figure is
that the numerical fit works best in the high-dose regime,
whereas the general trend is still captured in the low-dose
regime. As good as the numerical fit may be, we must
quickly point out that the merit of the present work does
not lie in the good fit of the numerical values, but rather in
the qualitative features it is capable of explaining, for the
actual data. Once we know qualitatively what factors can
affect treatment in which way, then a more refined model,
surpassing the simple logistic growth considered here,
presumably can be worked out to provide guidance (or
even quantitative prediction) on how actual treatments
should be carried out.

Shown in Fig. 4b are fitting parameter values versus
dose concentration of 17AAG. Here, we see that C2

changes more rapidly compared to other parameters
when we vary concentration of 17AAG. This suggests
that C2 is probably the most relevant parameter when
concentration of 17AAG is varied.

Irradiation

Irradiation is also a common treatment for cancer,
although the underlying mechanism for its success seems
to be complex. By observing growth curves with different
doses of irradiation (14), we hypothesize that treatment by
irradiation might reduce the value of the heterogeneity
coefficient a and autocrine transition effect from x2 to x1.
With this hypothesis in mind, we also evolved tentative
treatment functions of irradiation for system parameters a
and k. Let D denote dose/strength of irradiation in units
Gy; treatment functions are taken to be a¼ 10

6
D�2 and

k ¼ 2:5� D
2 respectively. As the heterogeneity coefficient

is reduced under irradiation, it may imply that the original
proliferating subpopulation x2 is damaged more by irradi-
ation. Hence, we think that initial weighting of w1 may be
closer to 1. In our simulation, we set the initial weighting
to be w1(0) = 0.99 (Fig. 5). Figure 6 shows our simula-

Figure 3. An illustration that the regulation of suppressing capa-
city C_2 can exhibit the delay feature. Growth curves with fixed sys-
tem parameters and initial conditions (r = 0.3, a = 106, C1 = 104,
k = 2.5, xt(0) = 1, w1(0) = 0.01), but different C2. (a) xt for C2 = 1
(solid), C2 = 0.5 (dashed) and C2 = 0.25 (dash-dot). As C2 becomes
smaller, a delayed phase becomes obvious. (b), (c) and (d) are growth
curves of x1, x2, and xt with different C2. (b) C2 = 1, (c) C2 = 0.5, and
(d) C2 = 0.25, for xt (bold), x1 (marked with ‘+’), and x2 (marked with
‘D’). When C2 is small, the inhibiting effects due to final dominant
state x1, is more pronounced during transience, and a delayed phase
persists until x2 becomes negligible (note that the ordinate is in loga-
rithmic scale).
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tion results for irradiation. Notable features captured here
are presence of a delayed phase at 6 Gy and inhibition of
xt size at 9 and 12 Gy, respectively, which correspond to
Fig. 2 of Ref. (14).

Bi-stable behaviour

It is interesting to note that dependence of bi-stable
behaviour on initial conditions has also been shown in
actual tumour growth data [see Fig. 6a of Ref. (14)]. At
6 Gy irradiation, tumour growth curves had different
final states (alive or dead) when tumours had different
initial sizes. This seemed to correspond to existence of
critical xt(0) in our model.

In comparison, Fig. 6a shows the numerical simula-
tion of growth curves with different initial xt(0) in
6 Gy treatment. For easier comparison, we have also
extracted data of Ref. (14) and reproduced them in
Fig. 6b. Here, we see that the behaviour of the growth
curve has a drastic change when xt(0) > 0.6. In fact, this

is because the initial value has crossed the critical value.
Again, the simulation results shown in the bi-stable
growth curves of Fig. 6a compare favourably well with

Figure 4. Fitting xt growth curves with data from 17AAG treatment of Ref. (14). (a) numerical results (curves) compared to actual experimen-
tal data (markers). R2 values of them are R2

1nM = 0.8030, R2
10nM = 0.8625, R2

100nM = 0.9830 and R2
1000nM = 0.9988. The fit is best in the high-dos-

age regime. (b) fitting parameters used in (a) as function of corresponding dosage.

Figure 5. Fitting xt growth curves of data from irradiation treat-
ment. The system parameters are taken as (r = 0.3, C1 = 104, C2 = 2,
xt 0ð Þ ¼ 1:1, w1 0ð Þ ¼ 0:99). Fitted xt is for 2 Gy irradiation treatment
(solid, a = 10, k = 1.5), 6 Gy irradiation treatment (dashed, a = 0.1,
k = �0.5), 9 Gy irradiation treatment (dotted, a = 0.0464, k = �2)
and 12 Gy irradiation treatment (dash-dot, a = 0.0316, k = �3.5). The
fit compares favourably well with Fig. 2 of Ref. (14).
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those in the actual 6 Gy treatment in prostate carcinoma
spheroids (Fig. 6b).

Finally, another bi-stable figure when a > > 1 is also
shown in Fig. 7. This also captures bi-stable behaviour
for the growth curves with different initial total size xt for
the 1000 nM 17AAG treatment [See Fig. 6b of Ref. (14)].

Conclusion

A mathematical tumour growth model has the merit of
helping us to single out potential effects of medical
treatments on cancer growth and pointing out possible
directions for improvement. Our heterogeneity cancer
system model has been developed with this in mind.
Although simplistic in nature, it seems to have captured
some of the more pronounced features observed in
actual cancer treatment. Specifically, our model shows
that C2, suppressing capacity of the cancer stem cell
state, on the normal cancer cell state, can help explain
presence of the delayed phase in actual treatment,
whereas combination of the autocrine signalling pathway
strength k and heterogeneity coefficient a, can regulate
the final dominant state or exhibit a bi-stable phenome-
non. For the latter to occur, initial conditions are shown
to play an essential role as well. Our model seems to
compare favourably with experimental data of Ref. (14),
which deals with treatment of prostate carcinoma spher-
oids. Taken together, our study points out possible corre-
lations between cancer treatments and our system
parameters, each of which also admits a simple interpre-
tation. We think that further study along this line might
give us insight and guidance for future cancer research.
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Appendix A: Transforming variables from (x1,
x2) to (xt, w1)

_xt ¼ _x1 þ _x2

¼ rx1 þ rx2 � r
x1

C1
þ x2

C2

� �
x1 � r

a

x1

C1
þ x2

C2

� �
x2

¼rxt 1� 1�1

a

� �
w1þ1

a

� �
1

C1
� 1

C2

� �
w1þ 1

C2

� �
xt

� �

And form of _w1 is

_w1 ¼ 1

xt
ð _x1 � w1 _xtÞ

¼ _x1

xt
� w1

_xt

xt

¼ k� r 1� 1

a

� �
w1

C1
þ 1� w1

C2

� �
xt

� �
ðw1 � w2

1Þ:

Therefore,

_xt ¼ rxt 1� w1 þ 1�w1

a

� �
w1

C1
þ 1�w1

C2

� �h i
xt

� �
;

_w1 ¼ k 1� r
k 1� 1

a

� �
w1

C1
þ 1�w1

C2

� �
xt

n o
ðw1 � w2

1Þ:

8<
:

ðA1Þ
Notice that _xt is still of logistic growth form, but its

associated self-suppressing capacity (all terms inside the
square brackets) now is related to w1. It is to be noted that

_w1 is also in logistic growth form, except that growth rate
(all terms inside curly brackets) is modulated by w1 and
xt. This view turns out to be helpful later when we discuss
the time evolution of the system.

Appendix B: Nullcline equations

Nullclines are used to investigate when a variable of a
dynamical system varies slowly in time. For instance,
the nullcline equation of xt (or w1) is determined by
requiring _xt ¼ 0 (or _w1 ¼ 0). With

_xt ¼ rxt

�
1�

��
1� 1

a

�
w1 þ 1

a

���
1

C1
� 1

C2

�
w1

þ 1

C2

�
xt

�

we can solve for the nullcline as

~xt ¼ aC2

a� 1ð Þ ~w1 þ 1ð Þ C2=C1 � 1ð Þ ~w1 þ 1ð Þ ; ðB1Þ

which is U-shaped when ~w1 is chosen to be the abscissa.
When we plot ~xt as a function of ~w1, it can be easily
checked that ~xt attains an extremely small value of

aC2

4
1

a�1ð Þ 1�C2=C1ð Þ
1

1�C2=C1
þ 1

a�1

� �2
� �

at

~w1 ¼ 1
2

1
1�a þ 1

1�C2=C1

� �
for the parameter regime we have

adopted, namely, C1 > > C2 and a > > 1. In fact, the mini-

mum is about C2

4 , with a corresponding ~w1�0:5. This
implies that when the percentage w1 of state 1 gets near the
value of this particular ~w1, it is possible for total population
to be varying slowly in time, provided xt is simultaneously
assuming a small value close to the lowest possible value
given by eqn B1. Then, growth of total population comes
to stagnation, and things change slowly in time, with the
population having plunged into a dip. In other words, the
system is exhibiting a delayed growth phenomena. In our
model, this feature is used to provide qualitative as well as
quantitative explanation of the experimental data. (For a
more dynamical view, see the next section.)

We can also solve for the nullcline equation of w1

by setting _w1 ¼ 0 in

_w1¼ k�r 1�1

a

� �
1

C1
� 1

C2

� �
w1þ 1

C2

� �
xt

� �
w1�w2

1

� �
:

Results are

~w1 ¼ 0
1
;

�

or

~xt ¼ k

rð1� 1
aÞðð 1

C1
� 1

C2
Þ ~w1 þ 1

C2
Þ : ðB2Þ
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For parameter regime we have chosen, ~xt � C2k
rð1� ~w1Þ.

Appendix C: Bi-stable condition

In this system, we can easily find two trivial fixed
points. They correspond to the final dominant state
being either cancer stem cell state or normal cancer cell
state. Mathematically, they are, xt; w1ð Þ ¼ C1; 1ð Þ and
xt; w1ð Þ ¼ aC2; 0ð Þ. Linear stability analysis about the
first fixed point shows that it is stable when kr 1� 1

a

� �
.

Similar analysis shows that the second fixed point is sta-
ble when kr a� 1ð Þ. Since we always have
a� 1ð Þ � 1� 1

a

� �
, we conclude that

Only xt;w1ð Þ ¼ C1; 1ð Þ is stable for kr a� 1ð Þ;
Both C1; 1ð Þ and aC2; 0ð Þ are stable for r a� 1ð Þkr 1� 1

a

� �
;

Only xt;w1ð Þ ¼ aC2; 0ð Þ is stable for kr 1� 1
a

� �
:

8<
:

The above classification can be qualitatively under-
stood in the following way: if the autocrine transition
effect is ‘turned off’, that is, k = 0, then eqn 2 immedi-
ately tells us that, all things being equal, the second
state experiences a lesser inhibiting effect from the two
parameters C1 and C2, as a > 1 by our construction.
Therefore, state 2 is expected to eventually dominate the
population.

But if we increase the value of k, which means state
2 is converting part of its population to state 1 but not
the other way around, then state 1 has an extra mecha-
nism to increase its population at the expense of state 2.
Thus, for an intermediate value of k, when competition
and inhibition between the two states are comparable,
initial conditions play an essential role in determining
which is going to eventually dominate the scene, and
we have a bi-stable scenario.

And when k becomes really large, state 2 tends to
quickly convert itself into state 1 whenever it is
generated, and so the final state is dominated by
state 1.

The bi-stable scenario discussed above is also sup-
ported by simple mathematical analysis: It implies that,
for the indicated parameter regime, there should exist
another fixed point, which itself is unstable (so that it
can drive the system to the two stable fixed points).
Indeed, this extra fixed point can be found by combin-
ing the two nullcline equations eqns B1 and B2. Simple
algebra leads to

~w1 ¼ r

k
� 1

a� 1
:

As ~w1 must lie between 0 and 1, we quickly derive
the following condition: bi-stable conditions prevail
when rð1� 1

aÞkða� 1Þr. This, of course, agrees with
the argument above.

Appendix D: Simple analysis of time evolution
of the system

With the assumption that a >> 1, the governing equa-
tion for x2 takes an especially simple form

_x2 � r� kw1ð Þx2;

whereas the equation for xt is approximated by

_xt � rxt 1� w1
w1

C1
þ 1� w1

C2

� �
xt

� �
:

In view of the assumption that C1 >> C2, one may be
tempted to also drop the term w1/C1 as well. However,
this extra approximation may not be legitimate during the
late stage of time evolution if state 1 dominates the final
scene, as then w1 � 1, which renders (1 � w1)/C2 small.

From the mathematical point of view, it is more con-
venient to de-dimensionalize the system. This can be
done by the substitution

xj � x0
jC1; xt � x0

tC1

t � rt0;

k � rk0;

C0 � C1

C2
:

The resulting equations then read

dx0
2

dt0
� 1� k0w1ð Þx0

2; ðD1Þ

dx0
t

dt0
� x0

t 1� w1 w1 þ C0w2ð Þx0
t

	 

: ðD2Þ

To provide a rough idea of orders of magnitude of
the parameters we will be using, we list below their typ-
ical numerical values:

x0
1ð0Þ � 10�6; x0

2ð0Þ�x0
tð0Þ�10�4sothatw1ð0Þ�10�2

,

k0�10; C0�104

. We now discuss time evolution of the system. To be
specific, we will consider the case when state 1 is the
minority at the beginning (w1 � 0), but later gets to
dominate the final stage via two mechanisms: the auto-
crine signalling pathway (assuming k > 0) in the early
stage of time evolution, and the familiar logistic type
growth. Total population xt is also assumed small in the
beginning.
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The very early stage

With w1 � 0 (species 1 being the minority) and xt � 0,
the governing equations are further simplified to

dx0
2

dt0
� x0

2;

dx0
t

dt0
� x0

t;

so that the two variables grow exponentially at about
the same rate. However, we should not assume that x0

1

behaves the same, because it is an even smaller quantity
to begin with so that there is no telling directly from the
two approximate equations above if _x0

1 ¼ _x0
t � _x0

2 � x0
1.

In fact, from eqn 2 we have

dx0
1

dt0
¼ 1þ k0w2 � x0

1 þ C0x0
2

� �	 

x0
1

� 1þ k0w2 � C0x0
2

	 

x0
1

� k0x0
1

for the numerical values we have adopted. Hence, state
1 actually grows much faster than state 2 due to the
autocrine transition effect, even though its population is
only of the minority in the beginning.

With this in mind, and using a subscript 0 to denote
the initial value, we see that

w1 ¼ x0
1

x0
t

� x0
10

x0
t0

eðk
0�1Þt0 ;

which suggests that, by eqns D1 and D2, inhibition from
w1 on the growth of x2 and xt will quickly manifest
itself as time proceeds.

The cross-over stage

When w1 grows up to the order of 1=k0, x0
2 begins to

feel the suppression in growth. The time � 02 it takes for
this to happen can be estimated via

x0
10

x0
t0

eðk
0�1Þ� 02 � 1

k0

In contrast, for x0
t to begin experiencing any sup-

pression in growth, we need a time � 0t which can be esti-
mated from solving

w1 � 1=C0x0
2 � 1=C0x0

t

) x0
10

x0
t0

eðk
0�1Þ� 0t � 1

C0x0
t0

e�� 0t

) C0x0
10e

k0� 0t � 1:

For our choice of the parameters, it turns out that
� 0t�

0
2. This means that 1� k0w1ð Þ in eqn D1 will become

negative after a time of order � 02, and so afterwards the
growth of species 2 not only has been completely sup-
pressed, but the autocrine transition is now actively con-
verting virtually all of state 2 to state 1. In other words,
the population of state 2 decreases rapidly afterwards.

If we denote the variables at the time when state 2
reaches its population maximum by an asterisk ‘*’, then
the scenario described above suggests expanding out
1� k0w1ð Þ � �� t0 � t0�ð Þ for some number a so that,
near this cross-over region, we have

dx0
2

dt0
� 1� k0w1ð Þx0

2 � �� t0 � t0�ð Þx0
2

) x0
2 � x0�

2 e
�� t0�t0�ð Þ2=2:

Also, because C0w2w1 near the cross-over region,
we may approximate eqn D2 as

dx0
t

dt0
� x0

t 1� w1 w1 þ C0w2ð Þx0
t

	 


� x0
t 1� w1C

0x0
2

	 


� x0
t 1� 1þ � t0 � t0�ð Þ

k0

� �
C0x0

2

� �
:

Hence, as t0 increases from t′* onward, x0
t reaches

an extremum for time t′* satisfying

0 ¼ 1� 1þ � t0 � t0�ð Þ
k0

� �
C0x0

2:

For t0 � t0� not too large, we may approximate the
above by

0 ¼ 1� 1þ � t0 � t0�ð Þ
k0

� �
C0x0�

2 e
�� t0�t0�ð Þ2=2

� 1� 1þ � t0 � t0�ð Þ
k0

� �
C0x0�

2

1

1þ � t0 � t0�ð Þ2=2 ;

which admits the following two solutions:

t0 � t0� ¼ C0x0�
2

k0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0x0�

2

k0

� �2

� 2

�
1� C0x0�

2

k0

� �s
:

This means x0
t actually achieves a local maximum

some time after state 2 reaches its maximum, then, as a
result of the rapid decrease of state 2, the total population
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plunges to a local minimum. It is only afterwards does the
total population begin to pick up again, this time due to
the logistic growth of the now-dominant species 1. Such a
‘hiccup’ is apparent in the numerical simulation of Fig. 3.

The late stage

Once the system has passed through the cross-over stage,
the population of state 2 becomes negligible, and the time
evolution of state 1 is basically that of the total population,
which follows the simple logistic growth model, because

dx0
t

dt0
� x0

t 1� w1 w1 þ C0w2ð Þx0
t

	 


� x0
t 1� 1 	 1þ C0 	 0ð Þx0

t

	 


¼ x0
t 1� x0

t

	 

:

This equation has the following solution:

x0
t �

1

1� 1� 1
x0
t;h

� �
e� t0�t0

hð Þ ;

where a variable with the subscript ‘h’ means that it is
evaluated at the time when the ‘hiccup’ in the total pop-
ulation ends.
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