
International Journal of Innovative

Computing, Information and Control ICIC International ⓒ2011 ISSN 1349-4198

Password Cracking Based on Special Keyboard Patterns

Hsien-Cheng Chou1, Hung-Chang Lee2, Chih-Wen Hsueh1 and Fei-Pei Lai1,3,4

1Department of Computer Science and Information Engineering,
National Taiwan University, Taiwan

{d96922034, cwhsheh}@csie.ntu.edu.tw

2Department of Information Management,
Tamkang University, Taiwan
hclee@mail.im.tku.edu.tw

3Graduate institute of Biomedical Electronics and Bioinformatics,
National Taiwan University, Taiwan

4Department of Electrical Engineering,
National Taiwan University, Taiwan

flai@ ntu.edu.tw

ABSTRACT. Passwords are still the most commonly used mechanism for user

authentication. However, they are vulnerable to dictionary attacks. In order to guard

against such attacks, administrative policies force the use of complex rules to create

passwords. One common used “trick” is to use keyboard patterns, i.e. key patterns on a

keyboard, to create passwords that conform to the complex rules. This paper proposes an

efficient and effective method to attack passwords generated from some special keyboard

patterns. We create a framework to formally describe the commonly used keyboard

patterns of adjacent keys and parallel keys, called AP patterns, to generate password

databases. Our simulation results show that the password space generated using AP

patterns is about 244.47 times smaller than that generated for a brute-force attack. We also

design a hybrid password cracking system consisting of different attacking methods to

verify the effectiveness. Our results show that the number of passwords cracked increases

by up to 114% on average than without applying AP patterns.

Keywords: Password cracking, dictionary attack, brute-force attack, keyboard pattern.

1 Introduction

Passwords for identity authentication or access control are still widely used means of
ensuring system security despite the increased use of alternative techniques such as
graphical passwords [1], smart-card, or biometrics. However, these passwords are
vulnerable to dictionary attack [2]. In an attempt to force users into selecting strong
passwords [3], system administration policies often regulate several complex rules for
creating passwords. These rules might require some special characters, constrain minimum
password lengths, and even forbid words from dictionaries. It is common users struggling
to create passwords that meet these rules. In an effort to memorize these meaningless

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225218022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

combinations, many users have resorted to alternative approach such as typing the
password based on the keyboard layout, i.e. the key positions and movements.

Take a password “!qaz@WSX#edc” for example. This 12-character sample password is
at first glance a seemingly random string; it is actually generated utilizing the keyboard
layout. It is clear that the user chooses an easy-to-remember approach forming a keyboard
pattern starting with the "!" key down to the "z" key without the Shift key pressed, followed
by a parallel same pattern starting with the "@" key with the Shift key pressed, and then
another similar parallel pattern starting with the "#" key down to the "c" key without the
Shift key pressed.

In this work, we establish a framework to describe the commonly used keyboard patterns
of adjacent keys and parallel keys, called AP patterns, to generate password databases. First,
we provide a formal definition for AP patterns. Next, we build the AP patterns generating
password databases in two major steps. The first step is the evolution of AP patterns based
on various combinations of character types. The second step uses these patterns to construct
password databases using the depth-first search. Finally, we design a hybrid password
cracking system consisting of three sequential stages, i.e., Dictionary attack, AP-pattern
attack, and Brute-force attack, and successfully simulate and apply this system to crack
UNIX and PC access passwords.

This paper is organized as follows. Section 2 describes related research on password
attacks. Section 3 proposes AP patterns and password generation. Section 4 presents the
simulation results. Section 5 demonstrates the effectiveness and comparisons with other
related researches. Section 6 contains conclusion and future work.

2 Related Work

Techniques for cracking or acquiring passwords range from social engineering, phishing
and shoulder surfing. However, most current identity authentication attacks (focusing on
passwords) are still based on the dictionary attack or brute-force methods. Other attacks
such as time-memory tradeoff [4, 5] are gradually gaining importance as computing power
and storage space increases. Nevertheless, the attack requires a lot of time and computing
effort in order to build so-called Rainbow tables [6] and thus is not widely deployed. In
addition, an effective defense has been mounted against Rainbow tables using the fact that
some hash functions are combined with a random salt (for example salted SHA-1), causing
the same passwords to produce different hash values.

Actually, many companies such as Elcomsoft, Passware, and Wwwhack, have developed
powerful password recovery software for documents that use character strings for data
encryption, such as Word, Excel, PDF, RAR, and ZIP encryption files. However, most of
these password recovery packages are still based on dictionary attack or brute-force attack.

Most keyboard-related attacks are limited to physical attack, i.e. an attacker analyzes the
possible characters [7] by logging and analyzing the key stroke sounds. In 2001, Song et al.
[8] presented a timing attack on the Secure Shell (SSH) network protocol. To perform this
type of attack, a large amount of statistical training data is essential. Song performed a
statistical analysis by timing the latencies between two keystrokes for all possible pairs of
characters, and then predicted key sequences from the inter-keystroke timings. However,
the need for pre-knowledge and user-specific statistical training models and data make the
technique rarely practical.

3

Although the password database generated by keyboard patterns can be regarded as a
kind of dictionary attack, there has been little discussion on the use of such a technique to
crack passwords. In 2009, Schweitzer et al. [9] proposed an approach to collect and
categorize keyboard patterns. By collecting a large number of users’ passwords and
analyzing keyboard patterns, they found that the keyboard patterns consisted of continuous
2-4 keys are most commonly used as passwords. Based on the analysis of Schweitzer, we
define the frequently used adjacent and parallel keyboard patterns as AP patterns to
generate password databases, and then successfully apply them to crack UNIX and PC
access passwords.

3 AP Patterns and Password Generation

AP patterns are composed of adjacent patterns and parallel patterns by the keys with
adjacent relationships (adjacent keys) and parallel relationships (parallel keys), respectively.
The adjacent or parallel relationships for AP patterns are usually sensed visually. However,
we provide formal definitions in the following sections. Although the relationships are
discussed on a standard keyboard, we can extend them to any other input devices through
two keyboard configuration files. After that, we describe the procedure to generate the
passwords defined by AP patterns.

In general, all keys on a keyboard can be divided into the following three categories,
printable keys (e.g. "a", "A", "1", "!" ...), function transferring keys (e.g. Shift, Caps Lock,
Ctrl ...) and other keys (e.g. arrow keys, Backspace ...) [10, 11]. Without loss of generality,
we focus only on printable keys because passwords are usually composed of only printable
keys so that it is easier for users to type and remember and for the system to record.

Definition 3.1 (Key coordinates) A key on a keyboard can be described as a polygon

(usually square) and positioned with its upper-left most coordinate (x1, y1) and lower-right

most coordinate (x2, y2) with reference to the keyboard’s upper-left most coordinate: (0, 0).

For a standard keyboard, all printable keys are usually in a square shape of the same size.
For convenience, we can define both the key length and width as 1, and ignore the
horizontal and vertical gaps among keys. As shown in FIGURE 1, all these keys are arranged

into four rows, with two continuous rows offset by δ (0<δ<1). Again, for convenience, we
assume that these offsets for a standard keyboard are the same. This definition of key
coordinates makes the following definitions of key relationships rather easy.

 FIGURE 1. Key coordinates for a standard keyboard.

4

3.1 Adjacent Relationship

The first relationship considered visually among printable keys is the adjacent relationship
to describe the adjacent keys. For any key, in addition to its obvious left adjacent and right
adjacent keys, there are upper adjacent keys in the upper left and upper right directions, and
lower adjacent keys in the lower left and lower right directions.

Definition 3.2 (Adjacent keys) The adjacent keys of a key are the keys each of which and

the key itself are adjacent.

Using key coordinates, we can formally define the adjacent relationship as in the
following example. Consider key K1 with coordinates (x1, y1) and (x2, y2), and key K2 with
coordinates (x3, y3) and (x4, y4). If K2 is upper adjacent to K1, i.e. K1 is lower adjacent to K2,
then y1=y4 and x3 ≤ x1 ≤ x4, or y1=y4 and x3 ≤ x2 ≤ x4, as shown in FIGURE 2(a) and 2(b). Note
that any key is adjacent to itself.

FIGURE 2. The upper adjacent and lower adjacent relationship of keys K1 and K2.

We can obtain the center coordinates of each key by averaging the corresponding key
coordinates. For example, the center coordinates of K1 is ((x1+x2)/2, (y1+y2)/2), as shown in
FIGURE 3(a). Therefore, the adjacent keys can be detected easily as in Lemma 3.1.

Lemma 3.1 Two keys are adjacent, if and only if the Euclid distance d between the centers

of the keys is less than the length of key diagonal, d < 2 , as shown in FIGURE 3(b).

2

FIGURE 3. The center and Euclid distance for a standard keyboard.

Lemma 3.2 (Number of adjacent keys) The maximum number of adjacent keys for a key

excluding itself is six.

In despite of the value of offset δ, the maximum number of upper adjacent or lower

5

adjacent keys is 2 because each key has the same size. Therefore, adding the unique left
adjacent and right adjacent keys, the maximum number of adjacent keys for a key is 6.
Taking a key "H" for example, keys "Y", "U", "J", "N", "B" and "G" are adjacent. However,
for some keys as if in a border, their adjacent keys would be less than six. For example, the
adjacent keys of "Z", are "A", "S" and "X", as shown in FIGURE 4.

FIGURE 4. The adjacent keys of keys "H" and "Z".

3.2 Parallel Relationship

Applying recursively the adjacent relationship defined above in the same direction, a
special straight-line pattern of keys, key line, would form. By connecting the center of each
key in the key line with a straight-line, the slope of the key line can be derived by the slope
of the straight-line.

Definition 3.3 (Key line) The keys adjacent in the same direction. The slope of the key line

is the slope of the line connecting the centers of the keys in the key line. The length of the

key line is the number of the keys in the key line.

Figure 5. Three different slopes of key lines.

From Lemma 3.2, since a key might have 6 different adjacent keys, a key might branch

out key lines at most in 6 different directions. Consider a standard keyboard: keys "1", "2",
"3", "4" and "5" form a key line of zero slope and length 5 in the right direction; keys "Q",
"A", "Z" form a key line of negative slope and length 3 in the lower-right direction; keys
"0", "O", "K", "M" form a key line of positive slope and length 4 in the lower-left direction.
The parallel relationship is considered among two key lines of the same slope. There are

6

only three different slopes due to the same size of keys, as shown in FIGURE 5.

Definition 3.4 (Parallel keys) If keys are parallel, they are two parallel key lines of the

same direction and length. The direction of the parallel keys is the direction of the key lines.

The length of the parallel keys is the length of the key lines.

Again, from Lemma 3.2, a key might branch out parallel keys at most in 6 different

directions. For the parallel keys of negative, zero, and positive slopes, we call them
negative parallel, horizontal parallel and positive parallel, respectively. For example,
parallel keys such as "456" and "ERT" are horizontal parallel, "QAZ" and "WSX" are
negative parallel, and "UHB" and "OKM" are positive parallel. The parallel keys "654" and
"TRE", "ZAQ" and "XSW", "BHU" and "MKO" are also horizontal parallel, negative
parallel, and positive parallel in the opposite direction, respectively, as shown in FIGURE 6.

FIGURE 6. Parallel keys for a standard keyboard.

The length of parallel keys varies according to the choice of its staring key. By the
definitions above, for horizontal parallel, it ranges from 2 to 13 and, for negative parallel
and positive parallel, it ranges from 2 to 4.

3.3 Adjacent Patterns and Parallel Patterns

Modern consumer electronic devices, such as desktop computers, notebooks, PDAs and
handsets, might have their own unique keyboard layout, although the positioning of keys on
these keyboards might be only slightly different from each other. Since a printable key
might generate different printable characters when it is typed together with other function
transferring keys such as Shift key, before we establish AP patterns by the adjacent keys
and parallel keys defined in previous sections, we need to formalize the mapping of a key
and the characters it can derive.

To design a general system for generating passwords on these keyboards, we construct
two configuration files to describe the key arrangement on a keyboard. A key-position file
is used to record the relative position of each key, and a key-symbol file is used to record
possible characters derived from each key. By using these two files, the system can then
generate the AP patterns of adjacent keys and parallel keys, which will be described in
Sections 3.3.1 and 3.3.2, respectively. The key-position and key-symbol files for a standard
computer keyboard are shown in Table 1 and 2.

7

TABLE 1. The key-position file for a standard keyboard.

Table 1 shows the layout of 47 printable keys arranged into four rows with representing

characters when the keys are typed without Shift key pressed, where the offset δ is ignored
by missing any space in the beginning of lower 3 rows.

TABLE 2. The key-symbol file.

`

~

1

!

2

@

3

4

$

5

%

6

^

7

&

8

*

9

(

0

)

-
_

=

+

q

Q

w

W

e

E

r

R

t

T

y

Y

u

U

i

I

o

O

p

P

[

{

]

}

\

|

a

A

s

S

d

D

f

F

g

G

h

H

j

J

k

K

l

L

;

:

'

"

z

Z

x

X

c

C

v

V

b

B

n

N

m

M

,

<

.

>

/

?

The 94 printable characters shown in Table 2 derived from the 47 printable keys can be
classified into four commonly-used types, i.e., Numbers (N), Lowercases (L), Uppercases
(U), and Others (O). Fifteen possible combinations of these types are listed in TABLE 3.
With the keyboard layout defined by the two configuration files, each combination defines
the set of characters which can be used with the adjacent keys or parallel keys to establish
AP patterns. Actually, each combination represents a kind of user preferences. The AP
patterns are the sets of possible next string to append as potential passwords indexed by
current key or key line according to the adjacent keys or parallel keys of the combinations,
respectively. Note that the length of the next string to append is 1 for adjacent patterns and
the length of the parallel keys for parallel patterns.

TABLE 3. Combinations of printable character types.

Index Description of Combination Number of Characters Abbreviation

1 Numbers 10 N

2 Lowercases 26 L

3 Uppercases 26 U

4 Others 32 O

5 Numbers + Lowercases 36 NL

6 Numbers + Uppercases 36 NU

7 Numbers + Others 42 NO

8 Lowercases + Uppercases 52 LU

9 Lowercases + Others 58 LO

10 Uppercases + Others 58 UO

11 Numbers + Lowercases + Uppercases 68 NLU

12 Numbers + Lowercases + Others 68 NLO

13 Numbers + Uppercases + Others 68 NUO

14 Lowercases + Uppercases + Others 84 LUO

15 Numbers + Lowercases + Uppercases + Others 94 NLUO

`1234567890-=
qwertyuiop[]\
asdfghjkl;'
zxcvbnm,./

8

3.3.1 Establishing Adjacent Patterns

Now we are ready to establish adjacent patterns based on adjacent keys and a set of the
combinations in Section 3.3. Once the combinations are chosen, the adjacent patterns can
be established as an array of adjacent keys indexed by each character in the combinations.
For example, as shown in FIGURE 7 based on the NLUO combination, characters "w" and
"W" derived by the same key "w/W" have adjacent keys including "2", "3", "e", "s", "a",
"q", "w", "@", "#", "E", "S", "A", "Q" and "W", 14 possible next keys of Numbers,
Lowercases, Uppercases, or Others types of printable characters. TABLE 4 and TABLE 5
show the adjacent patterns of simpler combinations L and NU indexed by 26 and 36
characters, respectively. We can see that the more complex character combinations adopted,
the more complex adjacent patterns could be established.

TABLE 4. The adjacent patterns of Uppercases (U).

Key Next Keys Key Next Keys Key Next Keys

A A S Q Z W J J H K U M I N S S A D W X E Z

B B V N G H K K J L I O M T T R Y G F

C C X V D F L L K O P U U Y I J H

D D S F E C R X M M N J K V V C B F G

E E W R D S N N B M H J W W Q E S A

F F D G R V T C O O I P L K X X Z C S D

G G F H T B Y V P P O L Y Y T U H G

H H G J Y N U B Q Q W A Z Z X A S

I I U O K J R R E T F D

FIGURE 7. The adjacent keys of the key "w/W".

9

TABLE 5. The adjacent patterns of Numbers and Uppercases (NU).

Key Next Keys Key Next Keys Key Next Keys

0 0 9 P O C C X V D F O O I P 9 L 0 K

1 1 2 Q D D S F E C R X P P O 0 L

2 2 1 3 W Q E E W R 3 D 4 S Q Q W 1 A 2

3 3 2 4 E W F F D G R V T C R R E T 4 F 5 D

4 4 3 5 R E G G F H T B Y V S S A D W X E Z

5 5 4 6 T R H H G J Y N U B T T R Y 5 G 6 F

6 6 5 7 Y T I I U O 8 K 9 J U U Y I 7 J 8 H

7 7 6 8 U Y J J H K U M I N V V C B F G

8 8 7 9 I U K K J L I O M W W Q E 2 S 3 A

9 9 8 0 O I L L K O P X X Z C S D

A A S Q Z W M M N J K Y Y T U 6 H 7 G

B B V N G H N N B M H J Z Z X A S

3.3.2 Establishing Parallel Patterns

Similar to establishing adjacent patters, we can establish parallel patterns based on parallel
keys and a set of the combinations in Section 3.3. Once the combinations are chosen, the
parallel patterns of a given length can be established. The parallel patterns are an array
indexed by different parallel relationships (negative parallel, horizontal parallel and
positive parallel) of parallel keys of the same length based on the combinations. Since
parallel keys contain two parallel key lines, an array element in the parallel patterns
contains all the possible key lines parallel to each other in the same direction, i.e. the
possible next strings. Only the right, upper right and lower right directions are established.
The other left, lower left and upper left directions can be established on-line by the same
parallel patterns reversed, respectively. Some parallel key lines of length 3 with respect to
"qwe" based on different character combinations are shown as follows.

Combination Parallel Key Lines

L qwe, wer, ert, …, iop, asd, sdf, …, jkl, zxc, xcv, …

NL 123, 234, 345, 456, 567, 789, 890, qwe, wer, ert, …

LU qwe, wer, ert, rty, …, bnm, Qwe, Wer, ..., Bnm, ..., QWE, ERT, ...

LO qwe, wer, ert, rty, tyu, …, op{, p{}, ..., bnm, ~!@, !@#, @#$, ...

NLO `12, !23, @34, #45, $56, ^78, &89, *90, (0-,)-=, qwe, wer, …, 0-=, …

Based on the character combination Uppercases, the whole parallel patterns with length 3
is shown in Table 6, where each string in its set of next key lines is indexed to the set itself.
Based on the basic 15 character combinations, we establish the parallel patterns with length
2-5 and list the numbers of next key lines for different parallel relationships in Appendix A.

10

TABLE 6. The parallel patterns of Uppercases (U) with length 3.

Parallel Relationship Next Key Lines

horizontal parallel QWE WER ERT RTY TYU YUI UIO IOP ASD SDF DFG FGH GHJ HJK JKL ZXC XCV CVB VBN BNM

negative parallel QAZ WSX EDC RFV TGB YHN UJM

positive parallel OKM IJN UHB YGV TFC RDX ESZ

3.4 Generating Password Databases

Once the AP patterns are established, we can then generate passwords one by one from an
initial string as current string to find the possible next string to append on the password.
The possible next stings can be found in the AP patterns in the set indexed by the current
string. The next string will then be the new current string to apply on the AP patterns again
to find the next string continuously until the length of the password is satisfied. The initial
string should be empty or one of the next keys or next key lines in the adjacent patterns or
parallel patterns, respectively. If the initial string is empty, all the next keys and next key
lines are the possible next stings. If the initial sting is a single character for parallel patterns,
all the next key lines starting with the single character are the possible next strings. All
possible passwords can thus be found by depth-first search [12,13]. For example, the partial
search tree for the adjacent patterns of Uppercases as in TABLE 4 is shown in FIGURE 8.
Based on the search tree, we can generate passwords with length 3, i.e. AAA, AAS, AAQ,
AAZ, AAW, ASS, ASA, etc.

To generate the password databases, the input parameters include:

A. Keyboard patterns: adjacent patterns or parallel patterns;
B. Password length: a fixed number or a range of numbers;
C. Initial string: a starting character or an empty string;
D. Output format: off-line databases or on-line message.

There are several guidelines in setting the parameters:
A. The choice of adjacent patterns or parallel patterns affects much the password space

generated. It increases drastically if both are considered at the same time.
B. If users would know the possible password length or can guess a likely range, the

FIGURE 8. The partial tree by the adjacent patterns based on Uppercases (U).

11

password database can be generated by setting the password length or range; this can
greatly reduce the password space, so does the search time, and enhance attack
efficiency.

C. If users would know some information that relates to the password to be cracked, such
as the first character, this information can be utilized as the initial string to reduce the
password space as well.

D. The passwords can be generated off-line as databases for future reuse or on-line for
verification directly because the space is usually too large to store in memory.

4 Simulation Results

4.1 Password Databases Generated Using Adjacent Patterns

Based on the 15 basic character combinations in Section 3.3, we generate all passwords
using adjacent patters with empty initial string and length range 5-16 off-line into databases
of different lengths. We show the numbers of passwords generated of frequently used
character combinations U, NU, NLU, NLO and NLUO in TABLE 7 and the same data in
FIGURE 9 in the logarithm to base 2. As the password length increases, the resulting number
of passwords also increases proportionally (in logarithm), especially when character
combinations are more complex, such as the case of NLUO, the number of passwords also
increase. For example, the number of passwords with length 15 generated is between 239.36
and 256.8.

TABLE 7. Numbers of passwords generated using the adjacent patterns.

Numbers of passwords
(Logarithm to base 2) Password

length
NLUO NLO NLU NU U

5 20.78 18.39 19.82 15.37 14.49

6 24.36 21.56 23.34 17.96 16.97

7 27.99 24.75 26.85 20.55 19.46

8 31.59 27.96 30.38 23.14 21.95

9 35.28 31.20 33.90 25.74 24.45

10 38.80 34.45 37.43 28.33 26.93

11 42.40 37.69 40.95 30.93 29.42

12 46.01 40.94 44.47 33.53 31.90

13 49.61 44.19 48.00 36.13 34.39

14 53.20 47.44 51.52 38.72 36.87

15 56.80 50.68 55.04 41.32 39.36

16 60.40 53.93 58.57 43.92 41.84

12

4.2 Password Databases Generated Using Parallel Patterns

Similar to Section 4.1, we generate passwords using parallel patterns with empty initial
string and length range 5-16 off-line into databases of different lengths. The same
frequently used character combinations U, NU, NLU, NLO and NLUO are also chosen and
the results are shown in FIGURE 10, where “parallel n” means parallel patterns with length n
are adopted. When parallel 2 is adopted, only passwords with lengths 6, 8, 10, 12, 14 and
16 can be generated. So do parallel 3, parallel 4, and parallel 5 with lengths 6, 9, 12 and 15,
lengths 8, 12 and 16, and lengths 5, 10 and 15, respectively. Noted that not all parallel
relationships, horizontal parallel, negative parallel and positive parallel, are present in the
passwords generated as shown in APPENDIX A. Therefore, the numbers of passwords
generated with parallel 5 is smaller.

4.3 Experimental Observations

As shown in FIGURE 11, we combine the experimental results of adjacent patterns (by
legend Adjacency) and parallel patterns with all possible passwords generated by the
brute-force method of the same character combinations. All the data for passwords with
length 16 in FIGURE 11 are also compared in FIGURE 12. A few observations were made
from FIGURE 11 and FIGURE 12 as follows.

1. As shown in FIGURE 11, the number of passwords generated using AP patterns is far
smaller than that of the brute-force method. From FIGURE 12, for the passwords with
length 16 based on character combination NLUO, the number of passwords is reduced
from 2104.87 of brute-force method to 260.4 of adjacent patterns by 244.47 times. The
number is even further reduced to 237.53 by parallel 4 patterns.

2. The numbers of passwords generated through adjacent patterns and parallel 2 patterns
are almost the same because keys in parallel 2 patterns are also adjacent. The number of
passwords generated through parallel 5 patterns is greatly reduced compared to that of
parallel 3 and 4 patterns, as there is only the horizontal parallel relationship for parallel

FIGURE 9. Number of passwords generated using the adjacent patterns.

13

5 patterns, while there are horizontal, negative, and positive parallel relationships for
parallel 3 and 4 patterns.

3. There is a trade-off between the password length and character combinations, where
they both affect password space in order to mount an attack efficiently. For example, if
password length exceeds 10 and the combination is of three or more character types, the
number of passwords generated exceeds 240. To avoid such a large search space, simple
character combinations, such as N, U, L, O, NL, LO, with length no greater than 10 are
suggested.

FIGURE 10. Numbers of passwords generated using parallel patterns.

14

FIGURE 11. Numbers of passwords generated using AP patterns and brute-force.

15

FIGURE 12. Numbers of passwords generated with length 16.

5 Effectiveness and Comparison

This section describes a hybrid password cracking system to crack access passwords
collected from UNIX and PCs. Within this system, we introduce a new stage called
AP-pattern attack, which uses the password databases generated by AP patterns.

5.1 Effectiveness

The hybrid password cracking system consists of three sequential stages of attack, i.e.
Dictionary attack sequentially followed by AP-pattern attack and Brute-force attack, called
the DAB password cracking system, as shown in FIGURE 13. The system can be in DAB
mode if all stages are enabled and in DB mode if only the stage of AP-pattern attack is
disabled.

 FIGURE 13. The system architecture of DAB password cracking system.

UNIX Access Password Attack

We collected 382 encrypted access passwords for the UNIX system using the John Ripper
cracker tool [14]. These passwords are of 13-byte values generated by the DES
cryptosystem. Then, we proceeded to crack the passwords in DAB and DB modes. The

16

results showed that, in the same 5 hours of experiments, 202 passwords and 155 passwords
are cracked in DAB mode and DB mode, respectively. After the dictionary attack, in the
same period of time, the number of passwords cracked with AP patterns increases 47 and
up to 114% [=(51+37)/41]. The details are shown in TABLE 8, where the time taken to crack
the passwords is in brackets.

TABLE 8. Number of UNIX passwords cracked.

DAB mode DB mode DAB
Password
Cracking
System

Dictionary
attack

AP-pattern
attack

Brute-force
attack

Dictionary
attack

Brute-force
attack

114
(12min)

51
(27min)

37
(4hr 21min)

114
(12min)

41
(4hr 48min)

Number of
Passwords
Cracked 202 155

PC Access Password Attack

We also collected 196 encrypted access passwords for the PC system using the Pwdump
software [15]. These passwords are of 128-bit hash values generated using the MD5 hash
function. Again, we conducted the same experiments as for the UNIX passwords. The
results showed that 123 passwords and 90 passwords are cracked in DAB mode and DB
mode, respectively. After the dictionary attack, the number of passwords cracked with AP
patterns increases 33 and up to 103% [=(36+29)/32]. The details are shown in TABLE 9,
where the time taken to crack the passwords is in brackets.

TABLE 9. Number of PC passwords cracked.

DAB mode DB mode DAB
Password
Cracking
System

Dictionary
attack

AP-pattern
attack

Brute-force
attack

Dictionary
attack

Brute-force
attack

58
(5min)

36
(13min)

29
(4hr 42min)

58
(5min)

32
(4hr 55min)

Number of
Passwords
Cracked 123 90

For both UNIX and PC systems, the number of passwords cracked with the AP-pattern
attack outperforms obviously in the same period of time. The reason is that the passwords
cracked fall into the password space generated for AP-pattern attack, which is far smaller
than that for brute-force attack. Password cracking is thus more effective.

5.2 Comparison

For the keyboard-related password cracking methods, Schweitzer [8] focused primarily
only on the analysis of keyword patterns, and found that the keyboard patterns of
continuous 2-4 keys are the most commonly used. AP patterns formalized the commonly

17

used adjacent and parallel keyboard patterns, and were verified effective in a password
cracking system. Actually, AP patterns are a superset of the heuristic grouped patterns
proposed by Schweitzer.

Moreover, Song [9] proposed a statistical analysis by timing the latencies between two
keystrokes for all possible pairs of characters, and then predicted key sequences from the
inter-keystroke timings. Due to timing factors, this method is vulnerable to external
influence. Passwords generated using AP patterns are as "dictionaries" developed by special
keyboard patterns, and can be widely used in cracking password-based cryptosystems.

TABLE 10 shows a comparison of the methods of Schweitzer, Song and AP patterns.
Nowadays, in order to resist various attacks, many password-based cryptosystems not only
strengthen their cryptographic security, but also ask users to use "strong" passwords, at
least combinations of two character types and of length 8. The strong passwords fall within
the password space by AP patterns, and the cracking time is reduced.

TABLE 10. Comparisons of keyboard-related password cracking methods.

Method Schweitzer Song AP patterns

Feature

Classify and

analyze keyboard
patterns.

Predict key sequences

from the inter-keystroke
timings.

Focus on adjacent and parallel

patterns, a superset of
Schweitzer’s patterns, verified
in real cracking system.

Execution Off-line. On-line. Off-line/on-line.

Flexibility
Standard keyboard
only.

Sensitive to keyboard
material.

Suitable for all well- defined
input devices.

Limitation
Heuristic grouped
patterns.

Statistic data required
for specific keyboards.

Patterns are adjacent and
parallel only.

6 Conclusions and Future Work

We establish a framework to formally describe the commonly used keyboard patterns of
adjacent keys and parallel keys, called AP patterns, to generate password databases. The AP
patterns are designed in general to be established for any well-defined keyboard-like input
devices. All the printable characters on any keyboard can be classified into frequently used
combinations. Based on the character combinations and AP patterns of a standard keyboard,
various password databases are generated according to user preferences for password
cracking, called AP-pattern attack. We also design a hybrid password cracking system
consisting of dictionary attack, AP-pattern attack and brute-force attack to verify the
effectiveness of AP patterns. The experimental results show that the password space is
reduced drastically and cracking UNIX and PC access passwords can still be effective and
outperform for up to 114% more with AP-pattern attack. Future work will focus on the
formulation of more specific keyboard patterns such as triangle patterns in order to further
strengthen the password databases with more flexibility and generality.

Acknowledgement. The authors gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the presentation.

18

REFERENCES

[1] H. Gao, X. Liu, S. Wang, H.g Liu, R. Dai, Design and Analysis of a Graphical Password Scheme,

International Conference of Innovative Computing, Information and Control, pp.675-678, 2009.

[2] S. Delaune, F. Jacquemard, A Theory of Dictionary Attacks and its Complexity, 17th IEEE Computer

Security Foundations Workshop, 2004.

[3] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password Memorability and Security: Empirical

Results. IEEE Security & Privacy 2, 25-31, 2004.

[4] P. Oechslin, Making a Faster Cryptanalytic Time-Memory Trade-Off, in Advances in Cryptology -

CRYPTO ‘03, pp.617–630, 2003.

[5] V. L. L. Thing, H. M. Ying, A Novel Time-Memory Tradeoff Method for Password Recovery, June,

2009.

[6] O. Billet, H. Gilbert, Cryptanalysis of Rainbow, Security and Cryptography for Networks, Volume 4116,

pp.336-347, 2006.

[7] Lizuang, F. Zhou, and J. D. Tygar, University of California, Berkeley, Keyboard Acoustic Emanations

Revisited, ACM Transactions on Information and System Security, Vol. 13, No. 1, Article 3, October

2009.

[8] D. X. Song, D. Wagner, and X. Tian. Timing Analysis of Keystrokes and Timing Attacks on SSH, 2001.

[9] D. Schweitzer, J. Boleng, C. Hughes, L. Murphy, Visualizing Keyboard Pattern Passwords, 6th

International Workshop on Visualization for Cyber Security Atlantic City, New Jersey, USA, 11 October,

2009.

[10] J. Noyes, The QWERTY Keyboard: A Review. International Journal of Man-Machine Studies, 18,

265-281, 1983.

[11] D. G. Alden, R. W. Daniels, A. F. Kanarick, Keyboard Design and Operation: A Review of the Major

Issues. The Journal of the Human Factors Society, vol. 14, 4, pp. 275- 293, 1972.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithm, 2nd Ed, 2001.

[13] S. Russel, P. Norvig, Artificial Intelligence, a Modern Approach, 2nd Ed, 2006.

[14] Openwall Project. John the Ripper Password Cracker. Retrieved on 13/3/2010.

[15] Pwdump7 by Andres Tarasco Acuna, Windows NT family, up through XP or Vista.

19

APPENDIX A.... The numbers of next key lines of parallel patterns with length 2-5
established on different combinations of character types.

Length 2

Character Combination N L U O NL NU NO LU LO UO NLU NLO NUO LUO NLUO

Horizontal Parallel 9 23 23 37 32 32 68 92 66 66 101 97 97 141 172

Negative Parallel 0 16 16 16 26 26 16 64 48 48 84 58 58 112 132

Positive Parallel 0 16 16 20 25 25 20 64 48 49 82 58 58 110 128

Length 3

Character Combination N L U O NL NU NO LU LO UO NLU NLO NUO LUO NLUO

Horizontal Parallel 8 20 20 32 28 28 104 160 70 70 168 142 142 240 312

Negative Parallel 0 7 7 8 16 16 8 56 34 34 92 45 45 128 168

Positive Parallel 0 7 7 24 15 15 24 56 43 43 88 51 51 128 160

Length 4

Character Combination N L U O NL NU NO LU LO UO NLU NLO NUO LUO NLUO

Horizontal Parallel 7 17 17 15 24 24 160 272 66 66 279 211 211 415 560

Negative Parallel 0 0 0 0 7 7 0 0 15 15 56 30 30 80 160

Positive Parallel 0 0 0 16 7 7 16 0 27 27 56 34 34 88 144

Length 5

Character Combination N L U O NL NU NO LU LO UO NLU NLO NUO LUO NLUO

Horizontal Parallel 6 14 14 14 20 20 288 448 62 62 454 336 336 718 992

Negative Parallel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Positive Parallel 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

