
A Genetic Programming Based Scheme for Combining Image Operators

Feng-Cheng Chang
Dept. of Innovative Information and Technology

Tamkang University, TAIWAN
Email: 135170@mail.tku.edu.tw

Hsiang-Cheh Huang
Department of Electrical Engineering

National University of Kaohsiung, TAIWAN
Email: hch.nuk@gmail.com

Abstract—Sophisticated image processing is usually nonlin-
ear and difficult to model. In addition to the conventional image
processing tools, we need some alternatives to bridge the gap
between low-level and semantic level computation. This paper
presents an idea of image processing scheme. We transform an
image into different representations; feed the representations to
the proper cellular automaton (CA) components to produce the
information images; use the information images as the inputs to
the combination program; and finally get the processed result.
To identify the needed transforms, the CA transition rules, and
the combination expression, we adopt genetic programming
(GP) and cellular programming (CP) to search for the configu-
ration. The searched configuration separates the parallelizable
and sequential parts of the program. We don’t enforce the
linearity of the program, and it is likely that the searched
result matches to the nonlinear nature of human semantics.

Keywords-genetic programming; cellular programming; im-
age processing

I. INTRODUCTION

Computers are designed to help people doing various
kinds of tasks. One of them is to find the optimal solution
to a problem that does not have a closed form or even
difficult to model. To find the best-fit solution based only on
a set of example data, one of the popular approaches is the
evolutionary algorithms [1]. Swarm intelligence simulates
the behaviors of lives. The assumption is that we can at
least construct a fitness evaluation method for a complex
problem. Based on the metric, we use different strategies to
search for the best solution that fits to this problem. In the
past a few decades, swarm intelligence was widely used in
various kinds of application domains. The typical usage is
to find optimal high-dimensional solution vectors.
Due to advances in computer hardware speed and capac-

ity, one of the techniques, genetic programming (GP), be-
comes more and more feasible for practical cases [2][3][4].
Instead of searching for data vectors, GP searches for a
program. That is, the structure that contains both operators
and operands (values). The concept of GP was developed
pretty early, but was considered as an academic tool due
to the limitation of computing hardware. Recent years,
some practical uses of GP emerge. Although they are sill
high-complexity, they can be quite useable by adopting
modified program expression (e.g., LGP) [5][6] and im-
proved program construction (such as [7], [8] and [9]).

The other evolutionary technique we are interested in is
cellular programming (CP) [10][11][12]. It is the process to
find the proper transition rules for cellular automaton (CA).
Researches show that CA could be used to process data in
parallel with simple state-transition rules and thus suitable
for hardware acceleration.
In this paper, we propose a scheme for image process-

ing. This scheme uses GP to search for the (sub-)optimal
configuration of a program. We also adopt the concept of
CP to represent the parallelizable processing in order to
make the found solution ready for hardware acceleration. In
Sec. II, we describe the motivations why we consider image
processing with GP. In Sec. III, we briefly introduce the
concepts of GP and CP, which are the two major techniques
in our scheme. Then, we propose the scheme and discuss
the concerns in Sec. IV and Sec. V respectively. At the end,
we conclude this paper in Sec. VI.

II. MOTIVATIONS

Image processing techniques have been developed for
a few decades. They evolve from analog image to digital
image, from pixel-based operation to block-based operation,
and from a single image to a multi-view image. With
the growth of hardware computing capability, more and
more processing targets that are closer to human semantics
become feasible. Traditionally, digital image processing is
treated as two-dimensional signal processing. Therefore, we
may apply various kinds of tools in a signal processing
problem. These tools are typically low-level and linear oper-
ators. Unfortunately, human visual system is far from linear
signal processing. It involves nonlinear operations, semantic
(logical) rules, and spatial/temporal correlation analysis.
Nowadays, stronger demands for semantic level image

processing emerge. For example, image recognition and
image retrieval are popular topics in search engines. These
applications require sophisticated computation to intimate
the processing inside human brain. Researches show that
eyes are similar to low-level sensors. A received image is
processed in different paths to produce feature signals, such
as the edges. Then, very complicated process is applied
to the processed signals and produces the desired semantic
level information.

2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-0-7695-4712-1/12 $26.00 © 2012 IEEE

DOI 10.1109/IIH-MSP.2012.58

215

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225216976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

It is not easy to figure out how human brain conducts the
desired information. If we would like to intimate the process
for a specific purpose, a blackbox approach is straightfor-
ward. The problem is how to find the proper configuration
of the blackbox so that its behavior conforms to the given
training input and output pairs. Because a configuration
consists of the operations and the input values, it resembles
a “program”. Therefore, we are interested in using genetic
programming (GP) to search for the configuration.
It is known that neurons are much slower than today’s

high-end computing units. However, human can process
images quite efficiently. It is believed that parallelism in
brain greatly helps the processing. Therefore, we are also
interested in searching for a processing configuration that
is suitable for hardware parallelism. A potential structure
for parallel image processing is cellular automaton (CA). It
depends on a set of carefully designed state-transition rules.
To design the optimal rule set, we need the cellular program-
ming (CP) concepts that will be discussed in Sec. III-B.
According to the motivations, we will design a image

processing scheme that incorporates GP and CP. The GP part
searches for the program based on the training input/output
in order to intimate the semantic processing; and the CP
part searches for the parallelizable CA configuration in the
program. The result is expected to be useful for both solution
construction and hardware implementation.

III. GP AND CP

In this section, we briefly introduce the two major tech-
niques integrated into the proposed scheme. The typical
genetic programming (GP) and its variants are described
in Sec. III-A; and the concepts and structure of cellular
programming (CP) are described in Sec. III-B.

A. Genetic Programming

Genetic programming (GP) could be viewed as an spe-
cialized version of genetic algorithm (GA). An individual
of GA is a bit vector representing a point in the solution
space. The concept of GA is to evolve the population (a
set of individuals) to search for the optimal solution. The
typical process of GA is briefly described below:

1) Initialization: Generate the initial population by cre-
ating individuals of random bits.

2) Selection: Based on the given fitness function, select
the survivals to form the new generation of population.
If any of the individual satisfies the minimum criteria,
terminate the process.

3) Reproduction: Apply crossover and mutation to gen-
erate the new individuals. If the termination condition
is not satisfied, select and reproduce again.

4) Termination: Either the fitness criteria are satisfied
or the maximum allowed number of generations is
reached, terminate the process.

GP specializes GA in that each individual represents a
“program”. In other words, GP is an evolutionary computing
technique that searches for a combination of operators and
operands. A typical representation of a GP individual is a
tree. A leaf node is the input data or constant, and a tree node
is an operator. A tree-structure program is an expression, and
we can easily limit the complexity of the searched program
by the maximum depth of the tree. The evolution process of
GP is similar to that of GA with some modifications:

• The crossover operator applies to sub-trees. The bit-
level operation (without the knowledge of data repre-
sentation) in GA is not applicable in GP because an
operator has its specific meaning.

• The mutation operator applies to a tree node or a leaf
node. When mutating a tree node, the value should
correspond to a valid operator.

• It is impossible to determine the 100% fit. In GA, we
search for a solution that satisfies the fitness function.
It is possible to find the exact solution given unlimited
time and precision. However, we search a program
behavior that satisfies the given training set. A training
set is typically much smaller than the real data domain.
Therefore, even a program produces the desired outputs
for all the training data, we cannot determine whether it
is over-fit or not. This issue implies that we have to use
the number of generations to terminate the evolutionary
process.

In addition to the tree-structured representation, some other
approaches have been developed. One of the popular ap-
proach is called Linear Genetic Programming (LGP). The
representation of an LGP program follows the design of
CPU instructions. A program is a sequence of instructions,
and each instruction consists of an operation and operands
(if any). The advantage of this approach is that the genetic
operations apply to instruction level and usually simpler and
faster. The disadvantage is that simply reuse the instructions
in a linear structure is not feasible in many cases. For ex-
ample, crossover instructions inside a conditional instruction
cause the shift of the branching target location(s).

B. Cellular Programming

Cellular programming (CP) is the combination of cellular
automaton (CA) and the search for the corresponding rules.
CA, similar as GP, has been proposed for a few decades.
The concept of CA is state-transitions based on the neigh-
borhood:
1) Define the range of neighbors and the state-transition

rules (may be a lookup table or a function).
2) Based on the state at time t = k, every cell computes

its state at t = k + 1 in parallel.
3) The input data is processed by the given number of

stages (from t = 0..N) and produce the final result.
Although CA considers only neighbor cells, the local data
processing can achieve global effects as long as the input

216

data go through enough evolutionary stages. Some famous
applications, such as the Game of Life, demonstrate different
usages of CA. The rule set of a specific CA application
is equivalent to a program. It differs from a conventional
computer program in that all the cells work in parallel with
the same rule set. The sequential execution only deal with
the synchronization of cell states at stage input and output.
A special CA variant is called nonuniform-CA. It allows
different cells to be associated with different rule sets, so
that it can achieve much more sophisticated data processing
than traditional CA.
While CA is a useful tool for data processing, one of the

issues is how to determine the transition rules for a specific
goal. Cellular programming is the concept that adopts some
other optimization techniques to search for the proper rules.
For example, we may adopt GA or GP to search for the
rules. To determine the optimal CA rule set using CP, a few
parameters should be specified:

• The number of stages to process the data: It is crucial
because the number of stages affects the complexity
and the accuracy.

• The criteria to terminate the training: It is almost
impossible to determine whether a real “fit” program
is found. We can only find the most-fit program for the
training data set.

The traditional CA applications consider only a very
limited number of cell states. Theoretically, it can deal with
any number of states when ignoring the complexity. Some
of the studies show that continuous CA is realizable in some
applications. In this paper, we assume that continuous CA
is an option for implementing the proposed scheme. Due to
the limitation of time, we haven’t verified the feasibility of
this idea. If it is not practical, we will fall back to discrete
CA to process gray-level image data.

IV. SCHEME DESIGN

Based on the aforementioned techniques, we propose the
following design as an image processing structure that can
be optimized by GP training process. For parallelizable
processing, we use a few CP chains to produce the desired
information images. The input data to the CP chains could
be pre-processed images. For high-level processing, the
information images are combined by the image operators
that are represented as an expression tree. The CP part is
used to extract the useful processing information (typically
low-level), and the high-level part is a representation that
fits to a certain complicated semantic context. The scheme
is shown in Fig. 1.
To be intuitive, we choose the edge-enhancement problem

as an example. The fundamental concept is to modify the
edge pixels of the given image, and produce the visually
enhanced (usually sharpened) effect. To achieve this goal,
we need to determine the edges. There are many signal
level tools, such as the Sobel filter and Canny operator, for

Figure 1. Image Processing Scheme with GP and CP

retrieving the potential edge image. To enhance the edges,
the process depends on the given image and the adopted
human visual model. The signal level tools are typically
a sequence of regular image operators. On the contrary,
the semantic level processing is typically a sophisticated
combination of low-level tools and usually non-linear.
Suppose we solve the problem by a simple formula

I ′ = αE + βI . We need a CP-chain that takes the input
image (I) and produces the edge image (E). We also need
an expression tree that represents a weighted sum of the edge
image and the original image for all the pixels’ luminance
values. Obviously, the simple approach does not match what
we expect an “edge enhanced” image looks like. In fact,
many image processing problems are so complicated that
semantic level operations should be considered. Such kind
of problems is a suitable domain for adopting GP.
When using our proposed scheme, we may prepare a few

original/enhanced pairs of training images, and then engage
the GP engine to search for an (sub-)optimal configuration
of the CP chains and the combination operations. The result
would be much different from the formula mentioned above.

V. DISCUSSIONS

In this section, we discuss two practical issues in the
proposed scheme. They may affect the implementation of
the scheme. Until the writing of the paper, we don’t have
enough time to verify whether the considered solutions are
effective or not. We will do simulations in the future.

A. Processing Structure Configuration

To simplify the training parameters, we assume that every
CP chains contain N processing stages. Consider that some
processing may require less than N stages, No-OPs may be
activated only at the trail stages of a chain. This restriction
enforces the normalization of the representation of a CP. We
can easily prune the duplicated ones to reduce the compu-
tation complexity. There are M unique CPs for producing
information images. Similarly, to simplify the computation,
we represent the M -CPs as a set of CPs without empty CP.

217

B. Constant Parameters

A problem in this scheme is that how to determine
the parameters of a given operator. We may choose the
traditional approach that models a parameter as a constant
input, and let the GP process to find the optimal value
evolutionarily. However, image operators may require a
number of parameters. Because GP is not low-complexity,
it is not suitable for finding the values and operators at the
same time. Our idea is to adopt conventional optimization
techniques into GP. In the hybrid scheme, GP is used to
determine the structure of the operators and operands. The
conventional optimization techniques (such as GA and PSO)
are used to determine the optimal parameters for a given
expression structure.
When implementation, we need to express the combi-

nation tree as three components: the operator tree, the
parameter list, and the input list. The operators tree is the
signature of a given expression tree. The first time we
construct a new signature, the sub-optimal parameter list is
determined by the conventional optimization process. When
a same tree signature occurs, we may choose to search for a
better parameter list based on the given trigger probability.

VI. CONCLUSIONS

In this paper, we proposed an image processing scheme
that incorporates GP and CP optimization techniques. The
two techniques are used to search for a good approximation
of an image processing program. The motivation is that it
requires nonlinear processing for many image applications.
Most of the available image processing tools are based on
linear computation, and identifying the nonlinear function
that matches semantics is not easy. Advances in hardware
technology make evolutionary computing more practical
than it was. The idea of combining GP and CP poses the
following features:

• CP requires a certain optimization technique to search
for the transition rules.

• GP is flexible in different optimization applications. It
searches for a program (expression, function, etc) based
on the training set.

• The CP chains represent the highly pararllelizable
part of the program, and is the potential hardware-
accelerated part for image processing.

• The result-combination component represents the non-
linear part that matches human semantics.

The most important issue is the complexity of the scheme.
Apparently it is not suitable for real-time processing. Its
suitable applications would be those areas that require one
sophisticated training and use the result repeatedly for a long
time. We will address the performance issues and try to
reduce the complexity in the future.

REFERENCES

[1] T. Back, M. Emmerich, and O. Shir, “Evolutionary algorithms
for real world applications [application notes],” Computa-
tional Intelligence Magazine, IEEE, vol. 3, no. 1, pp. 64 –67,
february 2008.

[2] H.-S. Wong and L. Guan, “Application of evolutionary pro-
gramming to adaptive regularization in image restoration,”
Evolutionary Computation, IEEE Transactions on, vol. 4,
no. 4, pp. 309 – 326, nov 2000.

[3] N. Nikolaev and H. Iba, “Regularization approach to induc-
tive genetic programming,” Evolutionary Computation, IEEE
Transactions on, vol. 5, no. 4, pp. 359 –375, aug 2001.

[4] N. Petrovic and V. Crnojevic, “Universal impulse noise filter
based on genetic programming,” Image Processing, IEEE
Transactions on, vol. 17, no. 7, pp. 1109 –1120, july 2008.

[5] K. Krawiec and B. Bhanu, “Visual learning by coevolutionary
feature synthesis,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 35, no. 3, pp. 409
–425, june 2005.

[6] ——, “Visual learning by evolutionary and coevolutionary
feature synthesis,” Evolutionary Computation, IEEE Trans-
actions on, vol. 11, no. 5, pp. 635 –650, oct. 2007.

[7] S. Cagnoni, F. Bergenti, M. Mordonini, and G. Adorni,
“Evolving binary classifiers through parallel computation of
multiple fitness cases,” Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, vol. 35, no. 3, pp. 548
–555, june 2005.

[8] M. Zhang, X. Gao, and W. Lou, “A new crossover operator in
genetic programming for object classification,” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
vol. 37, no. 5, pp. 1332 –1343, oct. 2007.

[9] D. Muni, N. Pal, and J. Das, “A novel approach to design
classifiers using genetic programming,” Evolutionary Com-
putation, IEEE Transactions on, vol. 8, no. 2, pp. 183 – 196,
april 2004.

[10] J. R. Koza, Genetic programming - on the programming
of computers by means of natural selection., ser. Complex
adaptive systems. MIT Press, 1993.

[11] W. Banzhaf, Genetic Programming: An Introduction on the
Automatic Evolution of Computer Programs and Its Applica-
tions, ser. The Morgan Kaufmann Series in Artificial Intelli-
gence. Morgan Kaufmann Publishers, 1998. [Online]. Avail-
able: http://books.google.com.tw/books?id=1697qefFdtIC

[12] G. Adorni, F. Bergenti, and S. Cagnoni, “A cellular-
programming approach to pattern classification,” in Genetic
Programming, ser. Lecture Notes in Computer Science,
W. Banzhaf, R. Poli, M. Schoenauer, and T. Fogarty,
Eds. Springer Berlin / Heidelberg, 1998, vol. 1391,
pp. 142–150, 10.1007/BFb0055934. [Online]. Available:
http://dx.doi.org/10.1007/BFb0055934

218

