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Shape invariance in prepotential approach to exactly
solvable models

Choon-Lin Hoa�

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan and
Department of Physics, Tamkang University, Tamsui 251, Taiwan, Republic of China
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In supersymmetric quantum mechanics, exact solvability of one-dimensional quan-
tum systems can be classified only with an additional assumption of integrability,
the so-called shape invariance condition. In this paper we show that in the prepo-
tential approach we proposed previously, shape invariance is automatically satisfied
and need not be assumed. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3116104�

I. INTRODUCTION

It is generally known that exactly solvable systems are very rare in any branch of physics.
Thus any new method to construct exactly solvable models would be of interest to the community
concerned. It is therefore very interesting to realize that most exactly solvable one-dimensional
quantum systems can be obtained in the framework of supersymmetric quantum mechanics
�SUSYQM�.1,2 However, in SUSYQM, exact solvability can be classified only with an additional
assumption of integrability, so-called shape invariance �SI� condition.3 Hence in SUSYQM the SI
condition must be taken as a sufficient condition for integrability at the outset. What is more, the
transformation of the original coordinate, say, x, to a new one, z=z�x�, needed in solving the SI
condition is not naturally determined within the framework of SUSYQM in most cases but have to
be taken as given from the known solutions of the respective models. It would be more satisfac-
tory if the exact solvability of a quantal system, including the required change of coordinates,
could be determined with the simplest and the most natural requirements.

In Refs. 4–6 a unified approach to both the exactly and quasiexactly solvable systems is
presented. This is a simple constructive approach, based on the so-called prepotential,7–15 which
gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature
of the approach is that both exact and quasiexact solvabilities can be solely classified by two
integers, the degrees of two polynomials which determine the change of variable and the zeroth
order prepotential. Hence this approach treats both quasiexact and exact solvabilities on the same
footing, and it provides a simple way to determine the required change of coordinates z�x�. All the
well-known exactly solvable models given in Refs. 1 and 2, most quasiexactly solvable models
discussed in Refs. 16–20, and some new quasiexactly solvable ones �also for non-Hermitian
Hamiltonians� can be generated by appropriately choosing the two polynomials.

Since all the well-known one-dimensional exactly solvable models obtained in SUSYQM, by
taking SI condition as a sufficient condition, can also be derived without the SI condition in the
prepotential approach, one wonders what role the SI condition plays in the latter approach. In this
paper we would like to show that the SI condition is only a necessary condition in the prepotential
approach to exactly solvable systems. Therefore, unlike SUSYQM, SI need not be assumed in the
prepotential approach.

This paper is organized as follows. In Sec. II we give a brief review of the prepotential
approach to exactly solvable models with both sinusoidal and nonsinusoidal coordinates. The idea
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of SI as a sufficient condition of integrability in SUSYQM is sketched in Sec. III. Sections IV and
V then demonstrate that in the prepotential approach for models with sinusoidal and nonsinusoidal
coordinates, SI is automatically satisfied and need not be imposed. Section VI concludes the paper.

II. PREPOTENTIAL APPROACH

The main ideas of the prepotential approach can be summarized as follows �we adopt the unit
system in which � and the mass m of the particle are such that �=2m=1�. Consider a wave
function �N�x� �N: non-negative integer� which is defined as

�N�x� � e−W0�x�pN�z� , �1�

with

pN�z� � �1, N = 0,

�
k=1

N

�z − zk� , N � 0.� �2�

Here z=z�x� is some real function of the basic variable x, W0�x� is a regular function of z�x�, and
zk are the roots of pN�z�. The variable x is defined on the full line, half-line, or finite interval, as
dictated by the choice of z�x�. The function pN�z� is a polynomial in an �N+1�-dimensional Hilbert
space with the basis 	1,z ,z2 , . . . ,zN
. W0�x� defines the ground state wave function.

The wave function �N can be recast as

�N = exp�− WN�x,�zk��� , �3�

with WN given by

WN�x,�zk�� = W0�x� − 

k=1

N

ln�z�x� − zk� . �4�

Operating on �N by the operator −d2 /dx2 results in a Schrödinger equation HN�N=0, where

HN = −
d2

dx2 + VN, �5�

VN � WN�
2 − WN� . �6�

Here prime represents differentiation with respect to x. It is seen that the potential VN is defined by
WN, and we shall call WN the Nth order prepotential. From Eq. �4�, one finds that VN has the form
VN=V0+�VN:

V0 = W0�
2 − W0�,

�VN = − 2�W0�z� −
z�

2
�


k=1

N
1

z − zk
+ 


k,l

k�l

z�2

�z − zk��z − zl�
. �7�

Thus the form of VN, and consequently its solvability, is determined by the choice of W0�x�
and z�2 �or equivalently by z�= �dz�2 /dz� /2�. Let W0�z�= Pm�z� and z�2=Qn�z� be polynomials of
degrees m and n in z, respectively. In Ref. 4 it was shown that if the degree of W0�z� is no higher
than 1 �m�1� and the degree of z�2 no higher than 2 �n�2�, then in VN�x� the parameter N and
the roots zk, which satisfy the so-called Bethe ansatz equations �BAEs� to make the potential
analytic, will only appear in an additive constant and not in any term involving powers of z. Such
system is then exactly solvable. If the degree of one of the two polynomials exceeds the corre-
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sponding upper limit, the resulted system is quasiexactly solvable. The transformed coordinates
z�x� such that the degree of z�2 is no higher than 2 are called sinusoidal coordinates. There are six
types of one-dimensional exactly solvable models which are based on such coordinates, namely,
the shifted-oscillator, three-dimensional oscillator, Morse, Scarf type I and II, and generalized
Pöschl–Teller models as listed in Ref. 1.

In Ref. 6 the prepotential approach to exactly solvable systems was extended to systems based
on nonsinusoidal transformed variable z�x� which is a solution of z�=�−z2. With this, the remain-
ing four types of exactly solvable systems listed in Ref. 1, namely, the Coulomb, Eckart, and
Rosen–Morse type I and II models, are also covered by the prepotential approach.

A. Sinusoidal coordinates

For exactly solvable models with sinusoidal coordinates we take m=1 and n=2, i.e., P1�z�
=az+b, and Q2�z�=�z2+	z+
, where a, b, �, 	, and 
 are real constants. With these choices we
obtain4

VN = W0�
2 − W0� + �N2 − 2aN − 2


k=1

N
1

z − zk
��a −

�

2
�zk + b −

	

4
− 


l�k

Q2�zk�
zk − zl

� . �8�

Demanding the residues at zk to vanish gives the set of BAEs

�a −
�

2
�zk + b −

	

4
− 


l�k

Q2�zk�
zk − zl

= 0, k = 1,2, . . . ,N . �9�

With this set of roots zk, the last term in Eq. �8� vanishes, and we obtain a potential VN�x�
=V0�x�−EN without simple poles. Here V0�x�=W0�

2−W0� does not involve N and zk and can be
taken as the exactly solvable potential of the system with eigenenergies EN=2aN−�N2. In fact,
V0�x� is exactly the supersymmetric form presented in Ref. 1 for the shifted-oscillator, three-
dimensional oscillator, Morse, Scarf type I and II, and generalized Pöschl–Teller models �for easy
comparison, we note that � and a here equal ��2 and �A in Ref. 1�. The result above also shows
that the energy spectrum of exactly solvable model with the sinusoidal coordinate is always
quadratic in N.

B. Nonsinusoidal coordinates

As mentioned before, the Coulomb, Eckart, and Rosen–Morse type I and II models involve a
change of coordinates of the form z�=�−z2 which is nonsinusoidal. But with a slight extension of
the methods in Ref. 4 all these four models can be treated in a unified way in the prepotential
approach.6 The extension is simply to allow the coefficients in W0 to be dependent on N. It turns
out that W0� takes the form

W0��N� = − �A + N�z +
B

A + N
, �10�

where A and B are real parameters. Then the potential VN becomes VN�x�=V�x�−EN, where

V�x� = A�A − 1�z2�x� − 2Bz�x� �11�

and

EN = −
B2

�A + N�2 − ��A�2N + 1� + N2� . �12�

Now V�x� is independent of N and can be taken to be the potential of an exactly solvable system,
with eigenvalues EN �N=0,1 ,2 , . . .�. The form of EN in �12� shows that the energy spectrum of
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exactly solvable model with the nonsinusoidal coordinate is always quadratic plus inverse qua-
dratic in N. The corresponding wave functions �N are given by �1�:

�N � e�A+N��xdxz�x�−�B/�A+N��xpN�x�, N = 0,1, . . . . �13�

The BAEs satisfied by the roots zk are



l�k

zk
2 − �

zk − zl
− �A + N − 1�zk +

B

A + N
= 0, k = 1,2, . . . ,N . �14�

Finally, we mention here that V�x� in �11� can be obtained, up to an additive constant, from
W0�N� with any value of N. Particularly, the form adopted in SUSYQM �e.g., in Ref. 1� is obtained
from the zeroth order prepotential W0�N=0� with N=0.6

III. SHAPE INVARIANCE IN SUPERSYMMETRIC QUANTUM MECHANICS

From the discussions in Sec. II, we see that in the prepotential approach, exactly solvable
models are determined by the zeroth order prepotential W0�x� in the sinusoidal cases or W0

�W0�N=0� with N=0 in the four nonsinusoidal cases. The potential V0 is completely determined
by W0: V0=W0�

2−W0� and, consequently, the Hamiltonian H0=−d2 /dx2+V0 is factorizable as H0

=A+A with the first order operators

A �
d

dx
+ W0�, A+ � −

d

dx
+ W0�. �15�

This fact is indeed the base of SUSYQM. In SUSYQM,1,2 one considers the relation between the
spectrum of H0 and that of its so-called superpartner Hamiltonian H1 constructed according to
H1�AA+=−d2 /dx2+V1, where V1�W0�

2+W0�. In forming V1, it is equivalent to using a prepoten-
tial −W0. The ground state of H1 is therefore exp�W0�, and it follows that the ground states of H0

and H1 cannot be both normalizable.
Let us suppose that the ground state of H0, i.e., exp�−W0�, is normalizable and denote the

normalized eigenfunctions of the Hamiltonians H0,1 by �n
�0,1� with eigenvalues En

�0,1�, respectively.
Here the subscript n=0,1 ,2 , . . . denotes the number of nodes of the wave function. It is easily
proved that V0 and V1 have the same energy spectrum except for the ground state of V0 with
E0

�0�=0, which has no corresponding level for V1.1,2 More explicitly, we have the following super-
symmetric relations:

En
�1� = En+1

�0� ,

�n
�1� = �En+1

�0� �−1/2A�n+1
�0� , A�0

�0� = 0,

�n+1
�0� = �En

�1��−1/2A+�n
�1�. �16�

Hence A annihilates �0
�0� and converts an eigenfunction of an excited state of H0 into an eigen-

function of H1 with the same energy but with one less number of nodes, while A+ does the reverse.
Consequently, if the spectrum of one system is exactly known, so is the spectrum of the other.

This is, however, all that supersymmetry says about the two partner potentials. If any one of
the spectra is unknown, then supersymmetry is useless in solving them. It is therefore gratifying
that most of the well-known one-dimensional exactly solvable models process a property called
SI. With hindsight, one can then impose SI as an additional requirement along with supersymme-
try to classify exactly solvable systems having such property. This has been done and most exactly
solvable systems are then unified within the framework of SUSYQM.1,2

SI means that the two superpartner potentials V0 and V1 are related by the relation

042105-4 Choon-Lin Ho J. Math. Phys. 50, 042105 �2009�
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V1�x;�0� = V0�x;�1� + R��0� , �17�

where �0 is a set of parameters of the original V0, �1= f��0� is a function of �0, and R��0� is a
constant which depends only �0. This implies

W0�
2�x,�0� + W0��x,�0� = W0�

2�x,�1� − W0��x,�1� + R��0� . �18�

Equation �17� implies that V1 has the same shape as that of V0 but is defined by parameters �1

instead of �0. From �18� one deduces that the ground state wave function of V1 is �0
�1��exp�

−W0�x ,�1�� with energy R0��0�. Then from �16� we know the energy of the first excited state of
V0 to be R��0�, and the wave function �1

�0��A+�0
�1�. By repeated use of the SI condition, one can

construct the partner V2 of V1, V3 of V2, etc. The ground state wave function of Vn �n=0,1 , . . .� is
�0

�n��exp�−W0�x ,�n��, where �n= fn��0�, with energy 
k=0
n−1R��k�. Then again from �16� we know

that the wave function of the nth state of H0 is �n
�0���A+�n�0

�n�, with energy

En
�0� = 


k=0

n−1

R��k�, n = 0,1, . . . . �19�

So with SI one obtains the complete spectrum of H0.
It is now obvious that SI is a sufficient condition of integrability in SUSYQM. To classify

shape-invariant exactly solvable models in SUSYQM, one must solve the SI condition �18� to get
all the functional forms of W0�x�, �1= f��0�, and R��0�. This general problem is very difficult and,
to the best of our knowledge, is still unsolved. Further constraints on the possible class of shape-
invariant potentials are required. Particularly, in order to obtain the well-known exactly solvable
models one must assume that �again with hindsight� the parameters of the two partner potentials
are related by simply a translational shift, i.e., �1= f��0�=�0+m differ from �0 only by a set of
constants m. Even with this simplification, the required change of coordinates z=z�x� needed in
solving the SI condition cannot be determined naturally in the approach of SUSYQM but has to be
taken as given from the known solutions of the respective models.

On the other hand, in the prepotential approach SI need not be imposed, and W0 and z�x� are
determined by simply picking two polynomials with the appropriate degrees. In this sense it
appears to us that the prepotential approach is conceptually much simpler. Nevertheless, putting
the differences of the two approaches aside, one could not help but wonder what role SI plays in
the prepotential approach. Below we would like to demonstrate that for the exactly solvable
models obtained in the prepotential approach, SI is automatically satisfied. We shall discuss the
cases with sinusoidal and nonsinusoidal coordinates separately.

IV. SHAPE INVARIANCE IN PREPOTENTIAL APPROACH: SINUSOIDAL COORDINATES

Our strategy is to show that, with z�x� and W0�x� given in Secs. II A and II B that produce the
ten well-known exactly solvable models, the SI condition �18� is always satisfied, i.e., one can
always find the set of new parameters �1 in terms of the old ones �0. In the process, we demon-
strate that the change in the parameters of the shape-invariant potentials is translational.

In this section, we first consider the cases involving sinusoidal coordinates. For exactly solv-
able systems, we must take W0�z�= P1�z�. Labeling the corresponding parameters of the two shape-
invariant potentials by k=0,1, we have

z�2 = Q2�z� = �z2 + 	z + 
 , �20�

P1
�k��z� = akz + bk, k = 0,1, �21�

042105-5 Shape invariance in prepotential approach J. Math. Phys. 50, 042105 �2009�
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W0���k� =
P1

�k��z�
�Q2�z�

, �k = �ak,bk� . �22�

Note that z�x� is the same for the shape-invariant potentials. Then the SI condition �18� leads to

�P1
�0�2 − P1

�1�2� + Q2
d

dz
�P1

�0� + P1
�1�� −

1

2

dQ2

dz
�P1

�0� + P1
�1�� = R��0�Q2. �23�

Equating the coefficients of the powers of z, one arrives at the following equations relating the
parameters:

a0
2 − a1

2 = R� ,

2�a0b0 − a1b1� +
	

2
�a0 + a1� − ��b0 + b1� = R	 ,

b0
2 − b1

2 + 
�a0 + a1� −
	

2
�b0 + b1� = R
 . �24�

For simplicity we write R for R��0�. We mention here that the signs of a and b are fixed by the
normalization of the wave functions. This means that they are the same for the two shape-invariant
partner potentials.

We would like to solve �24� for �1= �a1 ,b1� and R in terms of �0= �a0 ,b0�. To facilitate
solution, we find it convenient to first determine all inequivalent types of sinusoidal coordinates.

A. Inequivalent sinusoidal coordinates

Depending on the presence of the parameters �, 	, and 
, there are three inequivalent cases of
sinusoidal coordinates: �i� z�2=
�0, �ii� z�2=	z+
 �	�0�, and �iii� z�2=�z2+	z+
 ���0�. By
an appropriate shifting and/or scaling, these cases can be recast into three canonical forms.

The form given for case �i� is already the canonical form of this case. We shall take 
�0 as

�0 leads to physically uninteresting change of variable. This case gives rise to the shifted
oscillator.

By shifting z to ẑ�z+
 /	 in case �ii�, we get the canonical form ẑ�2=	ẑ. For physical
systems we require 	�0. This case corresponds to the three-dimensional oscillator.

Case �iii� can be recast as z̃�2=�z̃2+ 
̃, where z̃�z+	 /2� and 
̃�� /4� with the discriminant
��4�
−	2. For the case �=0 �the exponential case� and ��0, the system thus generated is
related to the Morse potential. For ��0, we have two situations. If ��0 �the hyperbolic case�,
the canonical form is ẑ�2=��ẑ2�1�, where ẑ��4�2 / ���z̃, and the plus �minus� sign corresponds
to ��0 ��
0�. The plus sign gives rise to the Scarf II model, while the minus sign corresponds
to the generalized Pöschl–Teller model. For �
0 �the trigonometric case�, the canonical form is
ẑ�2= �����1− ẑ2�, where again ẑ��4�2 / ���z̃, and the plus �minus� sign corresponds to �
0 ��
�0�. With the plus sign we get the Scarf I model, while the minus sign does not lead to any viable
system as the transformation is imaginary.

From the above discussions, we see that we need only to discuss the three inequivalent
canonical cases, namely, �i� z�2=
�0, �ii� z�2=	z �	�0�, and �iii� z�2=��z2+�� ��=0, �1 for
��0 and �=−1 if �
0�.

B. Case „i…: z�2=�>0

For this case, it is easy to check that a0 �a1� must not vanish or it will lead to vanishing
potential. Furthermore, we must have a0�0 and a1�0 in order that the wave functions be
normalizable. The SI conditions �24� become

042105-6 Choon-Lin Ho J. Math. Phys. 50, 042105 �2009�
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�a0 + a1��a0 − a1� = 0, �25�

a0b0 − a1b1 = 0, �26�

b0
2 − b1

2 + 
�a0 + a1� = R
 . �27�

Equations �25� and �26� require a1=a0, b1=b0 or a1=−a0, b1=−b0. In the latter solution the signs
of a1 and b1 are different from those of a0 and b0, and hence the wave functions of one of the two
systems cannot be normalizable if those of the other system can. In fact, for this case we have
R=0 from �27�. This means that the ground states of the two systems have the same energy. But
the flip of both signs of a and b of W0 means that the ground states of the two systems have the
forms exp�−W0� and exp�+W0�. They cannot be both normalizable. This is exactly the result in
SUSYQM.

So we are left with the choice a1=a0, b1=b0. From �27� we have R=2a0. Thus R is a constant,
and from �19� it implies oscillatorlike spectrum, i.e., En=na0. This gives the shifted oscillator.

The above discussion shows that in this case SI is a necessary condition. The parameters of
the two partner systems are related by �a1 ,b1�= �a0 ,b0�, and the shift parameter is R=2a0.

C. Case „ii…: z�2=�z „�>0…

Normalizability of wave functions in this case requires that a�0 and b
0. Now the SI
conditions �24� are

�a0 + a1��a0 − a1� = 0, �28�

2�a0b0 − a1b1� +
	

2
�a0 + a1� = R	 , �29�

�b0 + b1��b0 − b1 −
	

2
� = 0. �30�

Possible solutions of these equations are a0�a1=0, b0+b1=0, or b0−b1−	 /2=0. To keep the
signs of a and b unchanged, we can only take �a1 ,b1�= �a0 ,b0−	 /2� as the viable solution. Then
from �30� we get R=2a0, which again gives an oscillatorlike spectrum. This is just the case of the
three-dimensional oscillator.

D. Case „iii…: z�2=�„z2+�…

Next we consider the case with z�2=��z2+�� ��=0, �1 for ��0 and �=−1 if �
0�. As
mentioned before, this case covers the Morse, generalized Pöschl–Teller, and Scarf I and II
potentials. The SI conditions �24� are

a0
2 − a1

2 = R� , �31�

2�a0b0 − a1b1� − ��b0 + b1� = 0, �32�

b0
2 − b1

2 + ���a0 + a1� = R�� . �33�

To solve a1, b1, and R in terms of a0 and b0, we eliminate R� in �33� using �31� to get

�b0 + b1��b0 − b1� + ��a0 + a1��a1 − a0 + �� = 0. �34�

From �34� we can have four possible sets of solutions:
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a0 + a1 = 0, b0 + b1 = 0, �35�

a0 + a1 = 0, b0 − b1 = 0, �36�

a0 − a1 = �, b0 + b1 = 0, �37�

a0 − a1 = �, b0 − b1 = 0. �38�

The first three sets of solutions involve change of signs of a and/or b and so are not viable as
discussed before. Thus for this case we must take �a1 ,b1�= �a0−� ,b0� which also satisfies �32�.
Equation �31� then gives

R��0� =
a0

2 − a1
2

�
= 2a0 − � . �39�

From �19� the energies are

En =
a0

2 − an
2

�
=

a0
2 − �a0 − n��2

�
, n = 0,1, . . . . �40�

This is exactly the results in SUSYQM.1

To conclude this section, we have shown that SI is automatically satisfied in the prepotential
approach for the sinusoidal cases.

V. SHAPE INVARIANCE IN PREPOTENTIAL APPROACH: NONSINUSOIDAL
COORDINATES

In this case, W0�=−Az+B /A and z�=�−z2. Here �0= �A ,B�. As in Sec. V, we show that one
can always find a set of new parameter �1= �A� ,B�� in terms of �0 that solves the SI condition
�18�. In fact, from �18� one finds

A�A + 1� = A��A� − 1� , �41�

B = B�, �42�

B2

A2 − �A =
B�2

A�2 + �A� + R . �43�

Solutions of �41� are A�=−A and A� =A+1. The first solution has the sign of A changed and will
lead to non-normalized wave functions. Hence the viable solution is �1= �A� ,B��= �A+1,B�. Once
again, the changes in the parameters A and B of the shape-invariant potentials are translational.
Also, from �43� we find

R��0� = B2� 1

A2 −
1

�A + 1�2� − ��2A + 1� . �44�

Finally, using the result in Ref. 6 �specifically, Eq. �21� with fixed A1=−A−N�, one sees that the
shift A→A+1 implies a shift in N: N→N−1, indicating that the number of nodes of the corre-
sponding eigenfunction of the partner potential decreases by 1. All these results agree with those
in SUSYQM.1

Thus we have shown that in the prepotential approach for models based on nonsinusoidal
coordinates, SI is also a necessary consequence of the forms of W0 and z�.
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VI. SUMMARY

A unified approach to both the exactly and quasiexactly solvable systems has been proposed
previously based on the so-called prepotential in Refs. 4–6. In this approach solvability of a
quantal system can be solely classified by two integers, the degrees of two polynomials which
determine the change of variable and the zeroth order prepotential. All the well-known exactly
solvable models obtained in SUSYQM can be easily constructed by appropriately choosing the
two polynomials.

But all these exactly solvable models are obtained in SUSYQM only by taking the SI condi-
tion as a sufficient condition. The requirement to get exactly solvable models in the prepotential
approach appears to be much simpler and definitely without the need of SI condition. In this paper
we have shown that the SI condition is in fact only a necessary condition in the prepotential
approach to exactly solvable systems, and hence need not be assumed. In the process, we have
demonstrated that the change in the parameters of the well-known shape-invariant potentials is
indeed translational, a result which was also assumed in SUSYQM.
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