Shape invariance in prepotential approach to exactly solvable models
Choon-Lin Ho

Citation: J. Math. Phys. 50, 042105 (2009); doi: 10.1063/1.3116104
View online: http://dx.doi.org/10.1063/1.3116104
View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v50/i4
Published by the American Institute of Physics.

Related Articles

Uncertainty inequalities among frequency moments and radial expectation values: Applications to atomic systems
J. Math. Phys. 53, 043512 (2012)

Quantum mechanics on Laakso spaces
J. Math. Phys. 53, 042102 (2012)

Ewald mesh method for quantum mechanical calculations
J. Chem. Phys. 136, 114112 (2012)

Classical and quantum probabilities as truth values
J. Math. Phys. 53, 032101 (2012)

Shell models of two-dimensional Coulomb crystals: Assessment and comparison with the three-dimensional case J. Chem. Phys. 136, 114306 (2012)

Additional information on J. Math. Phys.

Journal Homepage: http://jmp.aip.org/
Journal Information: http://jmp.aip.org/about/about_the_journal
Top downloads: http://jmp.aip.org/features/most_downloaded
Information for Authors: http://jmp.aip.org/authors

ADVERTISEMENT

Shape invariance in prepotential approach to exactly solvable models

Choon-Lin $\mathrm{Ho}^{\text {a) }}$
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan and Department of Physics, Tamkang University, Tamsui 251, Taiwan, Republic of China

(Received 9 January 2009; accepted 17 March 2009; published online 16 April 2009)

Abstract

In supersymmetric quantum mechanics, exact solvability of one-dimensional quantum systems can be classified only with an additional assumption of integrability, the so-called shape invariance condition. In this paper we show that in the prepotential approach we proposed previously, shape invariance is automatically satisfied and need not be assumed. © 2009 American Institute of Physics.

[DOI: 10.1063/1.3116104]

I. INTRODUCTION

It is generally known that exactly solvable systems are very rare in any branch of physics. Thus any new method to construct exactly solvable models would be of interest to the community concerned. It is therefore very interesting to realize that most exactly solvable one-dimensional quantum systems can be obtained in the framework of supersymmetric quantum mechanics (SUSYQM) ${ }^{1,2}$ However, in SUSYQM, exact solvability can be classified only with an additional assumption of integrability, so-called shape invariance (SI) condition. ${ }^{3}$ Hence in SUSYQM the SI condition must be taken as a sufficient condition for integrability at the outset. What is more, the transformation of the original coordinate, say, x, to a new one, $z=z(x)$, needed in solving the SI condition is not naturally determined within the framework of SUSYQM in most cases but have to be taken as given from the known solutions of the respective models. It would be more satisfactory if the exact solvability of a quantal system, including the required change of coordinates, could be determined with the simplest and the most natural requirements.

In Refs. 4-6 a unified approach to both the exactly and quasiexactly solvable systems is presented. This is a simple constructive approach, based on the so-called prepotential, ${ }^{7-15}$ which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the approach is that both exact and quasiexact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Hence this approach treats both quasiexact and exact solvabilities on the same footing, and it provides a simple way to determine the required change of coordinates $z(x)$. All the well-known exactly solvable models given in Refs. 1 and 2, most quasiexactly solvable models discussed in Refs. 16-20, and some new quasiexactly solvable ones (also for non-Hermitian Hamiltonians) can be generated by appropriately choosing the two polynomials.

Since all the well-known one-dimensional exactly solvable models obtained in SUSYQM, by taking SI condition as a sufficient condition, can also be derived without the SI condition in the prepotential approach, one wonders what role the SI condition plays in the latter approach. In this paper we would like to show that the SI condition is only a necessary condition in the prepotential approach to exactly solvable systems. Therefore, unlike SUSYQM, SI need not be assumed in the prepotential approach.

This paper is organized as follows. In Sec. II we give a brief review of the prepotential approach to exactly solvable models with both sinusoidal and nonsinusoidal coordinates. The idea

[^0]of SI as a sufficient condition of integrability in SUSYQM is sketched in Sec. III. Sections IV and V then demonstrate that in the prepotential approach for models with sinusoidal and nonsinusoidal coordinates, SI is automatically satisfied and need not be imposed. Section VI concludes the paper.

II. PREPOTENTIAL APPROACH

The main ideas of the prepotential approach can be summarized as follows (we adopt the unit system in which \hbar and the mass m of the particle are such that $\hbar=2 m=1$). Consider a wave function $\phi_{N}(x)$ (N : non-negative integer) which is defined as

$$
\begin{equation*}
\phi_{N}(x) \equiv e^{-W_{0}(x)} p_{N}(z) \tag{1}
\end{equation*}
$$

with

$$
p_{N}(z) \equiv \begin{cases}1, & N=0 \tag{2}\\ \prod_{k=1}^{N}\left(z-z_{k}\right), & N>0\end{cases}
$$

Here $z=z(x)$ is some real function of the basic variable $x, W_{0}(x)$ is a regular function of $z(x)$, and z_{k} are the roots of $p_{N}(z)$. The variable x is defined on the full line, half-line, or finite interval, as dictated by the choice of $z(x)$. The function $p_{N}(z)$ is a polynomial in an $(N+1)$-dimensional Hilbert space with the basis $\left\langle 1, z, z^{2}, \ldots, z^{N}\right\rangle . W_{0}(x)$ defines the ground state wave function.

The wave function ϕ_{N} can be recast as

$$
\begin{equation*}
\phi_{N}=\exp \left(-W_{N}\left(x,\left\{z_{k}\right\}\right)\right), \tag{3}
\end{equation*}
$$

with W_{N} given by

$$
\begin{equation*}
W_{N}\left(x,\left\{z_{k}\right\}\right)=W_{0}(x)-\sum_{k=1}^{N} \ln \left|z(x)-z_{k}\right| . \tag{4}
\end{equation*}
$$

Operating on ϕ_{N} by the operator $-d^{2} / d x^{2}$ results in a Schrödinger equation $H_{N} \phi_{N}=0$, where

$$
\begin{align*}
& H_{N}=-\frac{d^{2}}{d x^{2}}+V_{N} \tag{5}\\
& V_{N} \equiv W_{N}^{\prime 2}-W_{N}^{\prime \prime} \tag{6}
\end{align*}
$$

Here prime represents differentiation with respect to x. It is seen that the potential V_{N} is defined by W_{N}, and we shall call W_{N} the N th order prepotential. From Eq. (4), one finds that V_{N} has the form $V_{N}=V_{0}+\Delta V_{N}:$

$$
\begin{gather*}
V_{0}=W_{0}^{\prime 2}-W_{0}^{\prime \prime} \\
\Delta V_{N}=-2\left(W_{0}^{\prime} z^{\prime}-\frac{z^{\prime \prime}}{2}\right) \sum_{k=1}^{N} \frac{1}{z-z_{k}}+\sum_{k, l} \frac{z^{\prime 2}}{\left(z-z_{k}\right)\left(z-z_{l}\right)} . \tag{7}
\end{gather*}
$$

Thus the form of V_{N}, and consequently its solvability, is determined by the choice of $W_{0}(x)$ and $z^{\prime 2}$ [or equivalently by $z^{\prime \prime}=\left(d z^{\prime 2} / d z\right) / 2$]. Let $W_{0}^{\prime} z^{\prime}=P_{m}(z)$ and $z^{\prime 2}=Q_{n}(z)$ be polynomials of degrees m and n in z, respectively. In Ref. 4 it was shown that if the degree of $W_{0}^{\prime} z^{\prime}$ is no higher than $1(m \leq 1)$ and the degree of $z^{\prime 2}$ no higher than $2(n \leq 2)$, then in $V_{N}(x)$ the parameter N and the roots z_{k}, which satisfy the so-called Bethe ansatz equations (BAEs) to make the potential analytic, will only appear in an additive constant and not in any term involving powers of z. Such system is then exactly solvable. If the degree of one of the two polynomials exceeds the corre-
sponding upper limit, the resulted system is quasiexactly solvable. The transformed coordinates $z(x)$ such that the degree of $z^{\prime 2}$ is no higher than 2 are called sinusoidal coordinates. There are six types of one-dimensional exactly solvable models which are based on such coordinates, namely, the shifted-oscillator, three-dimensional oscillator, Morse, Scarf type I and II, and generalized Pöschl-Teller models as listed in Ref. 1.

In Ref. 6 the prepotential approach to exactly solvable systems was extended to systems based on nonsinusoidal transformed variable $z(x)$ which is a solution of $z^{\prime}=\lambda-z^{2}$. With this, the remaining four types of exactly solvable systems listed in Ref. 1, namely, the Coulomb, Eckart, and Rosen-Morse type I and II models, are also covered by the prepotential approach.

A. Sinusoidal coordinates

For exactly solvable models with sinusoidal coordinates we take $m=1$ and $n=2$, i.e., $P_{1}(z)$ $=a z+b$, and $Q_{2}(z)=\alpha z^{2}+\beta z+\gamma$, where a, b, α, β, and γ are real constants. With these choices we obtain ${ }^{4}$

$$
\begin{equation*}
V_{N}=W_{0}^{\prime 2}-W_{0}^{\prime \prime}+\alpha N^{2}-2 a N-2 \sum_{k=1}^{N} \frac{1}{z-z_{k}}\left\{\left(a-\frac{\alpha}{2}\right) z_{k}+b-\frac{\beta}{4}-\sum_{l \neq k} \frac{Q_{2}\left(z_{k}\right)}{z_{k}-z_{l}}\right\} \tag{8}
\end{equation*}
$$

Demanding the residues at z_{k} to vanish gives the set of BAEs

$$
\begin{equation*}
\left(a-\frac{\alpha}{2}\right) z_{k}+b-\frac{\beta}{4}-\sum_{l \neq k} \frac{Q_{2}\left(z_{k}\right)}{z_{k}-z_{l}}=0, \quad k=1,2, \ldots, N \tag{9}
\end{equation*}
$$

With this set of roots z_{k}, the last term in Eq. (8) vanishes, and we obtain a potential $V_{N}(x)$ $=V_{0}(x)-E_{N}$ without simple poles. Here $V_{0}(x)=W_{0}^{\prime 2}-W_{0}^{\prime \prime}$ does not involve N and z_{k} and can be taken as the exactly solvable potential of the system with eigenenergies $E_{N}=2 a N-\alpha N^{2}$. In fact, $V_{0}(x)$ is exactly the supersymmetric form presented in Ref. 1 for the shifted-oscillator, threedimensional oscillator, Morse, Scarf type I and II, and generalized Pöschl-Teller models (for easy comparison, we note that α and a here equal $\pm \alpha^{2}$ and αA in Ref. 1). The result above also shows that the energy spectrum of exactly solvable model with the sinusoidal coordinate is always quadratic in N.

B. Nonsinusoidal coordinates

As mentioned before, the Coulomb, Eckart, and Rosen-Morse type I and II models involve a change of coordinates of the form $z^{\prime}=\lambda-z^{2}$ which is nonsinusoidal. But with a slight extension of the methods in Ref. 4 all these four models can be treated in a unified way in the prepotential approach. ${ }^{6}$ The extension is simply to allow the coefficients in W_{0} to be dependent on N. It turns out that W_{0}^{\prime} takes the form

$$
\begin{equation*}
W_{0}^{\prime}(N)=-(A+N) z+\frac{B}{A+N} \tag{10}
\end{equation*}
$$

where A and B are real parameters. Then the potential V_{N} becomes $V_{N}(x)=V(x)-E_{N}$, where

$$
\begin{equation*}
V(x)=A(A-1) z^{2}(x)-2 B z(x) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{N}=-\frac{B^{2}}{(A+N)^{2}}-\lambda\left[A(2 N+1)+N^{2}\right] . \tag{12}
\end{equation*}
$$

Now $V(x)$ is independent of N and can be taken to be the potential of an exactly solvable system, with eigenvalues $E_{N}(N=0,1,2, \ldots)$. The form of E_{N} in (12) shows that the energy spectrum of
exactly solvable model with the nonsinusoidal coordinate is always quadratic plus inverse quadratic in N. The corresponding wave functions ϕ_{N} are given by (1):

$$
\begin{equation*}
\phi_{N} \sim e^{(A+N) \int^{x} d x z(x)-[B /(A+N)] x} p_{N}(x), \quad N=0,1, \ldots . \tag{13}
\end{equation*}
$$

The BAEs satisfied by the roots z_{k} are

$$
\begin{equation*}
\sum_{l \neq k} \frac{z_{k}^{2}-\lambda}{z_{k}-z_{l}}-(A+N-1) z_{k}+\frac{B}{A+N}=0, \quad k=1,2, \ldots, N . \tag{14}
\end{equation*}
$$

Finally, we mention here that $V(x)$ in (11) can be obtained, up to an additive constant, from $W_{0}(N)$ with any value of N. Particularly, the form adopted in SUSYQM (e.g., in Ref. 1) is obtained from the zeroth order prepotential $W_{0}(N=0)$ with $N=0 .{ }^{6}$

III. SHAPE INVARIANCE IN SUPERSYMMETRIC QUANTUM MECHANICS

From the discussions in Sec. II, we see that in the prepotential approach, exactly solvable models are determined by the zeroth order prepotential $W_{0}(x)$ in the sinusoidal cases or W_{0} $\equiv W_{0}(N=0)$ with $N=0$ in the four nonsinusoidal cases. The potential V_{0} is completely determined by $W_{0}: V_{0}=W_{0}^{\prime 2}-W_{0}^{\prime \prime}$ and, consequently, the Hamiltonian $H_{0}=-d^{2} / d x^{2}+V_{0}$ is factorizable as H_{0} $=A^{+} A$ with the first order operators

$$
\begin{equation*}
A \equiv \frac{d}{d x}+W_{0}^{\prime}, \quad A^{+} \equiv-\frac{d}{d x}+W_{0}^{\prime} \tag{15}
\end{equation*}
$$

This fact is indeed the base of SUSYQM. In SUSYQM, ${ }^{1,2}$ one considers the relation between the spectrum of H_{0} and that of its so-called superpartner Hamiltonian H_{1} constructed according to $H_{1} \equiv A A^{+}=-d^{2} / d x^{2}+V_{1}$, where $V_{1} \equiv W_{0}^{\prime 2}+W_{0}^{\prime \prime}$. In forming V_{1}, it is equivalent to using a prepotential $-W_{0}$. The ground state of H_{1} is therefore $\exp \left(W_{0}\right)$, and it follows that the ground states of H_{0} and H_{1} cannot be both normalizable.

Let us suppose that the ground state of H_{0}, i.e., $\exp \left(-W_{0}\right)$, is normalizable and denote the normalized eigenfunctions of the Hamiltonians $H_{0,1}$ by $\psi_{n}^{(0,1)}$ with eigenvalues $E_{n}^{(0,1)}$, respectively. Here the subscript $n=0,1,2, \ldots$ denotes the number of nodes of the wave function. It is easily proved that V_{0} and V_{1} have the same energy spectrum except for the ground state of V_{0} with $E_{0}^{(0)}=0$, which has no corresponding level for $V_{1} \cdot{ }^{1,2}$ More explicitly, we have the following supersymmetric relations:

$$
\begin{gather*}
E_{n}^{(1)}=E_{n+1}^{(0)}, \\
\psi_{n}^{(1)}=\left(E_{n+1}^{(0)}\right)^{-1 / 2} A \psi_{n+1}^{(0)}, \quad A \psi_{0}^{(0)}=0, \\
\psi_{n+1}^{(0)}=\left(E_{n}^{(1)}\right)^{-1 / 2} A^{+} \psi_{n}^{(1)} . \tag{16}
\end{gather*}
$$

Hence A annihilates $\psi_{0}^{(0)}$ and converts an eigenfunction of an excited state of H_{0} into an eigenfunction of H_{1} with the same energy but with one less number of nodes, while A^{+}does the reverse. Consequently, if the spectrum of one system is exactly known, so is the spectrum of the other.

This is, however, all that supersymmetry says about the two partner potentials. If any one of the spectra is unknown, then supersymmetry is useless in solving them. It is therefore gratifying that most of the well-known one-dimensional exactly solvable models process a property called SI. With hindsight, one can then impose SI as an additional requirement along with supersymmetry to classify exactly solvable systems having such property. This has been done and most exactly solvable systems are then unified within the framework of SUSYQM. ${ }^{1,2}$

SI means that the two superpartner potentials V_{0} and V_{1} are related by the relation

$$
\begin{equation*}
V_{1}\left(x ; \boldsymbol{\lambda}_{0}\right)=V_{0}\left(x ; \boldsymbol{\lambda}_{1}\right)+R\left(\boldsymbol{\lambda}_{0}\right), \tag{17}
\end{equation*}
$$

where $\boldsymbol{\lambda}_{0}$ is a set of parameters of the original $V_{0}, \boldsymbol{\lambda}_{1}=f\left(\boldsymbol{\lambda}_{0}\right)$ is a function of $\boldsymbol{\lambda}_{0}$, and $R\left(\boldsymbol{\lambda}_{0}\right)$ is a constant which depends only $\boldsymbol{\lambda}_{0}$. This implies

$$
\begin{equation*}
W_{0}^{\prime 2}\left(x, \boldsymbol{\lambda}_{0}\right)+W_{0}^{\prime \prime}\left(x, \boldsymbol{\lambda}_{0}\right)=W_{0}^{\prime 2}\left(x, \boldsymbol{\lambda}_{1}\right)-W_{0}^{\prime \prime}\left(x, \boldsymbol{\lambda}_{1}\right)+R\left(\boldsymbol{\lambda}_{0}\right) . \tag{18}
\end{equation*}
$$

Equation (17) implies that V_{1} has the same shape as that of V_{0} but is defined by parameters $\boldsymbol{\lambda}_{1}$ instead of $\boldsymbol{\lambda}_{0}$. From (18) one deduces that the ground state wave function of V_{1} is $\psi_{0}^{(1)} \sim \exp ($ $-W_{0}\left(x, \boldsymbol{\lambda}_{1}\right)$) with energy $R_{0}\left(\boldsymbol{\lambda}_{0}\right)$. Then from (16) we know the energy of the first excited state of V_{0} to be $R\left(\boldsymbol{\lambda}_{0}\right)$, and the wave function $\psi_{1}^{(0)} \sim A^{+} \psi_{0}^{(1)}$. By repeated use of the SI condition, one can construct the partner V_{2} of V_{1}, V_{3} of V_{2}, etc. The ground state wave function of $V_{n}(n=0,1, \ldots)$ is $\psi_{0}^{(n)} \sim \exp \left(-W_{0}\left(x, \boldsymbol{\lambda}_{n}\right)\right)$, where $\boldsymbol{\lambda}_{n}=f^{n}\left(\boldsymbol{\lambda}_{0}\right)$, with energy $\sum_{k=0}^{n-1} R\left(\boldsymbol{\lambda}_{k}\right)$. Then again from (16) we know that the wave function of the nth state of H_{0} is $\psi_{n}^{(0)} \sim\left(A^{+}\right)^{n} \psi_{0}^{(n)}$, with energy

$$
\begin{equation*}
E_{n}^{(0)}=\sum_{k=0}^{n-1} R\left(\boldsymbol{\lambda}_{k}\right), \quad n=0,1, \ldots \tag{19}
\end{equation*}
$$

So with SI one obtains the complete spectrum of H_{0}.
It is now obvious that SI is a sufficient condition of integrability in SUSYQM. To classify shape-invariant exactly solvable models in SUSYQM, one must solve the SI condition (18) to get all the functional forms of $W_{0}(x), \boldsymbol{\lambda}_{1}=f\left(\boldsymbol{\lambda}_{0}\right)$, and $R\left(\boldsymbol{\lambda}_{0}\right)$. This general problem is very difficult and, to the best of our knowledge, is still unsolved. Further constraints on the possible class of shapeinvariant potentials are required. Particularly, in order to obtain the well-known exactly solvable models one must assume that (again with hindsight) the parameters of the two partner potentials are related by simply a translational shift, i.e., $\boldsymbol{\lambda}_{1}=f\left(\boldsymbol{\lambda}_{0}\right)=\boldsymbol{\lambda}_{0}+\mathbf{m}$ differ from $\boldsymbol{\lambda}_{0}$ only by a set of constants \mathbf{m}. Even with this simplification, the required change of coordinates $z=z(x)$ needed in solving the SI condition cannot be determined naturally in the approach of SUSYQM but has to be taken as given from the known solutions of the respective models.

On the other hand, in the prepotential approach SI need not be imposed, and W_{0} and $z(x)$ are determined by simply picking two polynomials with the appropriate degrees. In this sense it appears to us that the prepotential approach is conceptually much simpler. Nevertheless, putting the differences of the two approaches aside, one could not help but wonder what role SI plays in the prepotential approach. Below we would like to demonstrate that for the exactly solvable models obtained in the prepotential approach, SI is automatically satisfied. We shall discuss the cases with sinusoidal and nonsinusoidal coordinates separately.

IV. SHAPE INVARIANCE IN PREPOTENTIAL APPROACH: SINUSOIDAL COORDINATES

Our strategy is to show that, with $z(x)$ and $W_{0}(x)$ given in Secs. II A and II B that produce the ten well-known exactly solvable models, the SI condition (18) is always satisfied, i.e., one can always find the set of new parameters $\boldsymbol{\lambda}_{1}$ in terms of the old ones $\boldsymbol{\lambda}_{0}$. In the process, we demonstrate that the change in the parameters of the shape-invariant potentials is translational.

In this section, we first consider the cases involving sinusoidal coordinates. For exactly solvable systems, we must take $W_{0}^{\prime} z^{\prime}=P_{1}(z)$. Labeling the corresponding parameters of the two shapeinvariant potentials by $k=0,1$, we have

$$
\begin{align*}
& z^{\prime 2}=Q_{2}(z)=\alpha z^{2}+\beta z+\gamma, \tag{20}\\
& P_{1}^{(k)}(z)=a_{k} z+b_{k}, \quad k=0,1, \tag{21}
\end{align*}
$$

$$
\begin{equation*}
W_{0}^{\prime}\left(\boldsymbol{\lambda}_{k}\right)=\frac{P_{1}^{(k)}(z)}{\sqrt{Q_{2}(z)}}, \quad \boldsymbol{\lambda}_{k}=\left(a_{k}, b_{k}\right) \tag{22}
\end{equation*}
$$

Note that $z(x)$ is the same for the shape-invariant potentials. Then the SI condition (18) leads to

$$
\begin{equation*}
\left(P_{1}^{(0) 2}-P_{1}^{(1) 2}\right)+Q_{2} \frac{d}{d z}\left(P_{1}^{(0)}+P_{1}^{(1)}\right)-\frac{1}{2} \frac{d Q_{2}}{d z}\left(P_{1}^{(0)}+P_{1}^{(1)}\right)=R\left(\boldsymbol{\lambda}_{0}\right) Q_{2} . \tag{23}
\end{equation*}
$$

Equating the coefficients of the powers of z, one arrives at the following equations relating the parameters:

$$
\begin{gather*}
a_{0}^{2}-a_{1}^{2}=R \alpha, \\
2\left(a_{0} b_{0}-a_{1} b_{1}\right)+\frac{\beta}{2}\left(a_{0}+a_{1}\right)-\alpha\left(b_{0}+b_{1}\right)=R \beta, \\
b_{0}^{2}-b_{1}^{2}+\gamma\left(a_{0}+a_{1}\right)-\frac{\beta}{2}\left(b_{0}+b_{1}\right)=R \gamma . \tag{24}
\end{gather*}
$$

For simplicity we write R for $R\left(\boldsymbol{\lambda}_{0}\right)$. We mention here that the signs of a and b are fixed by the normalization of the wave functions. This means that they are the same for the two shape-invariant partner potentials.

We would like to solve (24) for $\boldsymbol{\lambda}_{1}=\left(a_{1}, b_{1}\right)$ and R in terms of $\boldsymbol{\lambda}_{0}=\left(a_{0}, b_{0}\right)$. To facilitate solution, we find it convenient to first determine all inequivalent types of sinusoidal coordinates.

A. Inequivalent sinusoidal coordinates

Depending on the presence of the parameters α, β, and γ, there are three inequivalent cases of sinusoidal coordinates: (i) $z^{\prime 2}=\gamma \neq 0$, (ii) $z^{\prime 2}=\beta z+\gamma(\beta \neq 0)$, and (iii) $z^{\prime 2}=\alpha z^{2}+\beta z+\gamma(\alpha \neq 0)$. By an appropriate shifting and/or scaling, these cases can be recast into three canonical forms.

The form given for case (i) is already the canonical form of this case. We shall take $\gamma>0$ as $\gamma \leq 0$ leads to physically uninteresting change of variable. This case gives rise to the shifted oscillator.

By shifting z to $\hat{z} \equiv z+\gamma / \beta$ in case (ii), we get the canonical form $\hat{z}^{\prime 2}=\beta \hat{z}$. For physical systems we require $\beta>0$. This case corresponds to the three-dimensional oscillator.

Case (iii) can be recast as $\widetilde{z}^{\prime 2}=\alpha \widetilde{z}^{2}+\widetilde{\gamma}$, where $\tilde{z} \equiv z+\beta / 2 \alpha$ and $\tilde{\gamma} \equiv \Delta / 4 \alpha$ with the discriminant $\Delta \equiv 4 \alpha \gamma-\beta^{2}$. For the case $\Delta=0$ (the exponential case) and $\alpha>0$, the system thus generated is related to the Morse potential. For $\Delta \neq 0$, we have two situations. If $\alpha>0$ (the hyperbolic case), the canonical form is $\hat{z}^{\prime 2}=\alpha\left(\hat{z}^{2} \pm 1\right)$, where $\hat{z} \equiv \sqrt{4 \alpha^{2}| | \Delta} \mid \widetilde{z}$, and the plus (minus) sign corresponds to $\Delta>0(\Delta<0)$. The plus sign gives rise to the Scarf II model, while the minus sign corresponds to the generalized Pöschl-Teller model. For $\alpha<0$ (the trigonometric case), the canonical form is
 >0). With the plus sign we get the Scarf I model, while the minus sign does not lead to any viable system as the transformation is imaginary.

From the above discussions, we see that we need only to discuss the three inequivalent canonical cases, namely, (i) $z^{\prime 2}=\gamma \neq 0$, (ii) $z^{\prime 2}=\beta z(\beta>0)$, and (iii) $z^{\prime 2}=\alpha\left(z^{2}+\delta\right)(\delta=0, \pm 1$ for $\alpha>0$ and $\delta=-1$ if $\alpha<0$).

B. Case (i): $\boldsymbol{z}^{\prime 2}=\gamma>0$

For this case, it is easy to check that $a_{0}\left(a_{1}\right)$ must not vanish or it will lead to vanishing potential. Furthermore, we must have $a_{0}>0$ and $a_{1}>0$ in order that the wave functions be normalizable. The SI conditions (24) become

$$
\begin{gather*}
\left(a_{0}+a_{1}\right)\left(a_{0}-a_{1}\right)=0, \tag{25}\\
a_{0} b_{0}-a_{1} b_{1}=0, \tag{26}\\
b_{0}^{2}-b_{1}^{2}+\gamma\left(a_{0}+a_{1}\right)=R \gamma . \tag{27}
\end{gather*}
$$

Equations (25) and (26) require $a_{1}=a_{0}, b_{1}=b_{0}$ or $a_{1}=-a_{0}, b_{1}=-b_{0}$. In the latter solution the signs of a_{1} and b_{1} are different from those of a_{0} and b_{0}, and hence the wave functions of one of the two systems cannot be normalizable if those of the other system can. In fact, for this case we have $R=0$ from (27). This means that the ground states of the two systems have the same energy. But the flip of both signs of a and b of W_{0} means that the ground states of the two systems have the forms $\exp \left(-W_{0}\right)$ and $\exp \left(+W_{0}\right)$. They cannot be both normalizable. This is exactly the result in SUSYQM.

So we are left with the choice $a_{1}=a_{0}, b_{1}=b_{0}$. From (27) we have $R=2 a_{0}$. Thus R is a constant, and from (19) it implies oscillatorlike spectrum, i.e., $E_{n}=n a_{0}$. This gives the shifted oscillator.

The above discussion shows that in this case SI is a necessary condition. The parameters of the two partner systems are related by $\left(a_{1}, b_{1}\right)=\left(a_{0}, b_{0}\right)$, and the shift parameter is $R=2 a_{0}$.

C. Case (ii): $\boldsymbol{z}^{\prime 2}=\beta z(\beta>0)$

Normalizability of wave functions in this case requires that $a>0$ and $b<0$. Now the SI conditions (24) are

$$
\begin{gather*}
\left(a_{0}+a_{1}\right)\left(a_{0}-a_{1}\right)=0, \tag{28}\\
2\left(a_{0} b_{0}-a_{1} b_{1}\right)+\frac{\beta}{2}\left(a_{0}+a_{1}\right)=R \beta, \tag{29}\\
\left(b_{0}+b_{1}\right)\left(b_{0}-b_{1}-\frac{\beta}{2}\right)=0 . \tag{30}
\end{gather*}
$$

Possible solutions of these equations are $a_{0} \pm a_{1}=0, b_{0}+b_{1}=0$, or $b_{0}-b_{1}-\beta / 2=0$. To keep the signs of a and b unchanged, we can only take $\left(a_{1}, b_{1}\right)=\left(a_{0}, b_{0}-\beta / 2\right)$ as the viable solution. Then from (30) we get $R=2 a_{0}$, which again gives an oscillatorlike spectrum. This is just the case of the three-dimensional oscillator.

D. Case (iii): $z^{\prime 2}=\alpha\left(z^{2}+\delta\right)$

Next we consider the case with $z^{\prime 2}=\alpha\left(z^{2}+\delta\right)(\delta=0, \pm 1$ for $\alpha>0$ and $\delta=-1$ if $\alpha<0)$. As mentioned before, this case covers the Morse, generalized Pöschl-Teller, and Scarf I and II potentials. The SI conditions (24) are

$$
\begin{gather*}
a_{0}^{2}-a_{1}^{2}=R \alpha \tag{31}\\
2\left(a_{0} b_{0}-a_{1} b_{1}\right)-\alpha\left(b_{0}+b_{1}\right)=0, \tag{32}\\
b_{0}^{2}-b_{1}^{2}+\alpha \delta\left(a_{0}+a_{1}\right)=R \alpha \delta \tag{33}
\end{gather*}
$$

To solve a_{1}, b_{1}, and R in terms of a_{0} and b_{0}, we eliminate $R \alpha$ in (33) using (31) to get

$$
\begin{equation*}
\left(b_{0}+b_{1}\right)\left(b_{0}-b_{1}\right)+\delta\left(a_{0}+a_{1}\right)\left(a_{1}-a_{0}+\alpha\right)=0 \tag{34}
\end{equation*}
$$

From (34) we can have four possible sets of solutions:

$$
\begin{array}{ll}
a_{0}+a_{1}=0, & b_{0}+b_{1}=0, \\
a_{0}+a_{1}=0, & b_{0}-b_{1}=0, \\
a_{0}-a_{1}=\alpha, & b_{0}+b_{1}=0, \\
a_{0}-a_{1}=\alpha, & b_{0}-b_{1}=0 . \tag{38}
\end{array}
$$

The first three sets of solutions involve change of signs of a and/or b and so are not viable as discussed before. Thus for this case we must take $\left(a_{1}, b_{1}\right)=\left(a_{0}-\alpha, b_{0}\right)$ which also satisfies (32). Equation (31) then gives

$$
\begin{equation*}
R\left(\boldsymbol{\lambda}_{0}\right)=\frac{a_{0}^{2}-a_{1}^{2}}{\alpha}=2 a_{0}-\alpha \tag{39}
\end{equation*}
$$

From (19) the energies are

$$
\begin{equation*}
E_{n}=\frac{a_{0}^{2}-a_{n}^{2}}{\alpha}=\frac{a_{0}^{2}-\left(a_{0}-n \alpha\right)^{2}}{\alpha}, \quad n=0,1, \ldots \tag{40}
\end{equation*}
$$

This is exactly the results in SUSYQM. ${ }^{1}$
To conclude this section, we have shown that SI is automatically satisfied in the prepotential approach for the sinusoidal cases.

V. SHAPE INVARIANCE IN PREPOTENTIAL APPROACH: NONSINUSOIDAL COORDINATES

In this case, $W_{0}^{\prime}=-A z+B / A$ and $z^{\prime}=\lambda-z^{2}$. Here $\boldsymbol{\lambda}_{0}=(A, B)$. As in Sec. V, we show that one can always find a set of new parameter $\boldsymbol{\lambda}_{1}=\left(A^{\prime}, B^{\prime}\right)$ in terms of $\boldsymbol{\lambda}_{0}$ that solves the SI condition (18). In fact, from (18) one finds

$$
\begin{gather*}
A(A+1)=A^{\prime}\left(A^{\prime}-1\right), \tag{41}\\
B=B^{\prime}, \tag{42}\\
\frac{B^{2}}{A^{2}}-\lambda A=\frac{B^{\prime 2}}{A^{\prime 2}}+\lambda A^{\prime}+R . \tag{43}
\end{gather*}
$$

Solutions of (41) are $A^{\prime}=-A$ and $A^{\prime}=A+1$. The first solution has the sign of A changed and will lead to non-normalized wave functions. Hence the viable solution is $\boldsymbol{\lambda}_{1}=\left(A^{\prime}, B^{\prime}\right)=(A+1, B)$. Once again, the changes in the parameters A and B of the shape-invariant potentials are translational. Also, from (43) we find

$$
\begin{equation*}
R\left(\boldsymbol{\lambda}_{0}\right)=B^{2}\left[\frac{1}{A^{2}}-\frac{1}{(A+1)^{2}}\right]-\lambda(2 A+1) \tag{44}
\end{equation*}
$$

Finally, using the result in Ref. 6 [specifically, Eq. (21) with fixed $A_{1}=-A-N$], one sees that the shift $A \rightarrow A+1$ implies a shift in $N: N \rightarrow N-1$, indicating that the number of nodes of the corresponding eigenfunction of the partner potential decreases by 1 . All these results agree with those in SUSYQM. ${ }^{1}$

Thus we have shown that in the prepotential approach for models based on nonsinusoidal coordinates, SI is also a necessary consequence of the forms of W_{0} and z^{\prime}.

VI. SUMMARY

A unified approach to both the exactly and quasiexactly solvable systems has been proposed previously based on the so-called prepotential in Refs. 4-6. In this approach solvability of a quantal system can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. All the well-known exactly solvable models obtained in SUSYQM can be easily constructed by appropriately choosing the two polynomials.

But all these exactly solvable models are obtained in SUSYQM only by taking the SI condition as a sufficient condition. The requirement to get exactly solvable models in the prepotential approach appears to be much simpler and definitely without the need of SI condition. In this paper we have shown that the SI condition is in fact only a necessary condition in the prepotential approach to exactly solvable systems, and hence need not be assumed. In the process, we have demonstrated that the change in the parameters of the well-known shape-invariant potentials is indeed translational, a result which was also assumed in SUSYQM.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Council (NSC) of the Republic of China under Grant Nos. NSC 96-2112-M-032-007-MY3 and NSC 95-2911-M-032-001-MY2. Part of the work was done during my visit to the Yukawa Institute for Theoretical Physics (YITP) at the Kyoto University supported under NSC Grant No. 97-2918-I-032-002. I would like to thank R. Sasaki and the staff and members of YITP for their hospitality. I am also grateful to Y. Hosotani and Y. Matsuo for useful discussion and hospitality.

[^1]
[^0]: ${ }^{\text {a) }}$ Electronic mail: hcl@mail.tku.edu.tw. Tel.: + 886-2-26215656. FAX: + 886-2-2620-9917.

[^1]: ${ }^{1}$ F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995).
 ${ }^{2}$ G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer-Verlag, Berlin, 1996).
 ${ }^{3}$ L. Gendenshtein, JETP Lett. 38, 356 (1983).
 ${ }^{4}$ C.-L. Ho, Ann. Phys. 323, 2241 (2008).
 ${ }^{5}$ C.-L. Ho, presented at the Conference in Honor of CN Yang's 85 th Birthday, Singapore, 31 October-3 November 2007, e-print arXiv:hep-th/0801.0944.
 ${ }^{6}$ C.-L. Ho, Ann. Phys. 324, 1095 (2009).
 ${ }^{7}$ E. Corrigan and R. Sasaki, J. Phys. A 35, 7017 (2002).
 ${ }^{8}$ A. J. Bordner, N. S. Manton, and R. Sasaki, Prog. Theor. Phys. 103, 463 (2000).
 ${ }^{9}$ S. P. Khastgir, A. J. Pocklington, and R. Sasaki, J. Phys. A 33, 9033 (2000).
 ${ }^{10}$ S. Odake and R. Sasaki, J. Phys. A 35, 8283 (2002).
 ${ }^{11}$ I. Loris and R. Sasaki, J. Phys. A 37, 211 (2004).
 ${ }^{12}$ R. Sasaki and K. Takasaki, J. Math. Phys. 47, 012701 (2006).
 ${ }^{13}$ C.-L. Ho and P. Roy, J. Phys. A 36, 4617 (2003).
 ${ }_{15}^{14}$ C.-L. Ho and P. Roy, Ann. Phys. 312, 161 (2004).
 ${ }^{15}$ C.-L. Ho, Ann. Phys. 321, 2170 (2006).
 ${ }_{17}^{16}$ A. Turbiner and A. G. Ushveridze, Phys. Lett. A 126, 181 (1987).
 ${ }^{17}$ A. V. Turbiner, Commun. Math. Phys. 118, 467 (1988).
 ${ }_{19}^{18}$ A. González-López, N. Kamran, and P. J. Olver, Commun. Math. Phys. 153, 117 (1993).
 ${ }^{19}$ A. G. Ushveridze, Sov. Phys. Lebedev. Inst. Rep. 2, 50 (1988); 2, 54 (1988).
 ${ }^{20}$ A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (IOP, Bristol, 1994).

