
Hardware/Software Co-design for Particle Swarm
Optimization Algorithm

Shih-An Li, Ching-Chang Wong, and Chia-Jun Yu
Dept. of Department of Electrical Engineering

Tamkang University
Taipei, Taiwan.

lishyhan@gmail.com

Abstract-This paper presents a hardware/software (HW/SW)
co-design approach using SOPC technique and pipeline design
method to improve the performance of particle swarm

optimization (PSO) for embedded applications. Based on
modular design architecture, a particle updating accelerator
module via hardware implementation for updating velocity and
position of particles and a fitness evaluation module implemented

on a soft-cored processor for evaluating the objective functions
are respectively designed and work closely together to accelerate
the evolution process. Thanks to a flexible design, the proposed
approach can tackle various optimization problems of embedded

applications without the need for hardware redesign. To
compensate the deficiency in generating truly random numbers
by hardware implementation, a particle re-initialization scheme
is also presented in this paper to further improve the execution

performance of the PSO. Experiment results have demonstrated
that the proposed HW/SW co-design approach to realize PSO is
capable of achieving a high-quality solution effectively.

Kqwords-HW/SW Co-design, Particle swarm optimization
(PSO), system on a programmable chip (SOPC), Field
Programmable Gate Array (FPGA)

I. INTRODUCTION

Particle swarm optimization (PSO) is a population-based,
self-adaptive search optimization technique frrst introduced by
Kennedy and Eberhart [1] in 1995. Based on simulation of
simplified animal social behaviors such as fish schooling, bird
flocking, etc [2], PSO has advantages of simplicity for
implementation and ability to quickly converge to a reasonably
good solution [3]. Because of its robustness, PSO has been
widely adopted in various engineering applications [4, 5, 6].

As a population-based method, however, PSO still suffers
from the problem of time-consuming evolution process to
derive an answer, given the fact that PSO has proved itself as
an effective and efficient method in comparison to other
evolutionary approaches. When it comes to embedded and
industrial applications, for example, optimization of memory
usage [7], navigation of mobile sensors [8], and evolutionary
mobile robots [9], [10], etc., the situation will be even worse
because these applications generally uses low-performance
microprocessors with limited computational resources, rather
than high-performance desktop personal computers, as the
computational platform [11, 12]. As a result, poor execution

978-1-4244-6588-0/10/$25.00 ©201 0 IEEE

Chen-Chien Hsu

Dept. of Applied Electronics Technology,
National Taiwan Normal University

Taipei, Taiwan.
jhsu@ntnu.edu.tw

performance might occur because of the evolutionary nature of
PSO. To solve this problem, several hardware-based
implementations of PSO have been proposed in recent years to
accelerate the execution performance for embedded
applications. Among them, a parallel processing method
implemented on FPGA [12] was proposed to calculate the
flying of particles. Serial communication was adopted to
transfer data among functional modules. Although this method
can speed up the execution of PSO algorithms, larger FPGA
area is required because of the parallel processing scheme
adopted, which is undesired for practical industrial applications
if cost is a primary consideration. Also, hardware redesign of
the fitness evaluation module might be inevitable for different
problems under consideration. In [11], a modular architecture
of a hardware PSO engine was proposed for accelerating the
algorithm's performance. Unfortunately, fitness evaluation of
this approach is problem dependent and needs to be designed
case by case. If the problem changes, then the hardware of the
fitness evaluation module must be redesigned, which creates
extra efforts in the design process. In [13, 14], a more desired
architecture for PSO algorithm was proposed, in which an
embedded processor via SOPC design technique and a
hardware accelerator were used to calculate the fitness function
and update velocity and position of particles, respectively.
However, this architecture has less design flexibility if users
wish to change the evolution parameters, for example,
population size or dimension of the particle, etc. Under these
circumstances, the PSO hardware must be redesigned.
Furthermore, there is no mention of successful rate by using the
proposed SOPC-based PSO. As a result, difficulties arise in
evaluating the performance of the proposed approach.

As mentioned earlier, there is still room for further
improving the performance of hardware-implemented PSO, as
far as computational efficiency, usage flexibility, and resources
utilization, etc., are concerned. As an attempt to solve this
problem, this paper presents a hardware/software (HW/SW) co
design approach using SOPC technique and pipeline design
method to improve the execution performance of PSOs while
maintaining usage flexibility for embedded applications, in
which a particle updating accelerator module via hardware
implementation for updating velocity and position of particles
and a fitness evaluation module implemented on a soft-cored
processor for evaluating the objective functions are respectively
designed and work closely together to accelerate the evolution

3762

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225214124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

process. Because of modularity design of this approach, fitness
function can be flexibly modified for evaluation via the Fitness
Evaluation module. As a result, various problems of embedded
applications can be tackled simply by changing the objective
functions for the problems under consideration. Considering
the empirical nature where evolution parameters are subject to
modification, the hardware design of the proposed approach
has taken this requirement into consideration, where the
population size, number of bit strings for encoding, inertia
weight can be modified by users to suit the needs of a specific
application by simply modifying an evolution parameters file.
No hardware redesign is required if these evolution parameters
are altered. To compensate the deficiency in generating truly
random numbers by hardware implementation during the
evolution process, a particle re-initialization scheme is also
presented in this paper to further improve the execution
performance of the PSO.

II. PARTICLE SWARM OPTIMIZATION ALGORITHMS

Particle swarm adaptation has been shown to successfully
optimize a wide range of continuous functions [1, 2]. The
algorithm, which is based on a metaphor of social interaction,
searches a space by adjusting the trajectories of individual
vectors, called "particles" as they are conceptualized as moving
points in multidimensional space [15, 16, 17]. As an
evolutionary technique, the PSO is a population-based
algorithm, formed by a set of particles representing potential
solutions for a given problem. Each particle moves through a n
dimensional search space, with an associated position vector
x,(t) = {Xil(t), Xi2(t), . . . , Xin(t)} and velocity vector
v;(t) = {Vil(t),Vi2(t), . . . ,Vin(t)} for the current evolutionary
iteration t. The individual particle in PSO flies in the search
space with velocity which is dynamically adjusted according to
its own flying experience and its companions' flying
experience [4]. The former was termed cognition-only model
and the latter was termed social-only model [18]. By
integrating these two types of knowledge, the particle behavior
in a PSO can be modeled by using the following equations:

Vj (t+l)=wxvj(t)+c. X rand X (pbestj -Xj(t» (1)
+c2 X rand X (Gbest-xj(t»

Xi (t+ 1) = xi(t)+Vi (t+ 1)

, where

c.,c2: acceleration constants;

rand: random number between 0 and 1;

Xi (t) : the position of particle i at iteration t ;

Vi (t) : the velocity of particle i at iteration t ;

W : inertia weight factor;

Gbest : the personal best position among all the particles;

Pbesti: the personal best position of particle i.

(2)

Note that the first term on the right-hand side of the
velocity-updating rule in Eq. (1) represents the previous
velocity, which provides the necessary momentum for
particles to roam across the search space. The second term,
known as the "cognitive" component, represents the personal
thinking of each particle, which encourages the particles to
move toward their own best positions found so far. The third
term is known as the "social" component, which represents the
collaborative effect of the particles in fmding the global
optima.

Figure 1 shows the flow chart of a typical PSO
algorithm, in which a population of particles is initialized with
random position Xi and velocity Vi. Fitness of particles is
evaluated by calculating the objective function j{Xi)' The
current position of each particle is set as Pbesti• The Pbesti
with best value in the swarm is set as Gbest. As evolution
continues, next position for each particle is repeatedly
generated by using Eqs. (1) and (2). If a better position is
achieved by an agent, the Pbesti value is replaced by the
current value. If a new Gbest value is better than the previous
Gbest value, the Gbest value is replaced by the current Gbest
value. Iterations repeat until a predetermined iteration number
is reached.

NO

Stopping criterion
satisfied?

Fig. 1 Evolution processes of a typical PSO algorithm [19].

III. SYSTEM ARCHITECTURE OF HW /SW CO-DESIGN OF
PSO ALGORITHMS

Field Programmable Gate Array (FPGA) is a flexible chip
for easy reconfiguration. There have been many prototype

3763

designs successfully implemented using FPGA as their
development platform. In recent years, HW/SW co-design
methods are getting more and more popular in the design of
system on a programmable chip (SOPC). With the availability
of Electronic Design Automation (EDA) tools by major
vendors, for example, Altera Corporation [20], SOPC design
has become much easier by compiling the hardware description
language to synthesize a digital circuit for downloading to a
FPGA chip.

Figure 2 shows the architecture of HW/SW Co-design of
PSO algorithms proposed in this paper, where modular design
is performed to construct the major components, including an
Evolution Parameters File, a Fitness Evaluation module, an
Avalon Slave Component module, and a Particle Updating
Accelerator. The Evolution Parameters File is used to store
control parameters for evolution. The Fitness Evaluation
module is a software module for evaluating objective functions
to tackle different applications under consideration, which can
be implemented on any available processors, for example the
embedded Nios II CPU used in this paper. The Avalon Slave
Component module is to generate the particle registers and
fitness registers required according to the evolution parameters
specified. The Particle Updating Accelerator module is used to
update the position and velocity of particles in a population. In
what follows, we will describe these functional modules in
more details.

I'opulation: .. : --- - - - - - - --- -T--- - ---- - - - - - -- ����!:;:��:,
I I I I : : ___ L ______________ �
I I I Particle Updating Accelerator I : : I I h I I I I P,,,kl, I + ---l I L I Rc-initialion

I I
Par1iclcil-WlIlPbll-I:01 I

A I Filncs.n-knlPbll-I:OI
I

Fitness PSO I
• A\&lon Bu! va on l'best NI-Nn[Pb" I 01 I Fitness � SI I Comparison Core . - I Evaluation C r GbcstlPllIf I OJ

omponent I I n Part,dcHl-,flllPb" 101 _I -
I '---- L _________________ _

Fig. 2 HW/SW Co-design architecture of PSO algoritluns.

A. Evolution Parameters File

The Evolution Parameters File is used to store control
parameters for evolution, which can be arbitrarily altered by
the user to facilitate the optimization process. Four parameters
are contained in the Evolution Parameters File, including
population size n, bit number of fitness Fbit representing the
resolution of fitness value, bit number of a particle Pbit
representing the resolution of variables, and inertial weight w.

When the evolution parameters are changed, an electronic
design automation (EDA) tool can be used to recompile the
design and all of the wire connections on the FPGA can be
automatically generated to complete the design. This has
rendered maximal HW/SW design flexibility without the need
for hardware redesign.

B. Fitness Evaluation module

Because various applications need to be dealt with, the Fitness
Evaluation module should accommodate the diversities of
problems, and is therefore preferably implemented by a
software module for evaluating objective functions under
consideration.

On the other hand, it is easy to integrate various kinds of
hardware functions into a system module on FPGA by
software via SOPC builder developed by Altera. To render
maximal flexibility without using extra external circuits, Fig. 3
shows the proposed soft-cored system for implementing the
Fitness Evaluation module, including a soft-cored embedded
processor [21] (Nios II CPU), a system timer, a timestamp
timer, a SDRAM controller, an Avalon bus interface, and a
particle flying fmished acknowledgement module. The Nios II
CPU accesses the objective function stored in SDRAM via the
SDRAM controller for calculating its fitness values for
particles transferred from the Particle Updating Accelerator
module. To enhance the floating-point computing ability for
speeding up the calculation of exponential and trigonometric
functions, a floating-point hardware is added into the Nios II
CPU module.

Evolution

Pal-arne'en File

Population: II

Fitness_bit: Fbi'
Particle_bit: Phil
Weight: OJ

---------------,

r Fitness Evaluation

I
I

······r
I
I
I
I
I
I
I
I

Nios II CPU

L ______________ _

Fig. 3 Fitness Evaluation module implemented on a soft-cored system.

C. Avalon Slave Component module

The soft-cored system module on which the Fitness Evaluation
module is implemented can't be modified automatically - it
needs to be manually generated via SOPC builder by the user.
If a flexible hardware architecture of PSO algorithm is desired,
we need to design an interface to connect the soft-cored
system module and Particle Updating Accelerator module.
Based on the above concept, we design a flexible Avalon
Slave Component module shown in Fig. 4 which can be
synthesized and generated by Quartus II software by Altera.
When the evolution parameters are changed, we just use the
EDA tool to recompile the design and the required particle
registers and fitness registers can be generated according to the
evolution parameters specified. An Avalon Bus Interface [22]
in the Avalon Slave Component module is responsible for
sending particle information to and receiving fitness values
from the Nios II CPU.

3764

Evolution

Paml1lcte"s File

Population: n
Fitness_bit: Fbi!
Particle_bit: Pbil
Weight OJ

r------------,

I Avalon Slave Component I
... .1

����� -!"I :..:p
a: rti:::: cle�#�II:..:

Pb
:
iI.

:
I:

:
OI

_ I t!article Register # I

I I Particle#nIPbil.I:OI

Avalon Bus Signals I Particle Register #n

I
Interface Particle fitness Register # I

I
I Particle fitness Register #n

I Fitness #I!Fbil·I:01

I Fitness #nIFbil·I:OI

L ____________ I
Fig. 4 Hardware architecture of the Avalon Slave Component module.

D. Particle Updating Accelerator module

Figure 5 shows the functional blocks of the Particle Updating
Accelerator module in Fig 1. There are two hardware circuits
implemented in this module: Fitness Comparison module and
PSO Core module. The Fitness Comparison module is used to
calculate the personal best position Pbest #i for particle i,
i E [1, n] , and the global best position Gbest, for updating the

position and velocity of particles in a population by the PSO
Core module.

["olufion
Pllrllmtttrsfile
Popu]ation:1I
t'itness bit Fbil
Particlc-='bitPbil
Wcighl:w

r-------------------
I Particle Updating Accelerator :
I I I I -.J

Re.i��: I��tion I I I I I I Particle#l-#tI[Pbil-I:OI

Fitness #1- #1I[Fbil -I:Oll PSO
I ll_Particle Ifl-li//Wbil-I:OI

Fitness Pbest #1-#lIlPbil-I:OI
Comparison

Gbcst[Pbil-I:OI
Core I

I I
I I
___________________ J

Fig. 5 Hardware architecture of the Particle Updating Accelerator module.

IV. EXPERIMENT RESULTS

In this paper, a DE2-70 development board by Altera is
used as an experiment platform for evaluating the performance
of the proposed approach, where a Cyclone II FPGA with chip
number EP2C70F896C6N having a total of 68416 logic
elements (LE) is used to realize the system architecture shown
in Fig. 2 by using the Verilog language.

A. Comparison of computational costs via the Particle
Updating Accelerator

Table 1 shows a comparison of computational cost in terms of
clock cycles by the soft-cored processor (Nios II CPU) and the
proposed hardware implementation realize the Particle
Updating Accelerator to complete a full cycle of position
update for all particles in a single generation. As shown in
Table 1, hardware implementation the proposed Particle
Updating Accelerator has a processing speed approximately 10
times faster than that of the soft-cored Nios II CPU. To
demonstrate the resource usage of the proposed approach,
Table 2 shows the logical elements (Les) required on FPGA in
realizing the Particle Updating Accelerator. Note that no

memory bits are used in the design as shown in Table 2. If
memory bits are used in the design, LE usage can be further
reduced.

Table 1 Computational cost by Nios II CPU and the proposed Particle
Updating Accelerator

Clock cycles required
Population size (n)

Nios II CPU Particle Updating Accelerator

8 8724 892

16 16962 1448

32 33572 2415

Table 2 Resource usage on FPGA

Particle Updating Accelerator

Population size LEs Memory bits

8 4265 0

16 9698 0

32 18585 0

B. Basis for evaluating the HW/SW co-design approach

A 32-bit soft-cored embedded Nios II CPU running at a
maximal clock frequency of 50 MHz is adopted for
implementing the Fitness Evaluation module to calculate the
fitness values of the benchmark functions. Hardware circuit of
the Avalon Slave Component and Particle Updating
Accelerator also run at a clock frequency of 50 MHz. Particles
of the PSO algorithm are coded in binary string. For
verification purpose, eight benchmark functions [23] listed in
Table 3 are used to test the performance of the PSO algorithm
via the proposed HW/SW co-design realization. Detailed
descriptions of the benchmark functions are listed as an
appendix at the end of this paper. Control parameters for
implementing the PSO algorithm using the HW/SW co-design
architecture are listed in Table 4.

Table 3 Benchmark functions used for performance analysis

No. Function Name Variable Optimal OBJ
no. value

B2 function 2 0

2 Branin RCOC function 2 0.397887

3 Goldstein and function 2 3

4 Rosenbrock function 2 0

5 Zakharov function 2 0

6 De Joung function 3 0

7 Hartmann function 3 -3.86343

8 Variably dimensioned function 4 0

3765

Table 4 Control parameters of the HW/SW co-design realization
of PSO algorithm

Control Parameters Value

Particle coding Binary

Bit number of variables 8

Population size 8,16,32

Iteration number 100

Maximal function evaluations (N) 10000

c.r. 0-2

c2r2 0-2

Inertia weight ()J 0.25

Termination Error Threshold <10-4

c. Experiment results o/ the HW/SW co-design approach

Experiment results of the PSO algorithm shown in Eqs. (1)
and (2) implemented via the proposed HW/SW co-design
approach to test the eight benchmark functions are shown in
Table 5. Different population sizes of n=8, 16, and 32 are
adopted to evaluate the performance. The evolutionary
program terminates if the criteria on termination error
threshold of the objective function values below:

(3)

is satisfied or a maximal number of function evaluations (FE)
of 10000 is reached, where /(xopt) is the objective function

value of the known analytic optimal solution x . opt
To evaluate the performance of the evolutionary

algorithms, 100 runs are executed for each benchmark
function to ensure credible simulation results have been
obtained. As long as one of the terminating criteria is met, the
algorithm stops and returns the best solution Xbest ever

searched for calculating the objective function value /(xbest).
A particular optimization process is considered "success/uf' if
the best solution xbest derived via the evolutionary algorithm

satisfies the condition in Eq. (3). Depending on performance
requirement, the termination error threshold e can be
arbitrarily designated, as long as a fair comparison can be
guaranteed. In this paper, a termination error threshold of
e = 10-4 is selected for all the benchmark functions. It is clear
that larger population size results in a better successful rate as
expected.

By averaging the function evaluations required for all the
successful runs, we obtain the averaged function evaluation
number required for optimizing the benchmark functions via
the proposed method. Averaged time elapsed for successful
optimization runs can be obtained in a similar way. Care must
be taken that the Averaged function evaluations and Elapsed
time shown in Table 5 show successful runs only. If all of the
optimization results, including successful and non-successful
runs, are taken into account, the performance in terms of

Averaged function evaluations and Elapsed time might not be
as good as presented in the table.

Although the successful rates in Table 5 somehow reach
90% or higher for 6 out of 8 benchmark functions with a
population of 32, the performance, however, is not good
enough. During the experiment, we discover that the RNG
might not work satisfactorily in providing truly uniformly
distributed random numbers for particles in searching the
optimal solution during the evolution process. Therefore we
use the particle re-initialization scheme presented in Section 3
to randomly generate particles for replacing the particles in the
current population except the personal best solution and global
best solution based on an elitism preservation concept every
100 generations in this paper. Much satisfactory results as
shown in Table 6 can be obtained via the particle re
initialization scheme, where successful rates have reached
100% for the majority of the cases. Also revealed in this table
is that population size of n= 16 has a desired performance in
terms of function evaluations required while maintaining the
same successful rate of 100% for these benchmark functions in
comparison to n=32.

Table 5 Experiment results ofPSO algorithm via HW/SW co-design aooroach

Successful rate (%) Averaged fuuction
Elapsed Time (sec.)

evaluations
Function

n=8
n n

n=8
n n

n=8 n =16 n =32
=16 =32 =16 =32

Funl 86 89 94 116 183 362 0.1914 0.3003 0.6204

Fun2 82 89 94 176 190 311 0.1570 0.1646 0.2700

Fun3 66 85 87 173 214 310 0.1468 0.1747 0.2533

Fun4 53 84 94 725 1079 1114 0.2283 0.3162 0.3313

Fun5 80 90 93 110 216 276 0.4385 0.8745 1.1381

Fun6 70 92 93 246 352 460 0.0701 0.0946 0.1268

Fun7 46 80 84 217 320 492 0.8815 1.2639 1.9368

Fun8 26 61 91 848 1378 1932 2.0773 3.2955 4.7520

Table 6 Experiment results ofPSO algorithm via HW/SW co-design approach and Particle
Re initialization Scheme -

Successful rate (%) Averaged fuuction
Elapsed Time (sec.)

evaluations
Function

n=8
n n

n=8
n n

n=8 n =16 n =32
=16 =32 =16 =32

Funl 100 100 100 271 299 640 0.4171 0.5143 1.0236

Fun2 100 100 100 324 278 415 0.2865 0.2353 0.3565

Fun3 99 100 100 731 500 770 0.6109 0.4110 0.6232

Fun4 98 100 100 1991 1203 1314 0.6041 0.3485 0.3882

Fun5 100 100 100 275 205 443 1.0267 0.7961 1.7344

Fun6 100 100 100 617 490 731 0.1682 0.1293 0.1993

Fun7 100 100 100 732 680 819 2.9664 2.7379 3.2473

Fun8 95 100 100 2570 2036 2042 5.4898 4.7192 5.0632

V. Conclusions

In this paper, we have presented a HW/SW co-design
architecture to implement PSO on a FPGA chip, where the
Particle Updating Accelerator module responsible for updating
position and velocity of particles in a population is
implemented by hardware. Any available processors or
circuits capable of performing fitness evaluation can be used
to work with the Particle Updating Accelerator to speed up the
execution performance of PSO. Because of flexible design of
the proposed approach where the Fitness Evaluation module is
implemented by a software module for evaluating objective
functions under consideration, various applications can be

3766

dealt with. To meet optimization needs for different
applications, evolution parameters can be arbitrarily adjusted
by the user without the need for hardware redesign. This has
rendered maximal HW/SW design flexibility to complete a
design by the proposed approach. Experiment results have
shown that significant improvement in terms of clock cycles
required of the proposed Particle Updating Accelerator has
been achieved, where processing speed is approximately 10
times faster than that of the soft-cored Nios II CPU. To
circumvent the difficulties in generating truly uniformly
distributed random numbers by hardware implementation, the
particle re-initialization scheme is incorporated into the
Particle Updating module to improve the evolutionary
efficiency and effectiveness in searching an optimal solution.
Experiment results have proved that successful rates in
optimizing the 8 benchmark functions have reached 100% for
all cases. As is apparent from the experiments, the bottleneck
for accelerating the execution of PSO algorithms lies in the
calculation of fitness function. Although fitness evaluation
module can be realized by hardware circuits, the flexibility to
deal with different problems will inevitably reduces. It is
therefore the objective of this paper to use HW/SW co-design
method to realize PSO in a hope to balance the computational
efficiency and usage flexibility of PSO.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Council, Taiwan, under Grants NSC 97-2221-E-032-032 and
NSC 94-2213-E-032-002. The authors wish to thank Jui-Pin
Wang for his efforts to carry out additional experiments in a
very restricted timeframe during the preparation of this paper.

REFERENCES

[I] J. Kennedy and R Eberhart, "Particle swarm optimization," IEEE
International Conference on Neural Networks, Perth, Australia, 1995,
pp. 1942-1948.

[2] K.E. Parsopoulos and M.N. Vrahatis, "Recent approaches to global
optimization problems through particle swarm optimization," Natural
Computing, vol. 1,2002, pp. 235-306.

[3] A Ratnaweera, S.K. Halgarnuge, and H.C. Watson, "Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients," IEEE Transaction on System, Man and Cybernetics, vol. 8,
no. 3,2004, pp. 240-255.

[4] Z.L. Gaing, "A particle swarm optimization approach for optimum
design of PID controller in A VR system," IEEE Transactions on Energy
Conversion, vol. 19, no. 2, 2004, pp. 384-391.

[5] J.F. Schutte and AA Groenwold, "A study of global optimization using
particle swarms," Journal of Global Optimization, January 2005, vol. 31,
no. I, pp. 93-108.

[6] J.F. Schutte, B. Koh, J.A. Reinbolt, RT. Haftka, AD. George, and B.J.
Fregly, "Evaluation of a particle swarm algorithm for biomechanical
optimization," Journal of Biomechanical Engineering, vol. 127, no. 3,
2005, pp. 465-474.

[7] J.L. Risco-Martin, J. I. Hidalgo, O. Garnica, J. Lanchares, D. Atienza,
"Particle swarm optimization of memory usage in embedded systems,"
Inderscience Journal of High Performance Systems Architecture
(IJHPSA), 2009, pp. I-II.

[8] G.K. Venayagarnoorthy and S. Doctor, "Navigation of mobile sensors
using PSO and embedded PSO in a fuzzy logic controller," 39th IEEE

lAS Annual Meeting on Industry Applications, Seattle, W A, USA,
October 2004, pp. 1200-1206.

[9] N. Nedjah, L. Coelho, L. Mourelle, "Mobile Robots: The Evolutionary
Approach," Springer, Berlin Heidelberg, 2007.

[10] L. Wang, K.C. Tan, and C.M. Chew, "Evolutionary Robotics: From
Algorithms to Implementations," World Scientific Publishing Company,
2006.

[II] S.T. Girma, M.H. Darrin, RE. Haskell, "Accelerating the performance
of particle swarm optimization for embedded applications," IEEE
Congress on Evolutionary Computation, Trondheim, Norway, 2009,
pp.2294-2300.

[12] G.S. Tewolde, D.M. Hanna, and RE. Haskell, "Multi-swarm parallel
PSO: hardware implementation," IEEE on Swarm Intelligence
Symposium, April 2009, pp.60-66.

[13] A Farmahini-Farahani, S.M. Fakhraie, and S. Safari, "SOPC-Based
architecture for discrete particle swarm optimization," IEEE
International Conference on Electronics, Circuits and Systems, ICECS),
Marrakech, Morocco, Dec. 2007, pp. 1003-1006.

[14] A Farmahini-Farahani, S.M. Fakhraie, and S. Safari, "Scalable
architecture for on-chip neural network training using swarm
intelligence," Proceedings of the Conference on Design, Automation and
Test, Munich, Germany, Europe, March 10-14,2008, pp. 1340-1345.

[15] F. van den Bergh and AP. Engelbrecht, "A study of particle swarm
optimization particle trajectories," Information Sciences, vol. 176, 2006,
pp. 937-971.

[16] M. Clerc and J. Kennedy, "The particle swarm explosion, stability, and
convergence in a multidimensional complex space," IEEE Transaction
on Evolutionary Computation, vol. 6, no.l, 2002, pp. 58-73.

[17] P.K. Tripathi, S. Bandyopadhyay and K.S. Pal, "Multi-objective particle
swarm optimization with time variant inertia and acceleration
coefficients," Information Sciences, vol. 177, Iss. 22, 2007, pp. 5033-
5049.

[18] J. Kennedy and R C. Eberhart, "A discrete binary version of the particle
swarm algorithm," Proceedings IEEE International Conference on
Systems, Man, and Cybernetics, Piscataway, New Jersey, USA, vol. 5,
1997, pp. 4104-4108.

[19] J.F. Schutte, lA Reinbolt, BJ. Fregly, RT. Haftka, and AD. George,
"Parallel global optimization with the particle swarm algorithm,"
Numerical Methods in Engineering, vol. 61, no. 13, 2004, pp. 2296-2315.

[20] Altera Corporation homepage. URL:/Iwww.a1tera.com

[21] Altera Corporation, Nios embedded processor software development
reference manual, 2003.

[22] Altera Corporation, Avalon interface specifications, 2008.

[23] S.K.S. Fan and E. Zahara, "A hybrid simplex search and particle swarm
optimization for unconstrained optimization," European Journal of
Operational Research, vol. 181, no. 2, 2007, pp. 527-548.

3767

