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Abstract-This paper presents a hardware/software (HW/SW) 
co-design approach using SOPC technique and pipeline design 
method to improve the performance of particle swarm 

optimization (PSO) for embedded applications. Based on 
modular design architecture, a particle updating accelerator 
module via hardware implementation for updating velocity and 
position of particles and a fitness evaluation module implemented 

on a soft-cored processor for evaluating the objective functions 
are respectively designed and work closely together to accelerate 
the evolution process. Thanks to a flexible design, the proposed 
approach can tackle various optimization problems of embedded 

applications without the need for hardware redesign. To 
compensate the deficiency in generating truly random numbers 
by hardware implementation, a particle re-initialization scheme 
is also presented in this paper to further improve the execution 

performance of the PSO. Experiment results have demonstrated 
that the proposed HW/SW co-design approach to realize PSO is 
capable of achieving a high-quality solution effectively. 

Kqwords-HW/SW Co-design, Particle swarm optimization 
(PSO), system on a programmable chip (SOPC), Field 
Programmable Gate Array (FPGA) 

I. INTRODUCTION 

Particle swarm optimization (PSO) is a population-based, 
self-adaptive search optimization technique frrst introduced by 
Kennedy and Eberhart [1] in 1995. Based on simulation of 
simplified animal social behaviors such as fish schooling, bird 
flocking, etc [2], PSO has advantages of simplicity for 
implementation and ability to quickly converge to a reasonably 
good solution [3]. Because of its robustness, PSO has been 
widely adopted in various engineering applications [4, 5, 6]. 

As a population-based method, however, PSO still suffers 
from the problem of time-consuming evolution process to 
derive an answer, given the fact that PSO has proved itself as 
an effective and efficient method in comparison to other 
evolutionary approaches. When it comes to embedded and 
industrial applications, for example, optimization of memory 
usage [7], navigation of mobile sensors [8], and evolutionary 
mobile robots [9], [10], etc., the situation will be even worse 
because these applications generally uses low-performance 
microprocessors with limited computational resources, rather 
than high-performance desktop personal computers, as the 
computational platform [11, 12]. As a result, poor execution 
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performance might occur because of the evolutionary nature of 
PSO. To solve this problem, several hardware-based 
implementations of PSO have been proposed in recent years to 
accelerate the execution performance for embedded 
applications. Among them, a parallel processing method 
implemented on FPGA [12] was proposed to calculate the 
flying of particles. Serial communication was adopted to 
transfer data among functional modules. Although this method 
can speed up the execution of PSO algorithms, larger FPGA 
area is required because of the parallel processing scheme 
adopted, which is undesired for practical industrial applications 
if cost is a primary consideration. Also, hardware redesign of 
the fitness evaluation module might be inevitable for different 
problems under consideration. In [11], a modular architecture 
of a hardware PSO engine was proposed for accelerating the 
algorithm's performance. Unfortunately, fitness evaluation of 
this approach is problem dependent and needs to be designed 
case by case. If the problem changes, then the hardware of the 
fitness evaluation module must be redesigned, which creates 
extra efforts in the design process. In [13, 14], a more desired 
architecture for PSO algorithm was proposed, in which an 
embedded processor via SOPC design technique and a 
hardware accelerator were used to calculate the fitness function 
and update velocity and position of particles, respectively. 
However, this architecture has less design flexibility if users 
wish to change the evolution parameters, for example, 
population size or dimension of the particle, etc. Under these 
circumstances, the PSO hardware must be redesigned. 
Furthermore, there is no mention of successful rate by using the 
proposed SOPC-based PSO. As a result, difficulties arise in 
evaluating the performance of the proposed approach. 

As mentioned earlier, there is still room for further 
improving the performance of hardware-implemented PSO, as 
far as computational efficiency, usage flexibility, and resources 
utilization, etc., are concerned. As an attempt to solve this 
problem, this paper presents a hardware/software (HW/SW) co
design approach using SOPC technique and pipeline design 
method to improve the execution performance of PSOs while 
maintaining usage flexibility for embedded applications, in 
which a particle updating accelerator module via hardware 
implementation for updating velocity and position of particles 
and a fitness evaluation module implemented on a soft-cored 
processor for evaluating the objective functions are respectively 
designed and work closely together to accelerate the evolution 
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process. Because of modularity design of this approach, fitness 
function can be flexibly modified for evaluation via the Fitness 
Evaluation module. As a result, various problems of embedded 
applications can be tackled simply by changing the objective 
functions for the problems under consideration. Considering 
the empirical nature where evolution parameters are subject to 
modification, the hardware design of the proposed approach 
has taken this requirement into consideration, where the 
population size, number of bit strings for encoding, inertia 
weight can be modified by users to suit the needs of a specific 
application by simply modifying an evolution parameters file. 
No hardware redesign is required if these evolution parameters 
are altered. To compensate the deficiency in generating truly 
random numbers by hardware implementation during the 
evolution process, a particle re-initialization scheme is also 
presented in this paper to further improve the execution 
performance of the PSO. 

II. PARTICLE SWARM OPTIMIZATION ALGORITHMS 

Particle swarm adaptation has been shown to successfully 
optimize a wide range of continuous functions [1, 2]. The 
algorithm, which is based on a metaphor of social interaction, 
searches a space by adjusting the trajectories of individual 
vectors, called "particles" as they are conceptualized as moving 
points in multidimensional space [15, 16, 17]. As an 
evolutionary technique, the PSO is a population-based 
algorithm, formed by a set of particles representing potential 
solutions for a given problem. Each particle moves through a n
dimensional search space, with an associated position vector 
x,(t) = {Xil(t), Xi2(t), . . .  , Xin(t)} and velocity vector 
v;(t) = {Vil(t),Vi2(t), . . .  ,Vin(t)} for the current evolutionary 
iteration t. The individual particle in PSO flies in the search 
space with velocity which is dynamically adjusted according to 
its own flying experience and its companions' flying 
experience [4]. The former was termed cognition-only model 
and the latter was termed social-only model [18]. By 
integrating these two types of knowledge, the particle behavior 
in a PSO can be modeled by using the following equations: 

Vj (t+l)=wxvj(t)+c. X rand X (pbestj -Xj(t» (1) 
+c2 X rand X (Gbest-xj(t» 

Xi (t+ 1) = xi(t)+Vi (t+ 1) 

, where 

c.,c2: acceleration constants; 

rand: random number between 0 and 1; 

Xi (t) : the position of particle i at iteration t ; 

Vi (t) : the velocity of particle i at iteration t ; 

W : inertia weight factor; 

Gbest : the personal best position among all the particles; 

Pbesti: the personal best position of particle i. 

(2) 

Note that the first term on the right-hand side of the 
velocity-updating rule in Eq. (1) represents the previous 
velocity, which provides the necessary momentum for 
particles to roam across the search space. The second term, 
known as the "cognitive" component, represents the personal 
thinking of each particle, which encourages the particles to 
move toward their own best positions found so far. The third 
term is known as the "social" component, which represents the 
collaborative effect of the particles in fmding the global 
optima. 

Figure 1 shows the flow chart of a typical PSO 
algorithm, in which a population of particles is initialized with 
random position Xi and velocity Vi. Fitness of particles is 
evaluated by calculating the objective function j{Xi)' The 
current position of each particle is set as Pbesti• The Pbesti 
with best value in the swarm is set as Gbest. As evolution 
continues, next position for each particle is repeatedly 
generated by using Eqs. (1) and (2). If a better position is 
achieved by an agent, the Pbesti value is replaced by the 
current value. If a new Gbest value is better than the previous 
Gbest value, the Gbest value is replaced by the current Gbest 
value. Iterations repeat until a predetermined iteration number 
is reached. 

NO 

Stopping criterion 
satisfied? 

Fig. 1 Evolution processes of a typical PSO algorithm [19]. 

III. SYSTEM ARCHITECTURE OF HW /SW CO-DESIGN OF 
PSO ALGORITHMS 

Field Programmable Gate Array (FPGA) is a flexible chip 
for easy reconfiguration. There have been many prototype 
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designs successfully implemented using FPGA as their 
development platform. In recent years, HW/SW co-design 
methods are getting more and more popular in the design of 
system on a programmable chip (SOPC). With the availability 
of Electronic Design Automation (EDA) tools by major 
vendors, for example, Altera Corporation [20], SOPC design 
has become much easier by compiling the hardware description 
language to synthesize a digital circuit for downloading to a 
FPGA chip. 

Figure 2 shows the architecture of HW/SW Co-design of 
PSO algorithms proposed in this paper, where modular design 
is performed to construct the major components, including an 
Evolution Parameters File, a Fitness Evaluation module, an 
Avalon Slave Component module, and a Particle Updating 
Accelerator. The Evolution Parameters File is used to store 
control parameters for evolution. The Fitness Evaluation 
module is a software module for evaluating objective functions 
to tackle different applications under consideration, which can 
be implemented on any available processors, for example the 
embedded Nios II CPU used in this paper. The Avalon Slave 
Component module is to generate the particle registers and 
fitness registers required according to the evolution parameters 
specified. The Particle Updating Accelerator module is used to 
update the position and velocity of particles in a population. In 
what follows, we will describe these functional modules in 
more details. 

I'opulation: .. : --- - - - - - - --- -T--- - ---- - - - - - -- ����!:;:��:, 
I I I I : : ___ L ______________ � 
I I I Particle Updating Accelerator I : : I I h I I I I P,,,kl, I + ---l I L I Rc-initialion 

I I 
Par1iclcil-WlIlPbll-I:01 I 

A I Filncs.n-knlPbll-I:OI 
I 

Fitness PSO I 
• A\&lon Bu! va on l'best NI-Nn[Pb" I 01 I Fitness � SI I Comparison Core . - I Evaluation C r GbcstlPllIf I OJ 

omponent I I n Part,dcHl-,flllPb" 101 _I -
I '---- L _________________ _ 

Fig. 2 HW/SW Co-design architecture of PSO algoritluns. 

A. Evolution Parameters File 

The Evolution Parameters File is used to store control 
parameters for evolution, which can be arbitrarily altered by 
the user to facilitate the optimization process. Four parameters 
are contained in the Evolution Parameters File, including 
population size n, bit number of fitness Fbit representing the 
resolution of fitness value, bit number of a particle Pbit 
representing the resolution of variables, and inertial weight w. 

When the evolution parameters are changed, an electronic 
design automation (EDA) tool can be used to recompile the 
design and all of the wire connections on the FPGA can be 
automatically generated to complete the design. This has 
rendered maximal HW/SW design flexibility without the need 
for hardware redesign. 

B. Fitness Evaluation module 

Because various applications need to be dealt with, the Fitness 
Evaluation module should accommodate the diversities of 
problems, and is therefore preferably implemented by a 
software module for evaluating objective functions under 
consideration. 

On the other hand, it is easy to integrate various kinds of 
hardware functions into a system module on FPGA by 
software via SOPC builder developed by Altera. To render 
maximal flexibility without using extra external circuits, Fig. 3 
shows the proposed soft-cored system for implementing the 
Fitness Evaluation module, including a soft-cored embedded 
processor [21] (Nios II CPU), a system timer, a timestamp 
timer, a SDRAM controller, an Avalon bus interface, and a 
particle flying fmished acknowledgement module. The Nios II 
CPU accesses the objective function stored in SDRAM via the 
SDRAM controller for calculating its fitness values for 
particles transferred from the Particle Updating Accelerator 
module. To enhance the floating-point computing ability for 
speeding up the calculation of exponential and trigonometric 
functions, a floating-point hardware is added into the Nios II 
CPU module. 

Evolution 

Pal-arne'en File 

Population: II 

Fitness_bit: Fbi' 
Particle_bit: Phil 
Weight: OJ 

---------------, 

r Fitness Evaluation 

I 
I 

······r 
I 
I 
I 
I 
I 
I 
I 
I 

Nios II CPU 

L ______________ _ 

Fig. 3 Fitness Evaluation module implemented on a soft-cored system. 

C. Avalon Slave Component module 

The soft-cored system module on which the Fitness Evaluation 
module is implemented can't be modified automatically - it 
needs to be manually generated via SOPC builder by the user. 
If a flexible hardware architecture of PSO algorithm is desired, 
we need to design an interface to connect the soft-cored 
system module and Particle Updating Accelerator module. 
Based on the above concept, we design a flexible Avalon 
Slave Component module shown in Fig. 4 which can be 
synthesized and generated by Quartus II software by Altera. 
When the evolution parameters are changed, we just use the 
EDA tool to recompile the design and the required particle 
registers and fitness registers can be generated according to the 
evolution parameters specified. An Avalon Bus Interface [22] 
in the Avalon Slave Component module is responsible for 
sending particle information to and receiving fitness values 
from the Nios II CPU. 
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Evolution 

Paml1lcte"s File 

Population: n 
Fitness_bit: Fbi! 
Particle_bit: Pbil 
Weight OJ 

r------------, 

I Avalon Slave Component I 
... .1 

����� .... -!"I :..:p
a: rti:::: cle�#�II:..:

Pb
:
iI.

:
I:

:
OI

_ I t!article Register # I 

I I Particle#nIPbil.I:OI 

Avalon Bus Signals I Particle Register #n 

I 
Interface Particle fitness Register # I 

I 
I Particle fitness Register #n 

I Fitness #I!Fbil·I:01 

I Fitness #nIFbil·I:OI 

L ____________ I 
Fig. 4 Hardware architecture of the Avalon Slave Component module. 

D. Particle Updating Accelerator module 

Figure 5 shows the functional blocks of the Particle Updating 
Accelerator module in Fig 1. There are two hardware circuits 
implemented in this module: Fitness Comparison module and 
PSO Core module. The Fitness Comparison module is used to 
calculate the personal best position Pbest #i for particle i, 
i E [1, n] , and the global best position Gbest, for updating the 

position and velocity of particles in a population by the PSO 
Core module. 

["olufion 
Pllrllmtttrsfile 
Popu]ation:1I 
t'itness bit Fbil 
Particlc-='bitPbil 
Wcighl:w 

r-------------------
I Particle Updating Accelerator : 
I I I I -.J 

Re.i��: I��tion I I I I I I Particle#l-#tI[Pbil-I:OI 

Fitness #1- #1I[Fbil -I:Oll PSO 
I ll_Particle Ifl-li//Wbil-I:OI 

Fitness Pbest #1-#lIlPbil-I:OI 
Comparison 

Gbcst[Pbil-I:OI 
Core I 

I I 
I I 
___________________ J 

Fig. 5 Hardware architecture of the Particle Updating Accelerator module. 

IV. EXPERIMENT RESULTS 

In this paper, a DE2-70 development board by Altera is 
used as an experiment platform for evaluating the performance 
of the proposed approach, where a Cyclone II FPGA with chip 
number EP2C70F896C6N having a total of 68416 logic 
elements (LE) is used to realize the system architecture shown 
in Fig. 2 by using the Verilog language. 

A. Comparison of computational costs via the Particle 
Updating Accelerator 

Table 1 shows a comparison of computational cost in terms of 
clock cycles by the soft-cored processor (Nios II CPU) and the 
proposed hardware implementation realize the Particle 
Updating Accelerator to complete a full cycle of position 
update for all particles in a single generation. As shown in 
Table 1, hardware implementation the proposed Particle 
Updating Accelerator has a processing speed approximately 10 
times faster than that of the soft-cored Nios II CPU. To 
demonstrate the resource usage of the proposed approach, 
Table 2 shows the logical elements (Les) required on FPGA in 
realizing the Particle Updating Accelerator. Note that no 

memory bits are used in the design as shown in Table 2. If 
memory bits are used in the design, LE usage can be further 
reduced. 

Table 1 Computational cost by Nios II CPU and the proposed Particle 
Updating Accelerator 

Clock cycles required 
Population size (n) 

Nios II CPU Particle Updating Accelerator 

8 8724 892 

16 16962 1448 

32 33572 2415 

Table 2 Resource usage on FPGA 

Particle Updating Accelerator 

Population size LEs Memory bits 

8 4265 0 

16 9698 0 

32 18585 0 

B. Basis for evaluating the HW/SW co-design approach 

A 32-bit soft-cored embedded Nios II CPU running at a 
maximal clock frequency of 50 MHz is adopted for 
implementing the Fitness Evaluation module to calculate the 
fitness values of the benchmark functions. Hardware circuit of 
the Avalon Slave Component and Particle Updating 
Accelerator also run at a clock frequency of 50 MHz. Particles 
of the PSO algorithm are coded in binary string. For 
verification purpose, eight benchmark functions [23] listed in 
Table 3 are used to test the performance of the PSO algorithm 
via the proposed HW/SW co-design realization. Detailed 
descriptions of the benchmark functions are listed as an 
appendix at the end of this paper. Control parameters for 
implementing the PSO algorithm using the HW/SW co-design 
architecture are listed in Table 4. 

Table 3 Benchmark functions used for performance analysis 

No. Function Name Variable Optimal OBJ 
no. value 

B2 function 2 0 

2 Branin RCOC function 2 0.397887 

3 Goldstein and function 2 3 

4 Rosenbrock function 2 0 

5 Zakharov function 2 0 

6 De Joung function 3 0 

7 Hartmann function 3 -3.86343 

8 Variably dimensioned function 4 0 
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Table 4 Control parameters of the HW/SW co-design realization 
of PSO algorithm 

Control Parameters Value 

Particle coding Binary 

Bit number of variables 8 

Population size 8,16,32 

Iteration number 100 

Maximal function evaluations (N) 10000 

c.r. 0-2 

c2r2 0-2 

Inertia weight ()J 0.25 

Termination Error Threshold <10-4 

c. Experiment results o/ the HW/SW co-design approach 

Experiment results of the PSO algorithm shown in Eqs. (1) 
and (2) implemented via the proposed HW/SW co-design 
approach to test the eight benchmark functions are shown in 
Table 5. Different population sizes of n=8, 16, and 32 are 
adopted to evaluate the performance. The evolutionary 
program terminates if the criteria on termination error 
threshold of the objective function values below: 

(3) 

is satisfied or a maximal number of function evaluations (FE) 
of 10000 is reached, where /(xopt) is the objective function 

value of the known analytic optimal solution x . opt 
To evaluate the performance of the evolutionary 

algorithms, 100 runs are executed for each benchmark 
function to ensure credible simulation results have been 
obtained. As long as one of the terminating criteria is met, the 
algorithm stops and returns the best solution Xbest ever 

searched for calculating the objective function value /(xbest). 
A particular optimization process is considered "success/uf' if 
the best solution xbest derived via the evolutionary algorithm 

satisfies the condition in Eq. (3). Depending on performance 
requirement, the termination error threshold e can be 
arbitrarily designated, as long as a fair comparison can be 
guaranteed. In this paper, a termination error threshold of 
e = 10-4 is selected for all the benchmark functions. It is clear 
that larger population size results in a better successful rate as 
expected. 

By averaging the function evaluations required for all the 
successful runs, we obtain the averaged function evaluation 
number required for optimizing the benchmark functions via 
the proposed method. Averaged time elapsed for successful 
optimization runs can be obtained in a similar way. Care must 
be taken that the Averaged function evaluations and Elapsed 
time shown in Table 5 show successful runs only. If all of the 
optimization results, including successful and non-successful 
runs, are taken into account, the performance in terms of 

Averaged function evaluations and Elapsed time might not be 
as good as presented in the table. 

Although the successful rates in Table 5 somehow reach 
90% or higher for 6 out of 8 benchmark functions with a 
population of 32, the performance, however, is not good 
enough. During the experiment, we discover that the RNG 
might not work satisfactorily in providing truly uniformly
distributed random numbers for particles in searching the 
optimal solution during the evolution process. Therefore we 
use the particle re-initialization scheme presented in Section 3 
to randomly generate particles for replacing the particles in the 
current population except the personal best solution and global 
best solution based on an elitism preservation concept every 
100 generations in this paper. Much satisfactory results as 
shown in Table 6 can be obtained via the particle re
initialization scheme, where successful rates have reached 
100% for the majority of the cases. Also revealed in this table 
is that population size of n= 16 has a desired performance in 
terms of function evaluations required while maintaining the 
same successful rate of 100% for these benchmark functions in 
comparison to n=32. 

Table 5 Experiment results ofPSO algorithm via HW/SW co-design aooroach 

Successful rate (%) Averaged fuuction 
Elapsed Time (sec.) 

evaluations 
Function 

n=8 
n n 

n=8 
n n 

n=8 n =16 n =32 
=16 =32 =16 =32 

Funl 86 89 94 116 183 362 0.1914 0.3003 0.6204 

Fun2 82 89 94 176 190 311 0.1570 0.1646 0.2700 

Fun3 66 85 87 173 214 310 0.1468 0.1747 0.2533 

Fun4 53 84 94 725 1079 1114 0.2283 0.3162 0.3313 

Fun5 80 90 93 110 216 276 0.4385 0.8745 1.1381 

Fun6 70 92 93 246 352 460 0.0701 0.0946 0.1268 

Fun7 46 80 84 217 320 492 0.8815 1.2639 1.9368 

Fun8 26 61 91 848 1378 1932 2.0773 3.2955 4.7520 

Table 6 Experiment results ofPSO algorithm via HW/SW co-design approach and Particle 
Re initialization Scheme -

Successful rate (%) Averaged fuuction 
Elapsed Time (sec.) 

evaluations 
Function 

n=8 
n n 

n=8 
n n 

n=8 n =16 n =32 
=16 =32 =16 =32 

Funl 100 100 100 271 299 640 0.4171 0.5143 1.0236 

Fun2 100 100 100 324 278 415 0.2865 0.2353 0.3565 

Fun3 99 100 100 731 500 770 0.6109 0.4110 0.6232 

Fun4 98 100 100 1991 1203 1314 0.6041 0.3485 0.3882 

Fun5 100 100 100 275 205 443 1.0267 0.7961 1.7344 

Fun6 100 100 100 617 490 731 0.1682 0.1293 0.1993 

Fun7 100 100 100 732 680 819 2.9664 2.7379 3.2473 

Fun8 95 100 100 2570 2036 2042 5.4898 4.7192 5.0632 

V. Conclusions 

In this paper, we have presented a HW/SW co-design 
architecture to implement PSO on a FPGA chip, where the 
Particle Updating Accelerator module responsible for updating 
position and velocity of particles in a population is 
implemented by hardware. Any available processors or 
circuits capable of performing fitness evaluation can be used 
to work with the Particle Updating Accelerator to speed up the 
execution performance of PSO. Because of flexible design of 
the proposed approach where the Fitness Evaluation module is 
implemented by a software module for evaluating objective 
functions under consideration, various applications can be 
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dealt with. To meet optimization needs for different 
applications, evolution parameters can be arbitrarily adjusted 
by the user without the need for hardware redesign. This has 
rendered maximal HW/SW design flexibility to complete a 
design by the proposed approach. Experiment results have 
shown that significant improvement in terms of clock cycles 
required of the proposed Particle Updating Accelerator has 
been achieved, where processing speed is approximately 10 
times faster than that of the soft-cored Nios II CPU. To 
circumvent the difficulties in generating truly uniformly
distributed random numbers by hardware implementation, the 
particle re-initialization scheme is incorporated into the 
Particle Updating module to improve the evolutionary 
efficiency and effectiveness in searching an optimal solution. 
Experiment results have proved that successful rates in 
optimizing the 8 benchmark functions have reached 100% for 
all cases. As is apparent from the experiments, the bottleneck 
for accelerating the execution of PSO algorithms lies in the 
calculation of fitness function. Although fitness evaluation 
module can be realized by hardware circuits, the flexibility to 
deal with different problems will inevitably reduces. It is 
therefore the objective of this paper to use HW/SW co-design 
method to realize PSO in a hope to balance the computational 
efficiency and usage flexibility of PSO. 
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