
A Proxy Automatic Signature Scheme Using a Compiler in
Distributed Systems for (Unknown) Virus Detection

Hwang, Shin-Jia and Chen, Kuang-Hsi
Department of Computer Science and Information Engineering,

TamKang University, Tamsui, Taipei Hsien, 251, Taiwan, R.O.C.
sjhwang@mail.tku.edu.tw and kuanghsi@gamil.com

Abstract

To detect any (unknown) virus, automatic
signature schemes are proposed to be embedded
in honestly-made compilers. But compiling
load is centralized on the compiler makers. To
distribute compiling load with the help of
distributed servers, proxy automatic signature
schemes are proposed for the distributed
compilers. However, Lin and Jan’s proxy
automatic signature scheme is insecure and has
length restriction of source programs. To
remove these flaws, Hwang and Li also
proposed their scheme. However, two
signatures are used for the agreement of
compiler makers and servers, respectively. But
only the signature for the proxy agreement of
compiler makers can be validated by anyone.
To remove this inefficient flaw, a new efficient
proxy automatic signature scheme is proposed.
Except the efficient advantage, the proxy
agreement being researched both by the
compiler maker and servers can be validated by
anyone at the same time. Only one signature is
used to show the agreement. The correctness
of compilers and executable programs can be
validated without releasing source codes.
Moreover the moderator can easily find out
infection sources.
Keywords: Compilers, distributed system,

computer virus, digital
signature, proxy signatures,
automatic signatures.

1. Introduction

For the time being, there is more and more
convenient in data transmission with the Internet.
Unfortunately, Internet is an insecure
environment, so the computer viruses, crackers,
and many computer crimes may damage or
modify your data in computer. Recently the
computer virus has become a serious security
problem. Some anti-virus packages are
adopted to detect the existence of computer virus.
But unknown virus cannot be detected by the

anti-virus packages. A new concept for virus
detection has been proposed by adopting digital
signatures. Since digital signatures can
guarantee the integrity of signed files, the
signature is used to ensure that the executable
file is not infected by (unknown) virus.

In 1993, Okamoto first proposes a
cryptographic solution for detecting virus by
digital signature schemes [8]. By the way of
checking the consistency of the original
executable program with its corresponding
signature to check whether or not the executable
program is infected by virus.

Another cryptographic scheme proposed
by Usuda et al. [11] is the automatic signature
scheme using compilers. When a compiler
maker adopts honestly-made compilers to
compile source programs, the compiler
automatically produces the executable program
and companying signature without interrupt.
The automatic signature scheme can reduce the
probability of infecting virus because the
correctness of executable programs is validated
by the companying automatic signatures. Thus
any virus infection can be found out after the
verification of the automatic signatures.

However, the compiler maker becomes the
compiling bottleneck because any compiling
tasks should be performed by the compiler
maker. To distribute the compiling load, Lin
and Jan [5] proposed their automatic signature
scheme using a compiler in distributed systems.
Because Lin and Jan’s scheme adopts the
signature scheme with message recovery mode,
their scheme has length restriction for the source
programs. Moreover, their scheme is insecure
[10]. To overcome these flaws, Hwang and Li
[3] proposed their proxy automatic signature
scheme based on the concept of proxy signature
schemes [6]. In Hwang and Li’s scheme, one
signature is used for the proxy agreement of
servers while another signature is used to show
the proxy agreement of compiler makers. It is
inefficient to use two signatures for the proxy
agreement between compiler makers and servers.
Moreover, except compiler makers, no one can

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225212437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

validate the agreement of servers.
To overcome the above problems in

Hwang and Li’s scheme, a new proxy automatic
signature scheme using a compiler is proposed
in Section 3. In the next section, the basic
assumption and model for the new scheme is
described. In Section 4, some security issues
and discussions are given. The final section is
our conclusion.

2. Our Basic Assumptions and Model

The basic assumptions relative our basic
model is first given in the first subsection.
Then the underlying basic model for our scheme
is given.

2.1 Assumptions

Our assumptions are classified into three
classes. One class is the set of assumptions
about virus, one class is the set of assumptions
about the compiler maker, and one class is the
set of security assumptions [3, 5, 10-11]. Three
classes are described, respectively.
Class 1 (About viruses):

This class contains three assumptions
about the computer virus’s operations.
(1) Viruses infect only executable files, not

pure text files.
(2) Viruses damage or modify both executable

files and text files.
(3) The priority of execution for compiler is

higher than the execution of any virus
such that virus cannot interrupt it.

Class 2 (About compiler maker)
This class contains two assumptions about

the compiler maker’s operation.
(1) The compilers are honestly created by the

compiler maker.
(2) Compiler maker cannot refuse to reply to

the requester’s questions per requests.
Class 3 (About security)

This class contains three assumptions
about the security of our scheme.
(1) The discrete logarithm program is a

computational hard problem.
(2) The one-way hash function is strong and

against finding the collisions.
(3) The distributed systems must properly

execute the verification program.

2.2 Our Basic Model

The basic model for our protocol is
described here. In the basic model, there are
six kinds of participates: a trusted third party
(TTP for short), the compiler maker (Um), the
server (Us), the requester (Ur), customers, and a
trusted moderator. Our basic model consists of

five phases: Initialization phase, compiler
maker-server authorization phase,
sever-requester execution phase, custom
verification phase, and judge phase. These
phases are described, respectively.

In the initialization phase, TTP constructs
the system-wild parameters and some public
cryptographic functions. Each legal user
randomly generates his/her private key and
computes the corresponding public key. The
public key of each user is certificated by TTP.

In the compiler maker-server authorization
phase, a server Us requests the compiler maker
Um a compiler, named CR, in order to provide the
compiling service on behalf of the compiler
maker. The compiler maker Um provides the
server Us with the compiler CR which can
automatically and non-interruptively generate
the signature both on source programs and the
corresponding executable file generated by CR.
In order to show the agreement of the compiler
maker and the server, a suitable proxy delegation
algorithm is cooperatively executed both by the
compiler maker and the server. Then the server
will obtain a proxy private key which is only
computed by the server. At the same time the
compiler is integrated with a proxy automatic
signature generation algorithm.

The server Us uses the verifiable compiler
CR to compile the source program M sent from
the requester Ur. Then the generated
executable program E is sent to the requester Ur.
The requester Ur sends the executable program
E when the customer buys it. In our model,
servers are distributed over the Internet. When
a server compiles a source program, the server
adopts the compiler CR to automatically create
both the executable program and its signature.
The modification of signed compilers, source
programs and executable programs can be
detected by checking the consistency of their
accompanying signatures. To reduce the
storage of signatures, being inspired of the
concept of multi-proxy multi-signature schemes
[4], the proxy certificate between servers and
compiler makers is the signature generated by
the cooperation of servers and compiler makers.
Then the proxy certificate shows that the proxy
agreement is made by both the original signer
and servers.
Definition (Discrete-logarithm-based
signature scheme [1, 2, 7])

Suppose that the signer is Ui with the
public key yi and private key xi. A
discrete-logarithm-based (DL for short)
signature scheme is a signature scheme based on
the discrete logarithm problem. In a DL
signature scheme, there is a singing algorithm (r,
s)= sigxi

(M) and a verification algorithm veryi
((r,

s), M) {true, false}, where M is a message.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

An example of DL signature scheme
Some DL signature schemes are proposed

[1, 2, 7]. Here, the DSA in [2] is described.
In DSA, TTP selects two large primes p and q
satisfying q | p-1 and an element g Zp

* with
order q. A user Ui selects a private key xi Zq

*

and computes a public key yi= gxi mod p. To
sign a message m, the user chooses a random
integer v Z*q and computes r = (g v mod p) mod
q and s = r-1(m+ rxi) mod q. The signature for
the message m is (r, s). To verify the signature
(r, s) for m, a verifier checks whether or not r

((gms-1
yi

rs-1
) mod p) (mod q). Hereafter, the

system-wild parameters p, q, and g are also
suitable for the other DL signature scheme.
The public key and private key of the user Ui are
also yi and xi, respectively.
Definition (Automatic signature schemes)

Suppose that the signer is Ui with the
public key yi and the private key xi. An
automatic signature scheme is a signature
scheme with the automatically signing algorithm
S= autosigxi

(M) and the verification algorithm

veryi
(S, M) {true, false}, where M is a message

and S is the signature. The automatically
signing algorithm autosigxi

(M) can be embedded

into a executable program in such a way that the
output M of the executable program and the
signature generation S= autosigxi

(M) are

executed sequentially without any interrupt.
An example of automatic signature schemes

In essential, an automatic signature scheme
is a signature scheme embedded in to an
executable program. If the underlying
signature scheme is a DL signature scheme, then
S= (r, s)= autosigx(M) and very((r, s), M) {true,
false}. To set up system parameters, TTP
generates the system-wild parameters p, q, and q.
TTP also publishes a cryptographic one-way
function h().

Suppose that UA writes a source program
M and needs UB’s help to compile her source
program with signature for the executable
program. UA first sends a request and his/her
source program M to UB. After getting the
executable program E on M by compilers, the
automatic signature signing algorithm
autosigxB

(E||M) is immediately performed to

generate the automatic signature (r, s) on E and
M.
Definition (Proxy Signature scheme)

In the proxy signature scheme [6], an
original signer is allowed to authorize a
designate person as his proxy signer. Then the
proxy signer is able to generate signatures on
messages on behalf of an original signer.
Suppose that the original signer is UO and the
proxy signer is UP. The authorizing algorithm

C = Autho(w, xO, yO, xP, yP), can generate a
proxy certificate C on the proxy warrant w for
the proxy signer UP. Then everyone can
validate C by using CertV(w, C, yO, yP).

To generate the signature on the message
M, the proxy signer can use the proxy signing
algorithm S = ProxySig(C, xP, yP, M) to generate
the proxy signature (S, C) of M. Then the
proxy signature is (S, C) can be validated by
ProxysigV(S, C, yO, yP, M)
An example of a proxy signature scheme

Being inspired of the multi-proxy
multi-signature scheme in [4], our proxy
signature scheme is proposed below. One of
the advantages of the scheme in [4] is that the
proxy authorization is based on the agreement
from not only original signers but also proxy
signers. Hence it is efficient to check the
agreement of original signers and proxy signers
at the same time. The system parameters and
public functions are the same as those in the DL
signature scheme.

The authorizing algorithm C = Autho(w, xO,
yO, xP, yP) is given here, where w is the proxy
warrant. To construct proxy authorization, UO

and UP first select random numbers kO and
kP Z*

q, respectively. UO and UP compute KO =
gkO mod p and KP = gkP mod p, respectively.

Then UP sends KP to UO and UO sends KO to UP.
Both UO and UP compute K = KO KP mod p by
themselves. Then UO finds vO = h(w)xOyO+ kOK
mod q and UP finds vP = h(w)xPyP+ kPK mod q.
UO sends vO to UP while UP sends vP to UO. UO

validates vP by checking gvP (yP
yP)h(w) (KP)K

(mod p) and UP validates vO by checking gvO

(yO
yo)h(w) (KO)K (mod p). Finally both they

obtain the proxy certificate C= (K, V), where V=
vO + vP mod q. The proxy certificate C= (K, V)
can be validated by adopting the equation gV

(yP
yP yO

yo) h(w) (K)K (mod p). Therefore,

CertV(w, C, yO, yP) is to check whether the
equation gV (yP

yP yO
yo)h(w) (K)K (mod p) holds

or not.
To generate the signature on a message M,

the proxy singer UP first selects a random
integer t and computes r= gt mod p. Then UP

computes s= (Vt + xPyP rh(M)) mod q. Then
the proxy signature of the message M is (w, (K,
V), (r, s)). The proxy signature is verified by
using the equations gV (yP

yP yO
yo) h(w) (K)K

(mod p) and gs rV(yP
yP)rh(M) (mod p).

3. Our Realization of Our Proxy
Automatic Signature Scheme
Using a Compiler in Distributed
Systems

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

Our realization is described phase by phase
in the following.
Initialization phase

In this phase, TTP and each participate
generate their parameters listed below.
(1) TTP selects a public large public prime p, a

public prime factor q of p-1, and a public
element g Z*

p with order q.
(2) TTP publishes a cryptographic hash

function h().
(3) Each participate Ui selects his/her private

key xi Z*
q and computes his/her public key

yi= g
xi mod p. Then the public key yi is

certificated by TTP.

Some notations used in our realization are
defined below.

CR: CR denotes the executable compiler
created by the honest compiler maker.

w: w denotes the proxy warrant w between
the compiler marker and servers. The
proxy warrant w specifies the necessary
proxy details. The proxy details at
least include the identities of the original
signers and proxy signers, the public
keys of the original singer and proxy
signers, the compiler CR with the
corresponding information and the
authorization period.

P: P denotes the source program sent from
the requester Ur.

E: E denotes the executable program on the
source program M from the requester
Ur.

Compiler maker-Server authorization phase
Suppose that both the compiler maker Um

and the server Us make an agreement of the
proxy warrant w in advance. In order to show
that they both agree of proxy authorization, both
Um and Us cooperatively generate the proxy
certificate for the proxy signer (server Us) on the
proxy warrant w and the compiler CR. At the
same time, the compiler maker Um sends the
compiler CR requested by the server Us. By
using the compiler CR, the server is authorized to
automatically sign source programs and
executable programs compiled by CR.

Step 1: The compiler maker Um selects a
random integer km Z*

q, computes
Km = gkm mod p

and sends Km to the server Us. At
the same time, the server Us selects a
random integer ks Zq

* and computes
Ks = gks mod p.

Then Ks is sent to the compiler maker
Um.

Step 2: The server Us and the compiler
maker Um computes
K = Km Ks mod p.

Step 3: The compiler maker Um computes
vm = h(w||h(CR))xm ym + km K mod q.
Um sends vm and h(CR) to the server
Us.

Step 4: The server Us validates vm and h(CR)
by the equation gvm ym

ym

h(w||h(CR))KS
K (mod p). If the above

equation holds, Us computes vs = h(w
|| h(CR)) xs ys + ks K mod q, and sends
vs to the compiler maker Um.

Step 5: Compiler maker Um verifies the
correctness of vs by the equation
gvs ys

ys h(w||h(CR))Ks
K (mod p).

If the above equation holds, the
compiler maker Um send the server
Us the compiler CR .

Step 7: Server Us checks the correctness of
CR by using the digest h(CR).
Both Us and Um computes V= vm+vs

mod q.
At last the proxy certificate on the proxy warrant
w and the compiler CR is (K, V). Both the
compiler maker and the server reach an
agreement to authorize the server as a compiler
proxy agent.
Server-Requester execution phase

The requester Ur sends the request and the
source program P to the server Us in order to
compile P with the aid of the server Us. Then
Us sends the executable program E for P and the
corresponding automatic proxy signature to the
requester Ur.
Step 1: The requester Ur generates his/her

digital signature (er, sr) =
signxr(h(Ur||P)) adopting a DL
signature scheme [1-2, 7]. Then
he/she sends (Ur, P, (er, sr)) to the
server Us.

Step 2: The server Us validates (er, sr) on the
digest h(Ur||P) by performing veryr((er,
sr), h(Ur||P)).

Step 3: If (er, sr) is correct, then Us first
validates his/her compiler CR by the
equation gV (ys

ys ym
ym) h(w||h(CR)) KK

(mod p). The server Us feeds his/her
private key xs, the proxy certificate (K,
V) and the program P into the validated
compiler CR. After generating the
executable program E on P, the
compiler CR immediately and
automatically generates the signature
(R, S) on the digest h(E, K, V, h(P)) by
adopting a suitable DL signature
generation algorithm. During the
compiling process, the code and data
memory belonging to CR should be
protected from any unauthorized
modification except CR and the
operation system. Finally, Us sends

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

(w, (K, V), (R, S)), h(CR), and E to the
request Ur.

After obtaining (w, (K, V), E, (R, S)) from
the server Us, the requester Ur checks the
multi-proxy multi-signature as the following
steps.
Step 1: Verify the warrant w and the

certificate (K, V) by the equation

gV KK[ys
ys yc

yc]h(w, h(CR)) (mod p)

Step 2: Check the correctness of the
multi-proxy multi-signature (R, S) by
the equation gS RV[yc

yc]Rh(E, K, V, h(P))

(mod p).

Customer verification phase
The customer Uc sends the request to the

requester Ur for executable program E, and the
request Ur send the executable program E to the
customer Uc.

The customer got the executable program
and its corresponding signature from the
requester. After the customer receives (w, h(P),
h(CR), (K, V), E, (R, S)), he/she verifies it in two
steps.
Step 1: Verify the warrant w, h(CR), and the

certificate (K, V) by the equation gV

KK (ym
ym ys

ys)h(w||CR) (mod p). If the

equation does not hold, reject the proxy
signature (R, S)

Step 2: Check the correctness of the proxy
signature (R,S) and the executable
program E by the equation gS

Rv(ys
ys)R h(E) (mod p). If the equation

holds, the executable program E had
not been modified, and it can be
accept.

Judge phase
When the customer finds the executable

program from the request infected by virus,
several possible situations are considered.

(1) The server adopts an infected
compiler to generate executable
programs.

(2) The request may write a program
with virus.

(3) The executable program may be
infected virus in customer’s
computing environment.

First of all, the customer sends (w, h(P),
h(CR), (K, V), E, (R, S)) to moderator for
detecting the source of virus. The moderator
performs the verification gV KK(ym

ym ys
ys)h(w||h(CR))

(mod p) to check whether the server performed
the invalid compiler. If the verification
equation does not hold, the executable file may
be infected virus in server’s computing
environment. Otherwise, the server is stainless.

If the server used the correct and clean

compiler, then the moderator will have a
suspicion that the request may have a bad
intention. That is the requester writes a virus
program, and sends it to the customer. To
judge this suspicion, the moderator checks the
signature of the executable program E by gS

Rv(ys
ys)R h(E) (mod p). If the equation holds, the

moderator must ask the requester to provide the
source program of E and checks whether or not
the source program contains virus. Finally,
neither the server or the requester produces the
virus, the executable program may infect virus
in the customer’s computing environment.

4. Security Issues and Discussions

Our scheme has some advantages. In the
Compiler maker-Server authorization phase of
Lin and Jan’s scheme, one signature is used to
guarantee the agreement of the server while one
signature is used to guarantee the agreement of
the compiler maker and the correctness of the
compiler sent to the server. It is expensive the
check these thing by perform the signature
verification twice. It is not reasonable that no
one is able to find out the agreement of the
server in the other phases. So, in our Compiler
maker-Server authorization phase, one proxy
certificate is used to guarantee the agreement
both form the compiler maker and servers.
Moreover, this certificate is also used to
guarantee the correctness of the compiler for the
server and anyone. In other words, the
agreement from the compiler maker and server
and the correctness of the compiler can be
efficiently validated by anyone.

In our verification phase and judge phase,
the requester’s source code and the executable
program can be verified without reveal the
content of source code. It can protect the
program author’s privacy. But if the source
program contains some malicious code to infect
others, the original source code must be revealed
to proof its legitimate.

In our scheme, the security is base on the
proxy signature scheme and one-way hash
function. There some possible attacks in our
scheme are discussed below.
Security of proxy signature

The security of the proxy certificate (K, V)
is considered. The malicious users want to
forge the individual proxy certificate (Vm). To
pass the verification equation gvm ym

h(w||h(C
R

))ym

Km
K (mod p), the forger must generate a forged

individual certificate (K'm, V'm). If the value
K'm is determined first, it is hard to find V'm for
the DL problem gV'm ym

h(w||h(C
R

))ymK'm
K (mod p).

If the value of V'm is determined first, it is hard
to find the K'm from the equation K'm [g

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

V'm(ym
h(w|| h(CR))ym)-1]K'm

-1Ks
-1

 (mod p). So, (Km, Vm)

can not be forged. By the similar analysis, it is
also hard to forge another individual proxy
certificate (Ks, Vs). Therefore, the proxy
certificate (K, V) can’t be forged.

The proxy signature can be used to protect
the original signer and the proxy signer. The
original signer must delegate authority to the
proxy signer, and only the proxy signer can
generate the proxy signature. If someone
wants to generate the proxy signature without
the original signer giving authority, he/she must
have original signer’s private key xs to generate
vm. Without the original signer’s private key,
he/she must forge vm and pass the equation vm =
h(w||CR)xmym + kmK mod q. But to solve the
equation is difficult, so the proxy signature can
protect original signer.
On the other hand, the proxy signature can also
protect proxy signer. The proxy signature of
the message E is (R, S), S = (V t + xsysRh(E))
mod q. The original signer have no proxy
signer’s private key, so he/she can’t generate the
proxy signature that pass the equation.
Security of private keys

The malicious may want to forge the
private key from the public key, he/she must
solve the equation yi = gxi mod p. But it is a

discrete logarithm problem.

5. Conclusion

The automatic signature scheme using a
compiler in distributed system is first proposed
by Lin and Jan in 2000[5]. But their scheme
cannot withstand forgery attack and has
restriction of the source program [10].
Although Hwang and Li [3] proposed their
improvement, Hwang and Li’s scheme is
inefficient to use two signatures for the proxy
agreement between compiler makers and servers.
To remove this inefficient problem, a new proxy
automatic signature scheme is proposed. By
the aid of automatic signature schemes, any
modification of original programs can be found
in advance by verifying the signature of original
programs. In our scheme, only one signature is
used to show the agreement between the
compiler maker and servers. Besides, in the
server-requester execution phase, any DL
signature scheme is suitable to adopt. This
property makes our scheme more and more
freely for many conditions. Moreover, the
origin of the infection can be specified to
identify the responsibility.

References
[1] T. ElGamal, “A public key cryptosystem and a

signature scheme based on discrete logarithm,”

IEEE Transactions on Information Theory, Vol.
31, No. 4, 1985, pp. 469-1985.

[2] FIPS PUB 186, February 1991, Digital signature
Standard.

[3] S.-J. Hwang and E.-T. Li, “A Proxy Automatic
Signature Scheme Using a Compiler in
Distributed Systems,” 2004 Information
Security Conference, Taipei, Taiwan, R.O.C.,
Jun. 10-11, 2004, pp. 345- 352.

[4] S. J. Hwang, Chiu-Chin Chen, “New
multi-proxy multi signature schemes,” Applied
Mathematics and Computation Volume: 147,
Issue: 1, January 5, 2004, pp. 57-67.

[5] W.–D. Lin and J.–K. Jan, “An automatic
signature scheme using a compiler in distributed
systems,” IEICE Transactions on
Communications, Vol. E83-B No. 5, May 2000,
pp. 935-941.

[6] M. Mambo, K. Usuda, E. Okamoto, “Proxy
signatures: delegation of the power to sign
message,” IEICE Transactions Fundamentals,
E79-A, No. 9, 1996, pp. 1338-1354.

[7] K. Nyberg and R.A. Rueppel, “Message
recovery for signature scheme based on the
discrete logarithm problem,” Design, Codes and
Cryptography, Vol. 7, No. 1-2, 1996 , pp.61-81.

[8] E. Okamoto, “Integrated security system and its
application to anti-viral methods,” Proc. 6th

Virus and Security Conf, 1993.
[9] C. P. Schnorr, “Efficient identification and

signatures for smart cards,“ Advances in

Cryptology-CRYPTO
,
89, LNCS 435,

Springer-Verlag, 1990, pp.239-252.
[10] Y.–M. Tseng, “Cryptanalysis and restriction of

an automatic signature scheme in distributed
systems,” IEICE Transactions on
Communications, Vol. E86-B No. 5, May 2000,
pp. 1679-1681.

[11] K. Usuda, M. Mambo, T. Uyematsu, and E.
Okamoto, “Proposal of an automatic signature
scheme using a compiler,” IEICE Transactions
Fundamentals, Vol. E79-A, No. 1, pp .94-101,
January 1996.

Proceedings of the 19th International Conference on Advanced Information Networking and Applications (AINA’05)

1550-445X/05 $20.00 © 2005 IEEE

