
Toward an OSGi based Infrastructure for Smart Home Applications

Szu Chi Wang, Kai Peng Chen, and Tung
Yen Lu

Graduate Institute of Computer Science and
Information Engineering,

National I-Lan University, Yilan, Taiwan
wsc@niu.edu.tw

Chi-Yi Lin
Department of Computer Science and

Information Engineering,
Tamkang University, Taipei, Taiwan

chiyilin@mail.tku.edu.tw

Abstract

In this paper we show the steps to implement the
prototype of a smart home environment, with emphasis
on the OSGi framework and first-order logic based
inference engine. Due to the inherent extensibility of
the underlying system, either the interfaces of sensors/
home appliances or the inference rules can be adjusted
and reloaded during runtime. Moreover, we illustrate
several sensor-driven services that may help develop
intriguing smart home applications in the near future.
Related works and future directions are also addressed
to complete our current implementation afterwards.

1. Introduction

The concept and practice of smart homes have
greatly advanced recently. A smart home environment
consists of collaborating ICT (Information and Comm-
unication Technology) facilities interconnected by the
home network and provides us with a more convenient,
autonomous, and secure living space. Inspired by [1],
in this work we focus on exploring the issue of
improving the living experience with the aid of various
modern appliances. Also, we adopt Open Server
Gateway Initiative (OSGi), the main-stream software
platform for developing the smart home software
architecture. OSGi is standardized by OSGi Alliance
[2], with objective to propose an open service platform,
i.e. OSGi Service Platform (OSGiSP), as a common
and unified middleware upon which all smart-home
devices could easily interoperate with each other.

Generally speaking, an intelligent system includes
three building blocks: 1) Database; 2) Knowledge-base;
and 3) Inference Engine. In this paper we present a
prototype implementation of a smart home and discuss
the future directions and challenges. In regard to a
living space, the major contents stored in the Database

are generated by various in-house sensors. It should be
noted that these constituents correspond to automatic/
periodic sensor readings, and thus are vital for on-line
data analysis and context-aware computing. In our
implementation, since the inference engine is built
from scratch, only rule-based inference in first-order
logic has been employed. Nonetheless, we show that
some reasoning useful in daily life can still be carried
out. The rest of this paper is structured as follows. In
Section 2 we introduce the background knowledge.
Then our main results, as well as some discussion on
practical issues and our future directions, are given in
Section 3. Finally, Section 4 concludes this paper.

2. Preliminaries

2.1. UPnP

UPnP [3] is one of the most promising technologies
to support easy-to-use, flexible, standards-based
connectivity for building smart-home applications. It
leverages the existing Internet protocols including IP,
TCP, UDP, HTTP, SOAP [4], and XML, to enable
seamless proximity networking as well as control and
data transfer among networked devices. In 2007, the
UPnP specifications have been approved as
international standards under the ISO/IEC JTC 1,
numbered DIS 29341 [5].

UPnP devices interact with each other via standard
methods specified in the UPnP Device Architecture [6].
The interactions of UPnP devices are peer-to-peer; as a
consequence, an UPnP network scales well and
exhibits robustness. To support quality of service (QoS)
in the UPnP environment, the UPnP Forum also
defines the UPnP QoS Architecture [7]. In the
following, we briefly describe the UPnP Device
Architecture and the UPnP QoS Architecture.

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.92

184

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.92

184

Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing

978-0-7695-3737-5/09 $25.00 © 2009 IEEE

DOI 10.1109/UIC-ATC.2009.92

184

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225212376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.1.1. UPnP Device Architecture. Two general
classifications of devices are defined in the UPnP
Device Architecture: controlled devices (or “devices”
for short) and control points. Devices offer services
requested by control points. Interactions between
devices and control points are in six phases:

1. Addressing: Devices obtain an IP address from a
DHCP server or use the Auto IP mechanism to get
an address.

2. Discovery: Control points acquire the existence of
devices by searching the network or through
unsolicited advertisements sent by devices.

3. Description: Control points learn the detailed
information about the embedded devices or
services in a device.

4. Control: Control points invoke actions on the
devices;

5. Eventing: Devices notify control points on changes
of state by sending event messages;

6. Presentation: Devices present more information
through URLs to allow users to control/view the
device states.

Figure 1 shows the UPnP protocol stack, in which
the SSDP (Simple Service Discovery Protocol) is a
multicast discovery and search mechanism used in the
discovery phase, and the GENA (General Event
Notification Architecture) is an event subscription and
notification protocol. Both SSDP and GENA are
defined in [6]. SOAP, one of the W3C
Recommendations, is the Simple Object Access
Protocol on the basis of XML-based remote-procedure
calls [4].

Figure 1. UPnP protocol stack

2.1.2. UPnP QoS Architecture. Figure 2 shows the
UPnP QoS Architecture [7]. There are three types of
services, namely QosPolicyHolder (QPH) services,
QosManager (QM) services, and QosDevice (QD)
services.

 The QPH service is a repository of QoS policies
that specifies the treatment of traffic on the home
network.

 The QM service discovers and controls QD and
QPH services, in order to request, update, and
release the QoS for various traffic streams.

 The QD service is responsible for managing the
device’s network resources for traffic streams.

The QoS operations are described as follows. The
control point constructs a TrafficDescriptor structure
according to its knowledge of source, sink, content to
be streamed, traffic specification (Tspec), and then
appoints the QM to setup QoS for the traffic stream.
The QM in turn requests the QPH to provide
appropriate policy for the traffic stream described by
the TrafficDescriptor. After a traffic policy is returned
by the QPH, the QM then configures the involving
QDs based on the policy. Upon successfully setting up
the resources on all the involved QDs, the source
device can start transmitting the traffic stream to the
destination device. When the transmission completes,
the control point instructs the QM to release the
allocated resources in the involving QDs.

Regarding the Layer 2 priority of a specific traffic
stream, the QPH can specify the relative importance of
a traffic stream by assigning a TrafficImportanceNumber
in the traffic policy, which is then used by the QD to
derive the technology-specific Layer 2 priorities (e.g.
IEEE 802.1p, HomePlug, HPNA, and DSCP).

Figure 2. Overview of the UPnP QoS Architecture

2.2. OSGi

OSGi is standardized by the OSGi Alliance [1],
whose mission is to create open specifications for the
network delivery of managed services to local
networks and devices. The OSGi Service Platform
specification delivers an open, common architecture
for service providers, developers, software vendors,
gateway operators and equipment vendors to develop,
deploy and manage services in a coordinated fashion

185185185

[8]. The targeted devices of the OSGi specifications
include PCs, set-top boxes, service gateways, cable
modems, mobile phones, consumer electronics, and
many more. With devices that implement the OSGi
specifications, service providers such as telcos, cable
operators, and utilities are able to deliver smart home
services to their customers.

The OSGi framework provides general-purpose,
secure, and managed Java framework that supports
deploying extensible and downloadable Java-based
service applications known as bundles. An OSGi
service platform is an instantiation of a Java virtual
machine, an OSGi framework, and a set of bundles [9].
The OSGi framework manages the installation and
update of bundles in an OSGi environment in a
dynamic and scalable fashion by managing the
dependencies between bundles and services in detail.

The functionality of the OSGi framework is divided
into five layers (shown in Figure 3):

1. Security Layer: It defines a secure packaging
format as well as the runtime interaction with the
Java 2 security layer.

2. Module Layer: It defines a modularization model
for Java, with strict rules for sharing Java packages
between bundles or hiding packages from other
bundles.

3. Life Cycle Layer: It provides an API to manage the
bundles in the Module Layer. The API provides a
runtime model for bundles and defines how
bundles are started and stopped as well as how
bundles are installed, updated and uninstalled.

4. Service Layer: It provides a dynamic, concise and
consistent programming model for Java bundle
developers, simplifying the development and
deployment of service bundles by decoupling the
service’s specification (Java interface) from its
implementations.

5. Actual Services: The smart-home applications/
services.

Figure 3. OSGi framework layering

The bundles are allowed to select an available
implementation at run-time through the framework
service registry, in which bundles register new services,
receive notifications about the state of services, or look
up existing services to adapt to the current capabilities
of the device. The benefit of the framework design is
that new bundles can be installed for added features or
existing bundles can be modified and updated without
requiring the system to be restarted.

The way that the layers interact with each other is
shown in Figure 4.

Figure 4. Interactions between layers

2.3. OSGi-to-UPnP Transformation

The UPnP base driver can add virtual UPnP devices
to the UPnP network by exporting OSGi services. The
system response and flexibility can be enhanced in this
way. For example, provided that the internal control
center is an UPnP control point and regulates various
environment parameters through the OSGi gateway,
we can construct an OSGi bundle for conciliation
service that communicates with and integrates the
involved external controllers, as a virtual UPnP device;
such design may provide better coordination.

3. Main Results

3.1. System Description

First, we employ the OSGi platform as the basis of
a service-oriented infrastructure. As mentioned above,
such framework in a smart home environment supports
dynamic load and update of services. Family members
can login via the Internet. After authentications are
confirmed by the residential service gateway, they can
monitor and manipulate the services and bundles via a
Web-based GUI. The sensors and appliances over the
home network can also access the Internet through the
residential service gateway. Figure 4 illustrates the
major components of our system infrastructure.

186186186

Context-aware service providers

Gateway
operator

Internet
(wide-area network)

OSGi-compliant
Residential gateway

Home
network

Computers

Mobile devices
Consumer
electronics
appliances

SmartCam array

Figure 5. System overview

On the other hand, to make our living space more

intelligent, we deploy various inter-networked sensors
and appliances in the smart home environment. These
equipments and the corresponding services should
collaborate seamlessly to perform automatic tasks. The
main sensors and home appliances in our current
implementation include: 1) handheld PDAs equipped
with GPS and 802.11b; 2) in-house temperature, sound
level, and light sensors; 3) wireless smart cameras; 4)
RFID tags and transponders. Since all sensors, in some
sense, can capture the sub-set of environmental states,
they should serve as context providers to augment the
underlying computer system with context awareness.
More specifically, these sensor datum can be further
utilized to make the behavior of applications more
“intriguingly” to the family members. See Section 3.2
for further details.

In regard to reasoning and decision making, in our
implementation we simply consider inference in first-
order logic. More specifically, we adopt Prolog, a
declarative language that is widely used for logic
programming, as the core of our inference engine. The
inference rules are preloaded into the reasoning service.
To increase the extensibility of our rulebase, however,
the administrator can modify the inference rules and/or
create new ones afterwards. By virtue of the properties
of OSGi framework, these operations can be made
over the Internet, and more importantly, in a dynamic
manner without system rebooting.

We use MySQL to store both the various sensor
datum and the user-defined rules. It is to be noted that
the sensor samples are low-level, i.e. they are typically
represented by streams of numeric values. Therefore,
they should be transformed into the high-level “facts”
for our Prolog-based inference engine. Moreover, one
of our prime future works lies in developing an on-line
algorithms that can synthesize higher-level knowledge
(such as ontology-based context information) from
these low-level sensor datum.

To somewhat verify the feasibility of our design,
we consider the scenario as follows. As shown in
Figure 6, a PDA-equipped family member’s identity,
location, and trajectory can be (separately) recorded by
the in-house database system. Additionally, the in-
house control center can not only provide GPS-aided
outdoor navigation but also deliver instant message in
case some alarm has been derived by the rule-based
inference engine. Note that due to lack of space, Figure
7 only provides a simplified version of alarm reasoning.
Since these “facts” are automatically and continually
generated from sensor datum, the reasoning process
should be executed periodically to make sure that
alarms are triggered based on the current environment.

Figure 6. Illustrative example

187187187

Figure 7. Inference in first-order logic

The update interval is usually application-specific

and relates to sophisticated optimization techniques,
hence the relevant issues are beyond the scope of this
paper.

3.2. Discussion

As mentioned above, uncertainty roots in sensor
outputs due to the noise in sensor inputs and the partial
observations of events inherent in sensor networks.
Moreover, we lack uncertain representation techniques
and queries are carried out by the adopted database
system via SQL expressions, which is not fit for
uncertain data management [11][12]. Also in practice,
queries evaluated with respect to specifications in a
sensor network should return likelihood values instead
of simply yes/no answers [13]. Therefore, it is crucial
to tackle uncertainty associated with the stored sensor
datum in a smart home environment.

A declarative programming language Snlog has
been presented recently [14]; note that Snlog is the
function-free subset of Prolog. As a consequence, the
most important future directions include introducing
this declarative this programming language into our
Database/Knowledge-base systems and developing the
corresponding in-network evaluation services. We
believe that putting all these cutting-edge techniques
together can contribute to next-generation smart home
technologies.

4. Conclusions

In this paper, we demonstrate how to implement a
prototype smart home environment by virtue of the
OSGi framework and simple rule-based inference in
first-order logic. The extensible and flexible software

architecture of our system eases adjusting and
reloading the interfaces of sensors/appliances and the
rulebase during runtime. Moreover, we show several
sensor-driven services that may bring about the future
smart home applications.

References
[1] T. Gu, H. K. Pung, and D. Q. Zhang, “Toward an
OSGi-based infrastructure for context-aware applications,”
IEEE Pervasive Computing, Vol. 3(4), Oct.-Dec. 2004, pp.
66-74.

[2] Open Services Gateway Initiative (OSGi) Alliance,
http://www.osgi.org/.

[3] Universal Plug and Play (UPnP) Forum,
http://www.upnp.org/.

[4] Simple Object Access Protocol (SOAP),
http://www.w3.org/TR/soap/.

[5] ISO/IEC DIS 29341,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=45415.

[6] UPnP Device Architecture Version 1.0,
http://www.upnp.org/specs/arch/UPnP-DeviceArchitecture-
v1.0.pdf.

[7] UPnP QoS Architecture Version 2.0,
http://www.upqnp.org/specs/qos/UPnP-qos-Architecture-v2-
20061016.pdf.

[8] OSGi Service Platform Release 4,
http://www.osgi.org/Specifications/HomePage.

[9] C. Lee, D. Nordstedt, and S. Helal, “Enabling smart
spaces with OSGi,” IEEE Pervasive Computing, Vol. 2(3),
July-Sept. 2003, pp. 89-94.

[10] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles, “Towards a better understanding
of context and context-awareness,” in Proc. Int’l Symp.
Handheld and Ubiquitous Computing, Springer-Verlag, pp.
304-307, 1999.

[11] L. Antova, T. Jansen, C. Koch, and D. Olteanu, “Fast
and simple relational processing of uncertain data,” in Proc.
IEEE ICDE, Apr. 2008.

[12] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong,
“Approximate data collection in sensor networks using
probabilistic models,” in Proc. IEEE ICDE, pp. 48-60, Apr.
2006.

[13] A. Singh, C. R. Ramakrishnan, I. V. Ramakrishnan, D.
S. Warren, and J. L. Wong, “A methodology for in-network
evaluation of integrated logical-statistical models,” in Proc.
ACM SenSys, pp. 197-210, Nov. 2008.

[14] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P.
Levis, S. Shenker, and I. Stoica, “The design and
implementation of a declarative sensor network system,” in
Proc. ACM SenSys, pp 175-188, Nov. 2007.

188188188

