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Abstract 

 
A backward safety analysis model that can deal 

with dangerous status by virtue of fuzzy theory is 
proposed in this paper. Fuzzy Petri Nets (FPN) is 
developed and applied to the safety analysis for three 
types of level crossing surveillance systems of Taiwan 
Railway Administration. The numerical results of 
proposed FPN models are fairly plausible.  
 
1. Introduction 
 

Complex component-based systems used in 
mission- or safety-critical domains, including defense 
applications, air traffic control, railway signaling and 
medical applications play an important role in our 
modern society. One important task in the development 
of these systems is the construction of safe cases and 
risk assessment models that are used to determine 
quantitative measures for failure or hazard probabilities. 
These safety analysis models should be intuitive, 
compositional and have the expressive power to model 
both software and hardware behavior [1]. In industrial 
projects, currently event-based models such as Fault 
Trees or state-based models such as Markov chains are 
used. Each of these models has it limitations [2]. State 
Event Fault Trees (SEFTs) are a hierarchical and visual 
model that integrates elements from stochastic state-
based models (Markov-chains) with Fault Trees [3]. A 
model that combines elements from Fault Trees and 
Markov Models was proposed to improve expressive 
power of safety cases [4].  

Recently Petri nets have been used to model and 
analyze for such complex component-based systems 
regarding properties as safety and failure-tolerance [5, 
6]. Many fairly good results of real case studies proved 
the advantages of Petri nets since hardware, software, 
and human behavior can be modeled using the same 
model. However, complex component-based systems 
themselves are required to handle fuzzy information 
for safety critical issues. It is strongly recommended 

that fuzziness must be taken into account for safety 
analysis. Combining with Petri net and knowledge 
representation, a Fuzzy Petri Nets (FPN) can be used to 
depict fuzzy generating rules that can be taken as rules 
of fuzzy relationships between two propositions. 

Using the hazardous states and fuzzy information 
that have been identified in the preliminary stage, it 
may be possible to analyze backward to the system, 
that is, hardware, software, and human, using FPN and 
thus to derive safety requirements. In this paper, we 
propose a safety analysis method using a FPN model 
which can handle fuzzy information. The effectiveness 
of this method is demonstrated with a case of level 
crossing surveillance systems that are already in 
operation or will be installed in near future by Taiwan 
Railway Administration (TRA). 

The structure of this paper is organized as follows. 
In section 2, we describe fundamental principles of 
FPN. Section 3 illustrates the safety models of three 
scenarios of level crossing surveillance systems, and 
numerical tests are conducted to calculate fuzzy 
numbers to validate the proposed approach. Finally, 
the conclusions are drawn in section 4. 
 
2. Fundamental Principles 
 

FPN expanded from a Petri net is a bidirectional 
graph that has place and transition nodes like the Petri 
net. However, in FPN a token incorporated with a 
place is associated with a real value between 0 and 1; a 
transition is associated with a certain factor (CF) 
between 0 and 1. At the same time enabling and firing 
rules of a transition are also updated. There are nine 
elements in the structural definition of FPN [7]. The 
definition is follows: 

FPN =(P, T, F, I, O, D, μ,α ,U)  (1) 
where,  
P={p1,p2,…,pn} is a finite set of places; corresponding 
to the propositions of fuzzy production rules; 
T={t1,t2,…,tm} is a finite set of transitions,  P∩T=φ ; 
corresponding to the execution of fuzzy production 
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rules; 
F  is a set of directional arcs, F ⊆ (P × T) ∪ (T ×P); 
I: is the input incidence matrix and I = {δij} , where δij 
is a logical value, δij ∈ [0,1] ,δij = 1 when Pi is the 
input of Tj, otherwise, δij = 0, i=1,2,…,n, j=1,2,…,m; 
O: is the output incidence matrix and O={γij}, where γij 
is a logical value, γij∈ [0,1], γi=1 when Pi is the output 
of Tj , otherwise γij=0,i=1,2,…,n, j=1,2,…,m; 
D={d1,d2,…,dn} is a finite set of propositions of fuzzy 
production rules. |P|=|D|; |.| denotes the number of its 
elements; 
μ: T→[0,1] is the function which assigns a threshold μi  
between 0 and 1 to transition ti; 
α: P→ [0,1] is the function which assigns the degree 
of truth between 0 and 1 to each place; 
U=U{u1,u2,…,um}, where ui denotes the certainty factor 
(CF) of Ri, which indicates the reliability of the rule Ri, 
and um ∈ [0,1]. 
 

Knowledge rules of FPN are summarized as follows: 
R1: IF di  THEN  dj ⇒ (CF=ui) ⇒ di →dj 
R2: IF di AND  dj THEN  dk ⇒ (CF= ui) ⇒ di ∩ dj →dk 
R3: IF di  OR  dj  THEN  dj ⇒ (CF=ui) ⇒ di ∪ dj→dk 
 
In these rules, di and dj represent precondition set, dk 
represents an action or conclusion. ui∈ [0,1] is a CF of 
a rule. 

During fuzzy inferring and, we should establish 
three sets (RS, IRS, AP) for each place. For a specific 
place pi: 
RS(pi): a reachable place set of pi, no matter how many 
transitions are fired. 
IRS(pi): a place set that pi can reach through one 
transition. 
AP(pi): all the places that through one transition can 
reach the place that pi can reach through one 
transaction. 

In order to enhance inferring efficiency, backward 
inference mechanism shown in Fig. 1 is used. 
 

 
 

    

 
Figure 1. Backward fuzzy inference 

mechanism 
 
3. FPN Models of Level Crossing 
Surveillance Systems 
 

The existing level crossing surveillance system of 
TRA is based on infrared detection technology. It is 
now in progress that a video image processing-based 
surveillance system will be installed at several level 
crossings. TRA has, therefore, three types of level 
crossing surveillance systems in the future, i.e. the 
infrared, the video image processing and both of them 
(hybrid one). Three Petri nets models are hence 
constructed for these level crossing surveillance 
systems. An example of Petri nets model of the hybrid 
system combining the infrared and the video image 
processing technologies is shown in Fig. 2. The states 
of place and transition for this hybrid system can be 
summarized in Table 1. 

 

 
Figure 2. Fuzzy petri nets of the hybrid 

system 
 

Table 1. States of place and transition of the 
hybrid system 
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The fuzzy analysis of the hybrid system which is 
the standard type 3A of TRA’s level crossing 
surveillance system can be performed by defining 
fuzzy functions and fuzzy rules.  
 
3.1. Fuzzy functions 
 

The relative situations of Petri nets conflicts in this 
paper are: ”system is normal or abnormal”, “video 
images are recognizable or not recognizable”, “incident 
occurs or not occur”, “signals are received or not 
received” and “train can pass or not pass”. The paired 
fuzzy functions are defined with common indexes 
shown in table 2. 

Table 2. Fuzzy functions and indexes 

 
 
The upper limit values of fuzzy index for video 

image processing surveillance system and infrared 
surveillance system are set as 2.2401 K-hours and 
1.464 K-hours, respectively (shown in Fig. 3 and 
Fig.4). 

 
Figure 3. Fuzzy function of video image 

system 
 

 
Figure 4. Fuzzy function of infrared system 
 
The warning time of a level crossing device till the 

train arrives is at least 30 seconds based on TRA’s 
operation rules. The upper limit value of fuzzy index 
for video recognition is hence set as 30 seconds 
(shown in Fig. 5). As to the time to detect incident 
whether occurs or not, it needs at least 2 seconds for 
infrared surveillance system to identify. The upper 
limit value of fuzzy index for infrared interrupts is set 
as 2 seconds (shown in Fig. 6). 
 

 
Figure 5. Fuzzy function of video image 

recognition 

 
Figure 6. Fuzzy function of incident occurring 

 
The upper limit value of fuzzy index for signal 

receiving is represented by ration of signal noise in 
percentage (shown in Fig. 7). When train driver 
receives signals to stop the train, the distance from 
level crossing gate for car approaching is set as 21.6 
meters according to TRA’s 3A type level crossing 
manual (shown in Fig. 8). 
 

 
Figure 7. Fuzzy function of Signal receiving 

 
Figure 8. Fuzzy function of train passing 
 
3.2. Fuzzy rules 
 
The fuzzy rules for Petri nets model of Fig.2 are 
summarized in Table 3. 

Table 3. Fuzzy functions and indexes 
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The rules above are based on single condition, 
multiple conditions of fuzzy inferences are therefore 
not necessary to be discussed here.  
 
4. Numerical Tests 
 

Based on fuzzy rules above, the fuzzy values of 
final states for three FPN models are computed 
according to various scenarios if the input value α(P0) 
=1. For instance, the fuzzy values are 0.64287 and 
0.54644, respectively when video image surveillance 
system is normal while infrared surveillance system is 
abnormal under the condition of 0.8 K-hours. Table 3 
shows the input values of fuzzy functions under 
various scenarios. 

 
Table 3. Input values of fuzzy functions under 

various scenarios 

 
 

The computed fuzzy values of final states of FPN 
models for “train can pass”, “train stops” and 
“dangerous status” under various scenarios are 
summarized in Table 4.  
 

Table 4. Numerical results of various 
scenarios 

 
 

Except scenario A and H the infrared system 
performs better than the video image surveillance 
system in “train can pass” and “train stops”, it is found 
that the final state of video image surveillance system 
significantly differs from the infrared system under 
most scenarios. A train driver can simply judge 
whether to stop the train with the help of video images 

which reliability is naturally higher than the infrared 
system. 
 
5. Conclusions 
 

The dangerous status of the hybrid level crossing 
surveillance system can be detected under following 
necessary condition: 

IF {μ6 > μ1 OR μ3 > μ2} AND {μ8 > μ7 OR [μ9 > 
μ10 AND μ13 > μ12]} 

In addition, the fuzzy values of final states of three 
FPN models are also computed under various scenarios 
to identify the safety or risk status of certain level 
crossing surveillance system by constructing 
customized fuzzy rules. 

However, it is recommended that multiple rules of 
fuzzy inferences are taken into account and the 
thresholds of several fuzzy values should be also 
specified to enhance the reliability of presented FPN 
models. In the future we’ll develop a model based on 
Fuzzy Colored Petri net (FCPN) which is expected to 
have more expressive power than other Fuzzy Petri 
nets. 
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