
MARS- A RISC-based Architecture for LISP

Hung-Chang Lee, Feipei Lai, Jenn-Yuan Tsai, Tai-Ming Parng, and Yu-Fang Li

Department of Elecmcal Engineering
National Taiwan University

Taipei, Taiwan, R. 0. C.
Tel: 886-2- 3635251 ext 241

Abstract
A RISC-based chip set architecture for Lisp is presented

in this paper. This architecture contains an instruction fetch unit
(IFU) and three processing units -- integer processing unit
(IPU), floating-point processing unit (FPU), and list
processing unit (LPU). The IFU feeds instructions to the
processing units and provides the branch handle mechanism to
reduce branch penalty; the IPU is optimized for integer
operations, smng manipulation, operand address calculations,
and some cooperation affairs for constructing a multiprocessor
architecture; the FPU handles the floating point data type,
which conforms to IEEE standard 754; and the LPU handles
Lisp runtime environment, dynamic type checking, and fast list
access. In this architecture, not only the critical path of complex
register file access and ALU operation is distributed into LPU
and IPU, and the tracing of a list can be done fast by the
non-delayed cur or cdr instructions of LPU. But also, by using
a new branch control mechanism (called branch peephole), this
architecture can achieve almost-zero-delay branch and
super-zero-delay jump. Performance simulation shows that this
architecture would be about 4.1 times faster than SPUR and
about 2.2 times faster than MIPS-X.

I. Introduction

Lisp, due to its extensibility and flexibility, has gained
popularity these days. Nevertheless, Lisp programming
language has some features that are difficult to implement
efficiently on coni-entional computers. These features include
frequent function calls, slow list traversal, scope issue of
special variable, polymorphic operations, and automatic
garbage cell recovery[l,2,6].

The Lisp machines, according to Pleszkun's[13
classification, can be divided into three classes. First, the
unspecialized stack-based microcoded Lisp processors (e.g.
Symbolics 3600[2], Lambda[3]). Second, multiprocessor
architectures where each processor serves a specialized function
(e.g. Fairchild FAIM-1141). Third, multiprocessor systems
composed of pools of identical processing elements aiming for
high performance through concurrent evaluation of different
parts of a Lisp program on separate processors (e.g.
EM-3[5]). Another class of Lisp machine designed recently is
NSC-like architecture with some enhancements to support Lisp
such as SPUR[6], or by appealing to compiler to reduce the
hardware complexities such as MIpS-X[7-9].

A limited instruction set suitable for Lisp execution are
presented, and a RISC-based architecture, based on this
instruction set, is designed. In fact, the architecture model of
MARS has three folds. The first fold is the Lisp environment
administrator and list traveling access. The second one is the
general computational unit, and the f i a l one is instruction feed
and control transfer unit. Each fold has respective chip to carry

its task. These synchronized chips take advantage of
instruction format parallelism and get parallel execution
whenever possible.

The next section gives an overview of the systems. This
follows by a description of the micro-architecture and
instruction pipeline of MARS in section 111 and N. Section V
follows with a performance evaluation using the simulation
tools. Conclusion and status are stated in the last section.

Svstem overview

MARS [19] is a VLSI processor board for Lisp
processing. Inside each board, shown in figure 1, there are
CPU chips, i.e., IFU, (Instruction Fetch Unit) and IPU
(Integer Processing Unit) as well as special chips, FPU
(Floating-point Processing Unit) and LPU (List Processing
Unit), Each processor board separate Instruction, Address, and
Data buses.

I I F " I I DCache I Fl Memory

Figure 1 . MARS board level block diagram

IFU, built on a single chip together with a 32-kilobyte
instruction cache, is the buffering, controlling mechanism
between the instruction cache and the datapath chips (IPU,
FPU, LPU). It is designed to interleave instruction fetch and
execution and achieve coordinated execution among IPU, FPU,
and LPU. The block diagram is given in figure 2, in which
there are a remote PC (Program Counter) chain, a displacement
adder, a retum address stack (RAS) to store PC for calyretum
instruction pair and dual instruction buffers for holding
sequential and branch instruction streams.

IPU, shown in figure 3, retains the integer datapath and
some control part of a common RISC CPU[lO], performing
integer arithmetic, shift, logical operations, and address
calculation for data operands of all datapath chips. There are a
flat 32 word register file, a 2-level internal forwarding latch,
and a shifter. FPU conforms to IEEE standard 754. It has

separate, pipelined Add/Sub and Mul/Div units to provide
spatial and temporal parallelisms, a hardwired control unit to
directly support for hardware format conversion, a
synchronous interface protocol to tightly couple with other
chips, and a.32-word 64-bit register file.

I
Outlet and Patiial demde

Sequential
Instruction

Buller 1 Branch
Target

Instruction
buffer b

I *
irom Instrunion Cache to instwnlon Cache

Figure 2. The IFU block dlagram

Figure 3. The IPU block diagram

LPU, shown in figure 4, provides hardware primitives
for list processing, such as car, cdr, cons, rplaca (replacea),
rplacd (replaced). It is featured with a big windowed register

file to expedite procedure call, a tag manipulation datapath, and
a conaol register for shallow binding.

CCMMU (Cache Controller and Memory Management
Unit) is responsible for the operation of local data cache on
each processor board, addressing translation, and data
coherency protocol among processors. Local data cache will be
as large as 128 KB and data will be heuristically prefetched in
the face of pointer or list. Lock-up free cache design together
with the cache coherency protocol- phoenix- are proposed in
[IT].

1 insttuclin bus input pads

Conlrol Registers

I
address (L data bus pads

Figure 4. The LPU block diagram

B bus I 1

Compa-
rator 1

At first, we intended to adopt integrated LPU architecture
like Symbolics 3600. but owing to the unique configuration
and some other consideration inside MARS (M A R S can run
conventional language, for instance C, in different way)[191,
an on-chip instruction cache inside LPU will not provide any
speed advantage when all the chips wait for instructions coming
from the instruction cache and then decode their own
instructions. Besides, some extra problems incurring with the
design of on-chip cache has been deeply discussed in [24-251.
Therefore, we decide to separate the instruction fetch unit for
conventional LPU, and build IFU to accommodate the remote
PC unit and the necessary logic for buffering and control of
instruction access. This decision did cause some problems,
thereby influenced our designs for instruction set and
microarchitecture, but it provided us valuable experiences to
deal with such arrangement and the result can still meet our
initial requirement.

Micro-Architecture

The instruction set of LPU[23], shown in Table 1, was
carefully designed to speed up the execution of Lisp program
and to reduce the time wasted by traffic between LPU and
IPU/FPU. In order to reach this goal, there are some
instructions executed parallel by LPU, IPU and/or FPU.

Parallel execution of IPU and LPU happens when IPU
executes some ALU operation and LPU checks the
corresponding tag of source registers and generals exception if
data type of operands are neither fix number nor character.
Another parallel execution happens when LPU loads or moves
data, used by IPU or FPU, into a frame register. Besides IPU
and FPU, LPU also writes this data into the corresponding
register. With this parallel execution, we need not take extra
instructions to transfer data from LPU to IPU or to FPU. The
instructions of LPU with this kind of parallel execution are cur,
pop, load and mov.

&plemented list primitives are car, cdr,
cons, rplucu and rplucd. The cur and cdr instructions are similar
to load instruction except that the least two significant bits of
address are masked with 00 or 01, respectively. In LPU
pipeline stage, there is no delay for load instruction, so the trace
of a list could be done fast by cdr and cur instructions. The
rplaca and rplucd instructions are similar to the srore instruction
except masking the address bits the same as in cur and cdr. The
cons instruction executes the action of rplucu by using global
register R7 (free cons cell pointer) as address and moves R7 to
destined register. A complete cons primitives in Lisp could be
done by a cons instruction following a rplucd instruction to
replace the cdr of this cons cell and a cur instruction to update
the free cons cell pointer. All above instructions are executed
with parallel type checking. If the data type of source address
register is not cons or nil, it will result in an exception.

. . .

Ai2 Stack oDeration
The stack operation can be done in one instruction cycle

by the push and pop instruction of LPU. Stack pointer register
(SP) in LPU which decreases by 2 (distance of double-word)
before executing the push instruction and increases by 2 after
executing the pop instruction automatically. The push and pop
instructions are mainly used when binding or unbinding the
special variables and when saving or restoring frame windows.
The p o p instruction, as cur and cdr, is a non-delay load
instruction which can supply data for the next LPU instruction
without delay. The content of stack pointer register can be read
or written by rd-sp or wr-sp instructions.

w c t i o n s include: loud instruction
which loads data from memory, mov instruction which moves
data from a register to another register, l o u d f and store f
instructions which generate address for FPU and f-to-1
instruction which transfers data from FPU to LPU. Note that
the loud and mov instructions are parallel executed by IPU,
FPU and LPU when the destination is a frame register and the
action of transferring data from LPU to IPU or to FPU can be
done by the mov instruction.

The tag value of a register can be loaded with the
immediate tag value packed in instruction or moved from
another register. The data field of destined register could be the
destined register itself or another register which is the second
source register specified in the instruction. -

In the MARS system, comparison of two operands and
branch are executed in one instruction cycle with zero or one
delay. The compare & brunch instruction of LPU compares two
operands with eight kinds of conditions encoded in 3-bit
condition code and sends the compared result to the other
processing units.

A-
The actions of jumping to target address and saving of

program counter of function call and return instructions are
done by IFU, while LPU updates the pointer of current frame
window and checks whether control register file being
overflowfunderflow or not. If an overflow or underflow
happens, LPU causes an exception.

Decial lnstructlons . .
There are some special instructions of LPU which could

be executed only in kernel mode. The rd-lpsw and wr-lpsw
instructions transfer data between registers and LPU processing
status word which contains the current window pointer, saved
window number and some system status. The lpu-wake and
lpu sleep instructions set LPU to be active or inactive. When
LPD is inactive, the MARS system is acting as a general
purpose computer without hardware support for Lisp.

B. T w W and Data re~r-
storage

MARS represents List pointer or immediate data with a
38-bit tagged word consisting of a 6-bit tag and a 32-bit pointer
or data. The data types represented by tag are shown in Table
2.

There are three immediate data types: character, fix
number and short floating-point number. The first two are used
by IPU and the last one is used by FPU. We decided to
represent short floating-point number by an immediate type
because all the IPU, FPU and LPU have a user-view of
32-word control register file. The register files are monitored
by LPU as a frame window and saved in the LPU's frame
window while executing function call. The 32-bit short
floating-point number has the same width as the data field of
the LPU's register, therefore, it can be used as an immediate
data and stored in the LPUs frame window.

The type of data which is one of the following types: an
immediate number, an indirect number, or a list is recognized
by a type-checking hardware in parallel with the execution of
data itself -- usually under the assumption of integer type, or
with the comparison of LPU-compare-branch instruction. The
other sixteen tag values are defined by compiler to identify
pointed object such as string, vector and function.

Poor data de&
MARS architecture was design with emphasis on speed

and simplicity rather than on data or hardware density. Board
level data bus are 64 bits because of the intended one data fetch
per cycle for the double floating point. The memory
implementation particularly has poor Lisp data density since a
@-bit system is used instead of a brand new 38-bit one.

Several approaches exist for handling 38-bit data type:
(1) build the whole system with 38-bit words,
(2) allow unaligned cache access, or
(3) place 38-bit words in aligned @-bit words.

We adopt the last one because of three considerations. First,
many off-the-shelf subsystems use 32 bit words as an integral
unit. Second, unaligned cache accesses would increases the
cache cycle time and therefore, decreases the system
performance. Third, since MARS runs other conventional
languages (e.g. C and Fortran), a 32-bit words integral unit
memory system is preferred.

MARS stores the 38-bit tagged word in memory by two
32-bit words aligned in a double-word boundary (data in even
word and tag in odd word) with 26 bits unused. The data bus
connecting four processing units and cache memory is @-bit
wide -- 32 bits are needed by the IFU and IPU, 64 bits by the
FPU and 38 bits by the LPU. This means that we can
load/store one or two 32-bit words in one memory cycle.

A list cons cell consisting of car's tagged word and cdr's
tagged word is represented by four contiguous 32-bit words

aligned in the quad-word boundary of memory. The first half
of the double-word contains the car's tagged word and the
second one contains the cdr's tagged word. We can access the
car's tagged word of a cons cell by setting the least four
significant bits of the cell's address to 0000 and access the
cdr's tagged word by setting these four bits with. 10oO.

C RlE-RZ3

D R24-R31

C I316423

8 R8 -R15

C R16-RZ3

D RZ4-R31

C R16-RZ3

C. Registers o r g m . .

W4.L-L

N & M W5.IN

W5.LOWL

W6.IN W5.0LJl

W6 .LOCAL

W6 .U W.IN

W.W%

The registers organization in LPU plays the role as a
runtime environment administrator. In Lisp, the arguments,
local variables and special variables are accessed frequently.
These variables are allocated in register fiie and maintained in a
fast scheme described later. There are two kinds of register files
in LPU, one is the control register file and the other is the
binding register file. The control register file organized as an
overlapping frame window structure is used to keep the
activation records of callers and callees. The 32-word register
file of IF'U and LPU are mapped to one of the frame windows,
so user can view the control register as a 32-word register
frame window whose data may be either integer (in IPU),
floating-point number (in FPU), or pointer (in LPU). The
binding register file is used to provides the dynamic scope of
special variables and keep the binding value of theirs. We use
shallow binding scheme to bind and restore the special
variables.

rol r-
The control register file is organized as multiple,

overlapping, fixed-size frame windows (shown in figure 3,
similar to the multi-window register file of RISC I&II [IO].
However, the control register file differs to that of RISC I1 in
that it has to monitor the 32-word register files of IPU/FPU and
keep their contents in the corresponding frame windows in
function calling. We designed a mechanism, which will be
described later, to map the registers of IPUFPU into the
control register file of LPU across function call/return. There
are 8 frame windows and totally 136 registers in the control
register file, but only 32 registers (one frame window) can be
seen by user at a time. The user's view of 32-word registers is
further partitioned into four 8-word register sub-frames -- i.e.,
global, input, output, and local. The partition of the 32-word
registers differ to that of RISC 11, which has 10 registers for
global, 6 for input, 6 for output and 10 for local, for the
reasons that Lisp uses more arguments and fewer local
variables than C or Pascal, and this arrangement makes the
mapping of IPU/FPU's registers to the control register file
easier. The global frame shared by all windows is used to hold
some environment variables such as return value and pointer to
the top of heap memory. The input frame is intended to place
input arguments from parent function (caller). On the other
hand, the output frame is used to hold and send arguments to
child funcdon (callee). The output frame of caller is overlapped
with the input frame of callee. U n i f u n c n o n i s m e d , the
window viewed by user switches from caller to callee and the
output frame of caller now becomes the input frame of callee.
The local registers frame which does not overlap with other
window is used to store local lexical variables or temporary
values.

between IPU and LPIJ
In the MARS system, only LPU has frame-window

register structure and there are merely 32 registers in IPU and
FPU. How do we keep IPUs and FPUs register data when
executing function call? We solve this problem by the following
mechanisms. First, the 32-word register file of IPUFPU is
partitioned into four 8-word register groups which are mapped
into the four sub-frames of LPU's current frame window.
Figure 5 shows the mapping of IPU/FPU's 32-word register

into LPUs frame window. A group registers (RO - R7) and C
group registers (RI6 -R23) of IPU/FPU are always mapped
into the global frame and local frame of LPU's current frame
window. In contrast, B group registers (R8 - R15) and Dx
group registers (R24 - R31) of IPU/FPU are mapped into the1
input frame and output frame or vice versa according to the
current window number of LPU being even or odd. Assuming1
that the window number of current function is 0, then B group1
registers are mapped into the input frame and D group registers
are mapped into the output frame. After calling a child function,
the frame window number is increased by one and now the D
group registers of IPU/FPU are mapped into the input frame of
window 1 , which is the output frame of window 0 (see figure
6). This means that we do not have to save the 8 registers
corresponding to the output frame of current window when
executing function call. Likewise, A group registers mapped
into the common global frame of all frame windows do not
have to be saved, so only the remaining two 8-word register
groups mapped into local frame and input frame need to be
saved into or restored from the corresponding frames of LPU's
current window when executing function call or return.

The translation from IPU/FPUs register number to the
sub-frames of LPU's current frame window can be
implemented easily by the circuit shown in figure 7. The turn
signal sent from LPU is reset to 0 when the number of LPU's
current frame window is even and is set to 1 when frame
window number is odd. When turn is 0 the translation is an
identical one; when turn is 1 the translation maps the registers
number of B group into output frame and maps the registers
number of D group into input frame.

IPUlFPU LPU

R16-R23 .LOCAL 1 R24-R31 [J l W1.IN

R16-R23 W1 .LOCAI

R8 - R I 5 w1.oLn

R16-R23 .LOCAL

r

Flgwe 5. Frame-wlndow structure of contml registu Ale and
mappbg of colrrspolldlng m@stcr groups in IPU/Fpu

Apart from the above mapping scheme to reduce the
overhead of saving and restoring IPUFPU register data, we
save them into LPUs current frame window parallel with the
execution of IPU's instruction. LPU monitors all the
instructions executed by IPU. When IPU executes an operation
and writes the result back to the register file, it also puts this
result on the data bus at the memory cycle. Meantime, LPU
receives the data and writes back into the corresponding register
of the current frame window. With this mechanism, we need

not save any IPU registers data into LPU while executing a
function call, we only have to restore the necessary IPU
register data from LPU which would be used before the
execution of the next function call or before the end of the
current function when the called function returns. This
overhead would be about two or three instruction cycles per
function call on average.

By using above mechanisms, the register data of IPU
could be kept in LPU's control register file with little overhead
while executing function call or return. The multiple,
overlapping frame window structure of control register file in
LPU updates runtime environment very fast. Because LPU
does not execute ALU operations, it can spend more time in
accessing the complex register file. On the other hand, the IPU
which must spend time in executing ALU operations has a.
simple 32-word register f i e and can access the register faster.

IPUlFPU LPU IPU/FPU LPU

RO - R7

R8 - R I 5

Global FI w7.OUI - call

WO.in

wo.ou1
Wl.in

RO - R7 Ll

R8 - R I 5

Global U6

wo.ou1
W1 .in

w 1 .out

3 1

Figure 6. Mapping of frame window before and
after executing function call and return

R(4) R(3) => R(4) R(3)

0 0 O O A

1 0 1 o c
1 1 1 1 D

0 0 O O A

1 0 1 o c
1 1 0 1 B

TURN=O

TURN=I '

A-- r I I I I
Flgure7. Translation of IPU/FPU Register number

There are two kinds of variables in Lisp, the lexical (or
static) variables and the special (or dynamic) variables. The
lexical variables are known at compile time and is constructed
as a stack frame. In contrast, the binding of the special
variables are known at run time. Two popular ways of binding

are deep binding and shallow binding. Deep binding
implementations store the binding value of special variable in
stack. When looking up a variable, the stack must be searched
until the value is found. In shallow binding, each variable is
assigned a global-value cell to store the binding value, while
old values are pushed on a stack. In this scheme, variable
lookup is very quick. For this reason, most uniprocessor Lisp
system use shallow binding.

for shallow bin-
The 32-word binding register file which has no

counterpart register file in IPU/FPU is used to store special
variables in Lisp. Each special variable corresponds to one
register allocated at loading time. We use binding registers in
shallow binding scheme to handle the special variables. When a
special variable is bound to a new value, the old value in the
corresponding register has to be pushed into the restore stack,
but when this special variable is unbound, the old value is
popped from the restore stack and restored to the corresponding
register. An example of binding and unbinding of special
variables is shown in Figure 8. The binding registers, which
does not have the corresponding register file in IPUFPU, can
only be used by LPU's instructions. If they are to be executed
IPU or LPU instructions, they should be moved to the global
frame registers. By using the binding registers, we can speed
up the access of special variables.

(let ((x 3)
(Y 5)
(2 7))
(loo x Y 2))

. .

Belore let binding 8 aner (loo x y z)

Bindin Re isler :rq Memor

SP

After la1 binding:

Bindin Re ister '"
Figure 8. Binding and Unbinding of Special Varlable

reeister file w d in multiDrocessoL
Snvlronment

MARS is a multiprocessor project. Parallel processing for
building multiprocessor environment is currently under
intensive research. For multiprocessor Lisps, shallow-binding
,implementation poses a problem: in the event that multi process
es try to change a special-variable binding, how does MARS
Lisp resolve the conflicting requirements of the different
processes without serializing processes which result in the
accessing conflict. MARS Lisp uses the aeclaration of special
variable primitive (e.g. defvar) to define the special variable.
Instead of assigning a global-value cell to store the current
binding value, MARS Lisp uses the binding register file for
keeping the information. Different processes can get the
updated value directly from the register file instead of from the

m2

global shared memory. Therefore, seriahzing processes which
get conflict for the same special variable is not necessary
(shown in Figure 9). In the case of the number of special
variables excesses the number of binding register file, the extra
special variables are kept in the restore stack and copied to the
next stack if another function call executes.

ID

'pcl. sp2. spes.
nI.1, nl.2. n1.S.
n2.1. n2.2. n2.3.

are Uapdata
. , ,

RP MA WE

Restore stack for pm- 1 Rutan atack for 2
@

Figure 9. Binding register used In MARS Lisp

JV. & Br-
strategv

. .

MARS uses a fronted instruction fetch stage plus the
following two independent four-stage pipelines, shown in
figure 10, attempting to issue and complete an instruction every
cycle. The instruction fetch stage issued by IFU fetches the
following instruction after a non-compare instruction and two
instructions (plus control transfer target address) after a control
transfer instruction. The two four-stage stages are independent
but synchronously executed by IFU and LPU respectively to
meet the execution requirements that these two chips demand.
For example, one duty of IPU is to determine the branch
condition, so that the register value which determine the
condition should be fetched as early as possible. On the other
hand, LPU does not take this responsibility so that register
fetch stage is delayed as far as possible to wait the result of
extemal data reference.

p,< I C A

IFU

IPU

Flgure 10. Three kinds of pipehe stage in MARS

Through this kind of pipeline stage arrangement, MARS
can support almost zero-delay branch, super-zero jump, and a
non-delayed list access.

Branch instructions have a considerable effect on the
performance of pipelined machines[11-13]. Conventional
architectures employ additional hardware to deal with this
problem. They detect the presence of a branch instruction and
put off prefetching until the branch condition has been
evaluated, or use some branch prediction techniques to reduce
the number of control flow breaks[l4,15]. Recently, a Branch
Folding was proposed in the design of CRISP[16], which
folded a non-branch and the following branch instruction to get
zero-delay branch. A well designed IFU adopt the combination
of delayed branch, multiple prefetch and early resolution
method to reduce the branch penalty. IFU executes the first two
stages of our total 6-stage pipeline and issues instructions to
the datapath chips (IPU, FPU, and LPU). Some intelligence
exists in the IFU when issuing the instructions flow. The
partial decode unit of IFU, executing at the PD (partial decode)
stage, can peep out the existence of an incoming jump
instruction, calculate the address and access the instruction
ahead of time. IFU can absorb that jump instruction and send
out the jump target address simultaneously. This mechanism
makes a super-zero-delay jump instruction. Moreover, a
conditional jump instruction is known in the PD stage, the IFU
unit extracts the offset field of the instruction, adds this value to
the PC (program counter), and then fetches the branch target to
the datapath chips. If compare is a fast compare (fcb), we can
resolve the compare at the early beginning of the ALU stage,
that is, settle the branch before IF stage of the next instruction.
Therefore, we can obtain a zero-delay branch. In some cases,
however, a full compare is necessary, delayed or squashable
compare and branch (dcb and scb) are addressed to reduce the
penalty of pipeline drain. Experience has pointed out that only
10% of the slots are filled with no-operation instruction[l7].
With the combination of fast and full compare and branch (fcb,
dcb, and scb) schemes, almost-zero-delay branch effect can be
obtained.

B. Non-delaved list access

Most Lisp programs execute list access frequently[181.
List structure is usually constructed with two parts, header of
list (car) and tail of list (cdr). Each of the two parts contains a
tag field to identify the data type and a data field. When a car or
cdr instruction is issued, tag field check and data field access
are carried out simultaneously. Under LPU delayed RF
mechanism, register can be fetched with short cut and incur no
internal interlock to the following instruction, illustrated in
figure 1 1 . Detailed timing about non-delayed load work is that
tag comparison stage (cmp) is executed at the falling edge of
phase 2 and the memory access stage (MA) of the previous
instruction is also ready at this period so that an internal
forwarding from MA stage to cmp stage can be done.

C . N o n - d e l a h

Procedure calls occur frequently in Lisp program . There
are several problems associated with such frequent procedure
calls. First, local variables should be kept with each function
call and restored from memory on every return. Second,
arguments passing must be cross- referred to the memory to
and fro. Frame windows are provided in the LPU to keep all
these variables in registers to reduce the cost of external
memory reference. The input frame in each procedure's frame
window overlaps with the output frame of the procedure that

203

calls it, and the output frame overlaps with the input frame of
the procedure that it calls. Local variables are kept in the local
frame of the procedure's window, and global ones in the
global frame, which is visible as well as shared by the frame
windows. This frame-window scheme makes procedure call
virtually free, and significantly speeds up their operation.
However, the gain is not obtained without any price. Increasing
the number of registers means that rather an amount of chip
area will be used and register access time will be longer and
process switching overhead will increase. Nevertheless, these
prices are offset by a dedicated environment maintenance unit,
that is, LPU, and an independent execution pipeline stage
designed between IPU and LPU.

(1)LPU cdr / I D 1 R F h M A I I W q

wwu [car I ID/ RF ~ M A I J W B J
, W C h data 6

LPU

:Internal forwarding

car ID

Figure 11. Non-delayed load execution (1) and
one-delayed slot Ust compare and

branch (2)

V. Performance Evalu-

Six Gabriel benchmarks - a set of programs which test the
speed of Lisp systems in various aspects - have been carried
out to compare the performance of M A R S with other
architectures, shown in Table 3. The first column show the
results for M A R S , excluding the effect of cache misses.
Column 2, 3, 4, and 5 give the results for the other three
architectures; the results for VAX-1lmO are from Gabriel's
book[20]; SPURS results are from Patterson's paper[21];
MIPS-X's results are from Steenkiste's paper [22], and
distributed into two columns- one without optimization, the
other with optimization. The last four columns give the ratio of
the execution time of VAX-1 ln80, SPUR, and MIPS-X to the
execution time of MARS, We have adjusted the results for
SPUR for a 100-nanosecond cycle time instead of the original
150 nanoseconds because of a new version of SPUR report
accordingly [28]. The reason why SPUR, when comparing
with MARS, has such long cycle time is due to several
reasons: SPUR decodes more instruction set in a chip, the
tagging hardware is combined with ALU operation. MARS
executes Lisp programs about 35.4 times as fast as the
VAX-lln80, almost 4.1 times as fast as SPUR, and about
2.2 times as fast as MIPS-X. However, in all these cases, the
perforamnce difference varies significantly across the
benchmarks. The best one is srack, which binds the special
variables in the binding register file and can be referenced
directly from the binding register file. On the other hand, the
benchmarks iterative-div2 does not run so well as the other
benchmarks because this benchmark has a very deep call-depth,
window overflow and underflow occur in most of the function
callheturn and the overhead of saving and restoring frame
window actually slows down the execution speed.

'Nme b mflllsconds Ratioa

"Ay SPUR Hlpsx HIPGX. VMJ - -"
W H A l S " HAW

b k 37 830 80 72 72 22.4 2.1 1.9

sbk 70 7100 710 602 592 101.4 10.1 8.6 8.4

hkl 325 5270 552 482 448 16.6 1.7 1.5

div-fter 55 3800 ... 307 157 69.1 --- 5.6 2.9

dfv-rw 340 3750 1950 284 196 11.0 5.8 0.8

derW 110 6580 667 604 381 78.0 6.0 5.5 3.5

35.4 4.1 2.9 2.2 Geometric
mean

Table 8. Execation t h w s I. mUUsecOn& for the 0"kJ k c h m u h
~ ~ t ~ : MIPS-xo m- ulpt wsp -cut* d t h opt1-L

It is interesting to find the reasons for the performance
difference between MARS and MIPS-X. Both MARS and
MIPS-X are RISC processors, and of the same cycle time (i.e.
50 ns) but they differ in that MARS has a Lisp environment
administrator (i.e. LPU). The LPU has hardware support for
tag handling, type checking on lists, binding registers, and uses
frame windows to reduce the cost of register saving and
restoringrand so forth. The MARS hardware for tag handling
would eliminate about 25 percent of the cycles on MIPS-X,
binding register would also save about 50 percent of the cycles
for load and store on MIPS-X, and others (e.g.
super-zero-jump, almost-zero-jump, fast list access, etc.)
accouni for the remaining 45 percent. The frame windows do
not function well for the Gabriel benchmarks and their average
effect is small. The reasons are that some benchmarks use only
few arguments and local variables per frame window and have
a call sequence straightly backwards and forwards, thus the
overhead of saving and restoring frame windows for overflows
and underflows which is 16 register-to-memory transfers
instead of just several for MIPS-X actually slows down some
programs. Neither do the non-delayed car and cdr instructions
in these benchmarks work well when compared with MIPS-X
since the delayed slot can always be filled. MARS will perform
better on more realistic programs or cases without an
optimization compiler involved because the frame windows and
non-delayed carlcdr instructions will be more effective.

VI. Concl-

A design of chips set for Lisp execution is proposed in
this paper. By separating the IFU from the datapaths and our
deliberate pipeline arrangement, we can not only get
coordinated executions among IPU, FPU, and LPU but also
drastically reduce slots due to control transfer; leaving the
compiler more chances to fill the delayed load slots, thus
accomplishing our goal of single-cycle instruction execution.
What is more exciting, we can absorb the jump instructions
within the IFU and directly issue the target to datapath chips to
achieve what we call the super-zero-delay jump. An
independent and separate LPU, playing the role as a Lisp
runtime environment administrator, can accelerate Lisp
programs with the following reasons. First, long complex
register file access can be handled within LPU, without the
company of a long ALU stage. Second, Two independent
pipeline executions of IPU and LPU can separate the critical
path of long register fetch plus integer processing into two
independent parts. Furthermore, the LPU can put off the
register fetch until the external memory access is ready, and
thus no delayed slot is needed when refemng the data cache.
Third, because instruction decoding of IPU and LPU are local,
some frequently used Lisp primitives can be hardwired without
increasing the complexity and access time of instruction
decode. Fourth, by excluding the arithmetic calculation within

204

the LPU, the LPU can offer more silicon resource to
accommodate more registers, and thus cut down the need of
extemal memory access to increase system performance. Fifth,
hardwired primitives can reduce machine cycles needed when,
implemented by the underlying machine instruction.

Status
The implement of LPU is in progress. We have described

the LPU at the register-transfer level with M modeling
~ language. The layouts of the custom chips will be finished later
in this year.

REFERENCES
A. R. Pleszkun, and M. J. Thazhuthaveetil, "The
Architecture of LisD Machines." IEEE Computer, Vol. 20,
No. 7, Mar. 1987,'pp. 35-44:'
D. A. Moon, "Architecture of the Symbolics 3600," Proc.
Twelfth Symposium on Computer Architecture, Boston,
June 1985.
MI. The Lambda Svstem: Technical Summary, 1983, ,-
LISP Machines Inc.
A. L. Davis and S. V. Robison, "The FAIM-1 Symbolic
Multiprocessing System," Spring I985 Compcon Digest
of Papers, 1985, up. 370-375.
Y. Yamaguchi, K. Toda, and T. Yuba, "A Performance
Evaluation of a Lisp-based Data-Driven Machine (EM-3),"
Proc. IOth Int'l Svmo. Compurer Architecture, June . r ~-
1983, pp.363-369.
M. Hill, et al., "Design Decisions in SPUR," IEEE
Computer, Nov. 1986,ip.8-24.
M. Horowitz, et al., "MIPS-X: A 20-MIPS Peak, 32.-bit,
Microprocessor with On-Chip Cache," IEEE Journal of
Solid-state Circuits,Vol. SC-22, No. 5, Oct. 1987,

P. Chow and M. Horowitz, "Architectural Tradeoffs in the
Design of MIPS-X," Proc. 13th Symposium on Computer
Architecture, Jun. 1986, pp. 300-308.
P. Steenkiste, and J. Hennessy, "Tags and Type Checking
in Lisp Hardware and Software approaches," Proc.
Second Int'l Conf. Architecture Support for

pp.790-799.

Programming Langubges ~ and Operating- -Systems,

[IO] M. Katevenis, Reduced Instruction Set Computer
Architectures for VLSI, Ph.D. dissertation, Computer
Science Division (EECS) UCB/CSD, University of
California, Berkeley, Oct. 1983.

[11] S. McFarling and J. Hennessy, "Reducing the Cost of
Branches," Proc. 13th Symposium on Computer
Architecture, Jun. 1986, pp. 396-403.

[I21 J. E. Smith, "A Study of Branch Prediction Strategies,"
Proc. 8th Symposium on Computer Architecture, May

[13] J. K. F. Lee and A. J. Smith, "Branch Prediction
Strategies and Branch Target Buffer Design," I E E E
Computer, Vol. 17, No. 1, Jan. 1984, pp. 6-22:

[14] J. Hennessy, et al., "Haf;dware/Software Tradeoffs for
Increased Performance, Proc. SIGARCHISIGPLAN
Srymposium on Architectural Support for Programming
Languages and Operating Systems, ACM, Palo Alto,

ACMIIEEE, Oct. 1987, pp. 50-59.

1981, pp. 135-148.

M a . 1982, pp. 2-11.

[15] D. J. Lilja, "Reduced the Branch Penalty in Pipelined
Processors,"IEEE Computer, Vol. 21, No. 7, Jul. 1988,
pp. 47-55.

[I61 D. R. Ditzel and H. R. McLellan, "Branching folding in
the CRISP microprocessor: Reducing branch delay to
zero," in Proc . 14th Annual Symp. Computer
Architecture, 1987, pp. 2-9.

[171 H.-C. Lee, and C.;E. Wu, "Lock-up free cache design and
the phoenix protocol," NTU-EE-CS memo No. 329-4,
Comuuter Science Division (EECS), National Taiwan
University, Taiwan, R.O.C., Jan. 1989.

[18]. D. W. Clark, "Measurements of Dynamic List Structure
Use in Lisp," IEEE Trans. Software Engineering, Vol.
se-5, No. 8, Jan. 1979.

[19]. G.-S. Jang, F. lai, H.-C. Lee, Y. C. Maa, and T. M.
pamg, J.-Y. Tsai, "MARS-Multiprocessor Architecture
Reconciling Symbolic with Numerical Processing,"
International Symposium on VLSI Technology, Systems,
and Applications, 1989. pp. 365-370.

[20].R. P. Gabriel, Performance and Evaluation of Lisp
System, The MIT Press, Cambridge, Mass., 1985.

[21] D. Patterson, "A Progress Report.on SPUR," Computer
Architecture News, ACM, Mar. 1987, pp. 15-21.

1221.P. Steenkiste, and J. Hennessy, "Lisp on a Reduce
Instruction Set processor: Characterization and
Optimization," IEEE Computer, Vol. 21, No. 7, June

[23] J.-Y. Tsai, The Design of List Processing Unit (LPU) for
the MARS system. M.S. thesis, Computer Science
Division, Department of Electrical Engineering (EECS),
National Taiwan University, Taiwan, R.O.C., July 1989,

[24] J. Cho, et al., "The Memory Architecture and the Cache
and Memo? Management Unit for the Fairchild CLIPPER
Processor, Tech. Rep. UCBICSD 861289, Computer
Science Division (EECS), University of California,
Berkeley, CA, April 1986.

[251 A. J. Smith, "Cache Memories," Computing Surveys,
ACM, Vol. 14, No. 3, Sep. 1982, pp. 473-530.

[26] G.-S. Jang, "The Floating Point Unit for MARS: Design
and Specification," NTU-EE-CS memo No. 329-3,1988.

[27] K.-C. Chen, H.-C. Lee, F. Lai, and Z.-W. Liao,
"Concurrent MARS Lisp: Language feature and
Implementation," NTU-EE-CS memo No. 329-5,
Computer Science Division, Department of Electrical
Engineering (EECS), National Taiwan University, R.O.C.
Mar. 1989.

[28] D. Lee, et al., "A VLSI Chip Set for a Multiprocessor
Workstation, PART I: A RISC Microprocessor with
Coprocessor Interface and Support for Symbolic
Processing," Tech. Report No. UCBICSD 891500,
Computer Science Division (EECS), University of
Califomia, Berkeley, CA, April 1989.

1988, pp. 34-45.

Tag value

mxxxB
001-
OlOxXxB

O l l M l X B
OllOlXB
01IIOXB
OllllXB

1 lOoOOB
I

11 11118

Data type

Immedlate:
I". character
tmm. Rxnl numba
Imm. short floatlng polnt (32 bltd

Indlrect number:
blg number
ratio
long flcntlng pant (64 blfsl
complex

Other:

defined by compller

Table 2 Data type and correspondhg tag value

B W - M
Cud(~U.lPU.lPU~~

I load b Bud. U81 1 T loadIc cud. R 1

,,,_ .I,.e _,,.. $i-bi I n s t r ~ ~ l b n under uniprocessor environment
c OlOB 1 1 ~ l L P U ~ o d S and two cycles per inslrucllon under mullipmceessor environme
D 0110 Us1 I a L C O N S

F 1010 ~ b o t ~ l a g b e F l X N U N
G 1108 ml bolh lag be FIXNUM M C W U
H 1110 mrm

M cache mi86 happn

Table 1. The Instruction set for LPU

206

