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Abstract 
 

Irregular Sum Problem (ISP) is an issue resulted from 

mathematical problems and graph theories. It has the 

characteristic that when the problem size is getting bigger, 

the space of the solution is also become larger. Therefore, 

while searching for the feasible solution, the larger the 

question the harder the attempt to come up with an 

efficient search. We propose a new genetic algorithm, 

called the Incremental Improving Genetic Algorithm 

(IIGA), which is considered efficient and has the 

capability to incrementally improve itself from partial 

solutions. The initial solutions can be constructed by 

satisfying the constraints in stepwise fashion. The 

effectiveness of IIGA also comes from the allowing of 

suitable percentage of illegal solutions during the 

evolution for increasing the effectiveness of searching. 

The cut-point of the genetic coding for generating the 

descendants has carefully planned so that the algorithm 

can focus on the key factors for the contradiction and has 

the chances to fix it. After comparing the results of IIGA 

and usual genetic algorithm among different graphs, we 

found and shown that the performance of IIGA is truly 

better. 

Keywords: Genetic Algorithms, Graph Theory, 

Irregularity Sum, Evolution Refinement, Problem 

Decomposition. 

1. Introduction 
 

The study of regular graphs can be dated back to 

Petersen and Faudree [19][11] in 1890s, but the irregular 

properties of graphs were not being investigated till Alavi 

et al. [2]. For a simple graph G, it is regular if its vertices 

have the same degree. A network is a simple graph to 

which each edge is assigned a positive integer value or 

weight. A network is locally irregular if it is connected 

and the vertices in the neighborhood of any vertex have 

mutually distinct degrees. Otherwise, a network is globally 

irregular or just irregular if all the vertices have distinct 

degrees [2][8][11]. Given an assignment which is a 

function w:E(G) � {1, 2, 3, …, s}, the weight of a vertex 

v is w(v)= Σv∈ew(e). The strength of a network is the 

maximum weight assigned to any edge. Also, an irregular 

assignment is valid or admissible if the weight of each 

vertex is different and thus the graph G is distinguishable. 

The irregularity strength s(G) of graph G is the minimum 

strength among irregular networks with underlying graph 

G. The study of irregular strength stems from problems 

related to highly irregular graphs and multigraphs first 

introduced by Chartrand et al. [6]. The irregularity sum of 

a graph G is the minimum sum of the induced weights of 

all vertices in an irregular assignment for G originally 

considered by [17]. We abbreviate the problem of finding 

the minimal irregularity sum as ISP, irregularity sum 

problems. The problem of studying s(G) was proved by 

Chartrand et al. to be rather hard, even for very simple 

graphs  [6][10]. 

Besides, the study of irregular assignments have done 

well to prove the existence of lower or upper bound of s(G) 

[5][8][10]. However, there was less study in the 

construction of valid assignments under the consideration 

of irregularity sum. Though [4][18] has done many good 

results, they focused on trees only. For these reasons, in 

this paper, we shift our attention to the construction of 

solutions in finding the irregular assignments related to 

the irregular strength and irregular sum for graphs.  

The original form of genetic algorithms introduced by 

Holland [16] is usually called simple genetic algorithms, 

abbreviated SGA, contrast to successive many variants. 

Related literatures can be found in [12][14][21].  We have 

constructed the SGA for ISP problems showed later in this 

paper. However, while problems are large-scale with 

complex solution landscape, the research results of [7] 

suggested that the standard GAs are not efficient in getting 

a suboptimal solution in limited computational power[21]. 

There are two ways to improve genetic algorithms for 

large-scale problems, which are problem decomposition 

[20] and searching-space reduction [21][7]. We work 

along with both lines. 

The goal of this work is to develop an effective GA 

partition algorithm for ISP problems. The problem of ISP 

is a combinatorial optimization problem rather than a 

numerical optimization problem. Meanwhile, the 

mathematical definition of ISP is usually graph-based. As 

[9], we hence adopt ordering representation for the 
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genotype as the individuals to evolve. Though the 

structure of neighborhood determines the order of edges 

according to the practical graphs, however, there is not 

necessarily only one ordering mapping.  

Since the construction phase is very time consuming 

for the SGA, we have made some efforts to improve it. On 

one hand, we attack it with problem decomposition by 

stepwise the procedure for generating the initial genetic 

coding. By the empirical results, it shows great 

improvements. On the other hand, further improvements 

are pursued by exploring the necessity of retaining partial 

illegal but usable solutions for improving the evolution 

procedure. It is also considered efficient and has the 

capability to incrementally improve itself from partial 

solutions. The cut-point of the genetic coding for 

generating the descendants is carefully planned so that the 

algorithm can focus on the key factors for the 

contradiction. This new algorithm is called the 

Incremental Improving Genetic Algorithm (IIGA). After 

comparing the results of IIGA and conventional genetic 

algorithm among experimental graphs, the results are 

satisfactory. 

We refer the related results found in 

[1][3][4][6][11][13] and [15], within which the most 

important results are For any connected graph with at least 

three vertices, s(G) ≤ 2n - 3 [6]. It was strengthened by [1] 

as s(G) ≤ n + 1 for any graph with s(G) < ∞. Both 

developed SGAs and GPMGAs for ISP problems utilize 

this result to reduce the search space in force. Without this, 

the search space can be very huge. 

Next section will cover the main ideas of IIGA along 

with some explanation. The experiment and the 

comparison detail of the results is reported in Section 4 

and, finally, Section 5 concludes the research. 

 

2. The Genetic Algorithm 
 

2.1. The SGA for ISP 
 

In order to employee the Simple GA for solving the 

ISP problem, following stages are necessary: (1) 

Constructing (2) Limiting (3) Encoding (4) Crossover (5) 

Mutation. The procedures of the first three stages are 

explained below using the example graph in Fig 1. 

(1) Constructing: Construct possible solutions by 

giving arbitrary weights to the edges 

(2) Limiting: Confirming the restriction that all the 

weights of the nodes are distinguishable. 

(3) Encoding: After knowing that the assignment is 

valid, the next step is to transform the weight assignments 

of the edges into genetic coding. For example, the 

assignments on the diagram in Fig. 2. can be transformed 

into genetic coding of [2 3 1 1 3 4 4 5 1].  This coding 

will be used as the chromosome in the subsequent stages. 

 

Fig. 1. An example graph showing all the labels on the vertices 

and the edges.  

After encoding, stage (4) and (5) for crossover and 

mutation are carried out conventionally. 

 

Fig. 2. The graph with arbitrarily constructed valid assignment. 

This assignment will then be used as a starting chromosome for 

crossover and mutation. 

 

2.2. Stepwise Decomposition of the Problem 
 

The effectiveness of generating the complete genetic 

coding of the chromosomes can be improved by 

constructing gradually in stepwise phases. Not finishing it 

in one shot has several advantages. First, the quality of the 

chromosome is better than original method. Second, the 

speed of generating the chromosome is faster. The 

stepwise construction phases are based on the partitioning 

characteristics of the network under consideration. The 

details of the procedure are described below. 

Step 1) Construct the network and determine the 

boundaries of the partitions. 

Step 2) Starting from one partition and create its 

corresponding chromosomes according to the 

limit function and determine the upper limit of 

the genetic coding. 

Step 3) Continue on next partition and combining it 

with the previous partitions(s). The combined 

graph will be used for the overall consideration

for the genetic coding when the limit function is 

applied again but with previous results fixed. Of 

course the combined graph now has a new 
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upper limit. 

Step 4) Extend the chromosomes according to the 

generated genetic codings and confirm that the 

legal status is fulfilling the limit function. Since 

the previous partitions have been used to 

generate a smaller values for the coding 

(because the previous partition was smaller 

before the combination), the newly generated 

coding will only expand the coding belong to 

the part that is just added. 

Step 5) Repeat Step 3 until all the partitions are 

combined. 

In the example of Fig. 1, the network is apparently 

partitioned into two clusters– one with node numbering {1, 

2, 3, 4} and another with {5, 6, 7, 8}. They are connected 

with the edge 5. Let’s follow the previous procedure for 

constructing the initial chromosome. 

 

Fig. 3. The assignment of weights during different steps. Step 2 

is only considering the left partition and Step 3 is combing with 

the assignment of Step 4 to become an overall assignment. 

 

2.3. Refining the Evolution by Retaining Illegal 

Solutions 
 

Because of the existence of complicated and enormous 

restrictions on the solutions of the problem, there are 

many illegal solutions generated during the evolution. 

These illegal solutions are not useless. However many of 

them can be re-used. Usually the approach taken 

punishment to the genetic algorithm was unable to 

distinguish the distance between the solutions to the legal 

solutions. That means the algorithm doesn’t know which 

solutions are the better solutions. Unable to screen out bad 

quality solutions limits the potential of improving the 

search process. 

Therefore this research studies the possibility of come 

out with the strategy of allowing illegal solutions such that 

the restriction of not generating illegal solutions can be 

released to some extent. However, deciding the 

characteristics of the solutions such that understanding its 

potential of being adjusted to a legal solution is not an 

easy task. This paper has working on the method for 

measuring the distance between the illegal solution and 

the safe area for this purpose. 

 

2.4. Cut-points on Illegal Edges 
 

The main reason for a solution to be an illegal solution 

and therefore violating the restrictions in ISP is resulted 

from the contradictions between the weights of the 

neighboring nodes which are constructed from the 

connecting edges. This research takes these properties for 

further exploration of the solutions by focusing on those 

edges that is causing the contradictions. The cut-points of 

the mutation or crossover will be chosen from these edges 

such that increasing the chances of fixing the solution. 

For example, when there are two chromosomes [2 3 2 

1 2 4 1 3 1] and [2 3 1 1 3 4 3 3 1], the weights of the 

nodes are (5 4 6 3 7 8 4 1) and (5 3 7 2 10 8 6 1), 

respectively. As shown in Figure 5., there are two nodes 

(both weighted 4) violating the restriction and the status of 

these two nodes will be recorded. This recording will 

cause the cut-point to be falling on the edges that are 

connecting to these nodes only. 

 

Fig. 4. The cut-point of the chromosome is decided by the 

contradiction nodes of the graph. 

If crossover is applied onto our example by taking the 

cut-point on the third edge showing on the figure, the 

result will be two legal solutions. 

 

3. The Experiment 
 

The experiment mainly focusing on two issues: (1) 

differences of the initial solutions between ISP and IIGA, 

(2) the effect of allowing illegal solutions involved in the 

evolution. 

Section 4.1 introduces the graphs employed for 

performing the experiment and Section 4.2 shows the 

deployment and the results of the experiments. 

Third International Conference on Natural Computation (ICNC 2007)
0-7695-2875-9/07 $25.00  © 2007



 

3.1. Graphs Used for Experiments 
 

This experiment generates the graphs with proper 

clustering automatically for conducting the tests which are 

designed for realizing the behavior of the evolutions. 

 In this experiment, we have fixed the number of 

clusters to 3. The number of the nodes of each cluster is 

fixed at 17 and the number of edges is 200 in total 

(summing all three clusters). These randomly generated 

clusters are all connected with single edge.  
For understanding the behavior of the algorithm when 

working on the ISP, this research tries to gather the data 

of working on four different cases of the graphs which are 

having different densities between clusters. The densities 

of the clusters are increasing with different slops. 

 

3.2. Effectiveness of Generating Initial Solutions 
 

Our experiment has been conducted on a workstation 

with Pentium 3.0 GHz CPU with 512MB ROM. The 

Borland C++ Builder has been used to implement the 

algorithm. 

For comparing the speed and quality of creating an 

initial solution for the ISP, an experiment has been 

conducted on four different cases of the graphs. For the 

first case of the graphs (No. 1 in Table 1), the clusters 

inside have densities of 10%, 50% and 90%, represented 

as 10-50-90. The distributions of densities for other types 

of graphs are showing in the table with No. 2, 3, and 4. 

 Table 1.  Comparing initial solutions and final solutions 

between IIGA and SGA.  

 The experiment is monitoring the time and quality of 

performing the generation of 100 solutions for 100 times. 

It is observed that the IIGA has an advantage of using less 

time (in average) to generate solutions that are better than 

SGA. 

 

3.3. Resolution without Control 
 

The test allow illegal solutions to exist continuously 

during the evolution without giving any punishment to 

them as long as the solution has a lower score which 

means closer to a better answer of irregular sum. 

As expected, shown in Table 2, the popularity 

distinguished (die out) in a short period after 6 to 7 

Table 2.  The different mutation rates all resulted in early 

elimination during the evolution. 

No. Mutation 

rate 

Die out 

generations 

Crossover 

failed 

(Number of 

time ) 

Mutation 

failed 

(Number of 

time) 

1 0 7.18 785.84 0 

2 0.05 6.8 728.59 18.6 

3 0.1 6.75 704.25 35.68 

 

generations. Doesn’t matter what is the percentage of 

mutation, the crossover and mutation failed so many times 

that is close to overall failure. Compare to the results in 

the next subsection, the effectiveness of the IIGA can be 

manifested. 

 

3.4. Probing the Percentages of Illegal Solutions 

Allowed 
 

In order to effectively narrow down to useful 

chromosomes to attend the evolution process so that better 

solutions can be generated, this research adopted two 

approaches: (1) evaluate the number of nodes that are 

violating the restrictions, and (2) control, but not eliminate, 

the percentage of illegal solutions during the evolution. 

All the experiments have been set up with 90% 

crossover rate and 10% mutation rate. One hundred 

chromosomes are employed and the generation of the 

evolution is bounded at 2000. 

 Table 3.  Comparing the percentages of illegal solutions 

allowed in the evolution procedure.  

  

In this experiment, we are trying to comprehend how 

different percentages of illegal solutions allowed in the 

population can differently affect the performance. Four 

different percentages of allowing illegal solutions are used 

for the experiment, which are 0%, 5%, 10% and 50%. 

The results are obvious. The 10% percentage has the 

best score as comparing to other percentages (Table 3). 

That means the percentage should not be too small and 

should not be too large either.  

 

3.5. IIGA vs. SGA 
 

With these encouraging results, we have the 

opportunity to compare the final version of the IIGA with 

SGA. The performance of the IIGA is obviously better 

than the SGA, as showing in Table 4. For different type of 

Percentages of illegal solutions allowed 

in the evolution procedure 

No. Densities 

of clusters 

0% 5% 10% 50% 

1) 10-50-90 778.41 760.02 722.7 744.72 

2) 20-50-80 824.41 756.4 725.57 742.17 

3) 30-50-70 923.85 881.26 810.49 849.55 

4) 40-50-60 1115.61 1025.82 944.53 1007.71 

Initial 

Solutions 

Final Solutions No. Densities of 

clusters 

IIGA SGA IIGA SGA 
1 10-50-90 3780.64 4603.3 722.7 801.93 

.2 20-50-80 3766.84 4606.03 725.57 838.79 

3 30-50-70 3471.00 4631.08 810.49 953.15 

4 40-50-60 3277.79 4707.39 944.53 1143.63 
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cluster densities, the initial solutions as well as the final 

solutions are all reaching a better outcome. 

Table 4.  Final results comparing IIGA with SGA  

IIGA SGA No. Densities 

of 

clusters 
Average 

Score 
Spend 

Time 
Average 

Score 
Spend 

Time 
1 10-50-90 4222.54 267.55 5217.09 2383.48 

2 20-50-80 4098.24 317.64 5229.35 2294.60 

3 30-50-70 3849.05 357.23 5216.71 4989.10 

4 40-50-60 3644.71 582.65 5331.42 27977.80 

 

 

4. Conclusions 
 

This research is working on the attempt of improving 

the effectiveness of generating the initial solution of ISP 

by decomposing the problem of ISP and the possibilities 

of searching for an ideal number of percentages of 

allowing illegal solutions to be continuously existed in the 

population of the evolution. The proposed generic 

algorithm, IIGA, behaves satisfactorily for the purpose of 

generating a solution that is comparatively better than the 

results of SGA. 
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