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Abstract. In this research, we propose recurrent neural net-1  Introduction

works (RNNSs) to build a relationship between rainfalls and

water level patterns of an urban sewerage system based ofhe growth of urbanization has paralleled the growth of the
historical torrential rain/storm events. The RNN allows sig- global economy over the last decades. Owing to the rapid
nals to propagate in both forward and backward directionsdevelopment of metropolitan areas, the natural hydrological
which offers the network dynamic memories. Besides, themechanisms have been changed, such as the reduction of the

information at the current time-step with a feedback oper-infiltration and the concentration response time in a catch-
ation can vyield a time-delay unit that provides internal in- ment, which leads to unexpected inundations and failures in
put information at the next time-step to effectively deal with operating pumping stations. Taiwan is prone to such circum-
time-varying systems. The RNN is implemented at bothstances. Taiwan is located in the northwestern Pacific Ocean
gauged and ungauged sites for 5-, 10-, 15-, and 20-min-aheatihere the activities of subtropical air currents happen fre-
water level predictions. The results show that the RNN is ca-quently. Due to the irregular timing and location of precip-
pable of learning the nonlinear sewerage system and produdtations and the increase of impervious areas, the flood hy-
ing satisfactory predictions at the gauged sites. Concerninglrographs during typhoon seasons result in large peak flows
the ungauged Sites' there are no historical data of water |evélylth fast-rising limbs which usually cause serious disastersin
to support prediction. In order to overcome such problem, alaiwan. For example, on 17 September 2001, Typhoon Nari
set of synthetic data, generated from a storm water managesiruck northern Taiwan accompanied with heavy rainfalls,
ment model (SWMM) under cautious verification process of more than 500 mm/day, which caused 27 deaths. The flood
applicability based on the data from nearby gauging stationsinundated 4151 building basements that brought on countless
are introduced as the learning target to the training procedur€conomic losses.

of the RNN and moreover evaluating the performance of the A surface inundation will occur as the surface runoff
RNN at the ungauged sites. The results demonstrate that tHéischarge is larger than the designed capacity of a storm
potential role of the SWMM coupled with nearby rainfall and drainage system. The operation of a pumping station highly
water level information can be of great use in enhancing thedepends on the information of water level. The risks of in-
capability of the RNN at the ungauged sites. Hence we cartindations may be reduced if accurate water level prediction
conclude that the RNN is an effective and suitable model forinformation can be provided. With such prediction informa-
successfully predicting the water levels at both gauged andion, a peak flow can be mitigated by pumping out the in-

ungauged sites in urban sewerage systems. ner water prior to the approach to a peak flow. Despite of
the massive researches that have been invested in simulat-

ing the water levels of sewerage systems in storm events, the
time-delay and the magnitude of a peak flow still can not be
estimated precisely and a comprehensive solution of the as-
sessment of sewerage systems does not seem to be on hand,
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conceptual models mainly. To implement these conceptuathe neuron. The chief advantage of the dynamic feedback
models, it requires data generated from sewerage systemagural network is that it can effectively decrease the input di-
e.g. storage volume, pumping capacity, contribution areasmension of the network and therefore improve the training
and so on, and hydraulic loads such as precipitations anefficiency (Chang et al., 2002; Chiang et al., 2004). In this
flows, etc. The conceptual models can only provide simu-research, we propose a RNN for water level predictions in
lation results on the basis of given rainfall conditions and aresewerage systems. There are two main features of the RNN;
not commonly used as real-time operation tools. For quan{1) its nonlinear properties make the prediction of a complex
tifying the influences of water level variations in sewerage nonlinear dynamic system feasible, and (2) its temporal re-
systems and increasing the operation ability of pumping sta€urrent processing properties make the implementation eas-
tions, this research focuses on developing real-time modelger.
to produce accurate multi-step-ahead water level predictions Due to the limited number of water level gauging stations
for urban sewerage systems by utilizing recurrent neural netin a sewerage system, the data and predictions of water levels
works (RNNSs). at ungauged sites become an important issue of flood preven-
The artificial neural network (ANN) has evolved as a tion. One of the advantages of predicting water levels at un-
branch of artificial intelligence and has been regarded agauged sites is to reduce the expensive engineering and main-
an efficient tool for the learning of any nonlinear input- tenance costs. In view of this, the storm water management
output systems. Therefore, the ANN is described as a dataodel (SWMM), a well-known tool for modeling urban wa-
processing system that composed of many nonlinear interter circulations, is introduced in this research. A SWMM is
connected artificial neurons. The main benefit of adaptingan urban runoff model designed for simulating the quantity
ANNSs are that they can effectively extract significant fea- and quality of flows associated with urban surface runoffs
tures and trends from complex data structures even if theand combined with sewer overflow phenomena (Huber and
underlying physics is either unknown or difficult to recog- Dickinson, 1988). A SWMM could provide hydrographs at
nize. In the field of hydrology, various research results thatany manhole and give conceptual flood depths by water lev-
were produced by the ANNSs have reported the improvement®ls, and therefore was adapted for simulating and generating
in the performances of simulations such as rainfall forecast-data of water levels at an ungauged site. Its synthetic data,
ing (Chiang and Chang, 2009; Chiang et al., 2007a; Hungunder certain verification process of applicability based on
et al., 2009; Nasseri et al., 2008), reservoir operation (Chanthe data from nearby gauging stations, were further used as
dramouli and Deka, 2005; Chang and Chang, 2001; Chavethe learning targets to the training procedure of the RNN-
and Chang, 2008), stream flow forecasting (Akhtar et al.,based hydrological models and also used for evaluating and
2009; Chang and Chang, 2006; Chiang et al., 2007b; Maityerifying the performance of the RNNs.
and Kumar, 2008; Sudheer et al., 2008; Toth, 2009; Sahoo The difference between RNN and SWMM is that, in gen-
et al., 2009; Besaw et al., 2010), and applications in urbareral, a physically based simulation model such as SWMM
drainage systems (Bruen and Yang, 2006; Loke et al., 1997)an be used to model natural systems to gain insight into
In viewing the network topologies and the structures of their functioning and to show the eventual real effects of al-
the ANNSs used in the field of hydrology, we can distinguish ternative conditions. The SWMM model could generate the
them into two different generic neural network types: feed- water level of time t by being fed with input data at the same
forward and feedback networks. The topology of the feedfor-time (time¢). In this study, the calibrated SWMM model
ward ANN consists of a set of neurons connected by the linksvas fed with the whole series of input information to gain its
in a number of layers. The feedforward networks implantedcorresponding series of estimation outputs. Consequently, it
fixed-weights which map the input space to the output spacegan only produce current water level because future rainfall
so that the state of any neuron is solely determined by thepattern is not available at current time. Whereas the trained
input-output pattern excluding the initial and the past statesRNN can produce future water level (time-n) by being
of the neuron. That is to say, the feedforward networks arefed with current data (time) and the model can be executed
not dynamic. The corresponding advantage is that a feedthrough a step by step procedure. Concretely speaking, the
foward network can be built easily by a simple optimization output of SWMM is suitable for hydraulic planning and de-
algorithm. For such reason, this type of network architec-sign after a storm event because the model requires complete
ture is the most popular in use today. Nonetheless, the statiainfall pattern of an event; whereas the output of RNN is
feedforward neural network also has several drawbacks fosuitable for real-time operation of pumps because the model
some applications. As for the feedback architecture, it dif-can be executed through a step by step procedure.
ferentiates itself from the feedforward one by possessing at In this research, we briefly illustrate both RNN and
least one feedback link. The presence of a feedback link haSWMM methods at first. And next, the study area and the
a profound impact on the learning capability of the RNN and structure of water level prediction models are presented. Re-
on its performance (Coulibaly and Baldwin, 2005). Becausesults obtained from both gauged and ungauged sites are ana-
of the feedback link, the status of its neuron depends not onlyyzed in the subsequent sections, and conclusions are drawn
on the current input signal, but also on the previous states oin the end.
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2 Methodology Outputs

2.1 Recurrent neural network (RNN)

Many types of artificial neural networks have been developed Output
in the last few decades, which mostly belong to feedforward layer
operations, so-called static neural networks, in spite of dif-

ferent architectures of these networks. The static feedfor-

ward neural network can achieve satisfactory analytical out-

comes if sufficient data are available (Chiang et al., 2004).
Nevertheless, in consideration of the temporal or short-term

dynamic property, the static neural network has difficulty

in recognizing and predicting the reality. The definition of Hidden
a RNN, so-called dynamic neural network, is that at least Iayer
one feedback link should be added to the static neural net-

work. The RNN allows signals to propagate in both forward

and backward directions, which offers the network dynamic
memories. Besides, the information at the current time-step

with a feedback operation can yield a time-delay unit that
provides internal input information at the next time-step. In
other words, the recurrent neural networks are able to capture |npyt é
the true hidden dynamic memories of nonlinear systems. The Iayer

RNN has been proved to be a powerful method for handling R

| | Time-delay

— (s

complicated systems such as nonlinear time-varying systems

(Coulibaly and Baldwin, 2005; Coulibaly and Evora, 2007, Input variables units
Kumar et al., 2004; Mishra and Desai, 2006; Razavi and

Karamouz, 2007; Yazdani et al., 2009). Fig. 1. The architecture of the recurrent neural network (RNN).

In this research, we propose a three-layer RNN with inter-
nal time-delay feedback loops in both hidden and output lay-
ers, see Fig. 1. The transfer function of both hidden and out- e output of neuroX in the output layer at time+1 is
put layers is of sigmoid type which can be applied to nonlin- -5|culated by
ear transformation. Each input neuron is connected to a hid-
den neuron, where each hidden neuron has its corresponding J K
time-delay unit, i.e. the number of hidden neurons is equalp, (r+1)=f (Zij Y (t+1)+ZkaQK(t)> 2)
to that of time-delay units. Basically, a feedback link allows j=1 k=1
its time-delay unit to store the output information of this hid-
den neuron as an additional input to all hidden neurons atvherew,; represents the connection weight from the hidden
next time-step, refer to Fig. 5 for details. Then, the RNN unit j to the output uni’, andw,, represents the time-delay
has an inherent dynamic memory given by the feedback confeedback weight from the output urito the output unit .
nections of the time-delay units, and its output depends not The associated weight of each parameter in the RNN can
only on the current input information but also on the previousbe figured out by the following formula through the chain
states of the network. In this research, the RNN makes useule with partial derivatives.
of the gradient descent method for calibrating the parameters

via minimizing the forecasting errors. W Worg— 0 Etotal 3)
As shown in Fig. 1, the output of neurohin the hidden new old =11 ow
layer is computed as .
, ; wheren denotes the learning rate.
y, i+ =f (ZinXi ) +Zij v, (t)> 1) Eiotal represents the objective function
i=1 j=1 N v K ,

where f(.) denotes the transfer functiom, (z) denotes the Etotal = ZE(,) — }ZZ [Qk (t)— Qk (t)] (4)
output of the hidden neurah at timez, w;; denotes the con- =1 2=

nection weight from the input neuranto the hidden layer

neuronJ, X, (+) denotes the input, and, denotes the time- ~ where 0, (1) represents the value of the learning target to
delay feedback weight from the hidden neurpto the hid-  neuronk at timez ; and O, (¢) is the network output of neu-
den neurony. ronk at timet.
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2.2 Storm water management model (SWMM) Taipei Basin of northern Taiwan and is surrounded by the
Danshui River, whose narrow estuary makes it difficult to
The SWMM is a comprehensive hydrological simulation discharge water effectively from the city. A highly inten-
model that is commonly applied to designing the quality andsive rainfall during a storm or a typhoon could easily cause
quantity models of runoffs in urban areas (Ackerman andflooding. The flood control strategy covers two actions; (1) to
Schiff, 2003; Baffaut and Delleur, 1990; Borah and Bera, build embankments along the river sides, and (2) to set pump-
2003; Denault et al., 2006; Maharjan et al., 2009; Tsihrintzising stations at the main drains to discharge the rain water
and Hamid, 1998). As understood, even though the RNNfrom the city. Pumping stations are the principal hydraulic
can easily build a water level prediction model at the gaugedacilities for the sluices of floods in highly developed cities,
sites, the difficulty in predicting the water levels at an un- and therefore play important roles in mitigating the floods
gauged site is due to its unavailability of real observationsin metropolitan areas. Accurate predictions of water levels
for the training and evaluation of a RNN. Fortunately, the in urban drainage systems are necessary and important for
SWMM can be an appropriate tool to overcome such diffi- successful operations of the pumping stations. The study
culty by its simulation ability. In principle, the SWMM is ca- area for this research is the Yu-Cheng catchment, located in
pable of simulating the quantity and quality of runoffs within southeastern Taipei as shown in Fig. 2, which is taken for a
a drainage basin, and thus is chosen to simulate the water lewdetailed investigation of water levels for prediction purpose.
els of sewerage systems at ungauged sites. Hence, the majbhere are five rain gauging stations, denoted blue circles in
reason for applying a SWMM to this research is to gener-Fig. 2, and ten water level gauging stations, denoted red tri-
ate synthetic data of the water levels from a specific manholengles in Fig. 2, in this region. The Yu-Cheng catchment
at an ungauged site. To simulate a flow, the SWMM useswith an area about 1645 ha owns the biggest drainage system
the Saint-Venant equations for a gradually varied, turbulentjn Taipei City and the pumping station was built in 1987 to
and unsteady flow. The Saint-Venant equations represent thérain or pump the inner water into the Keelung River. The
principles of conservation of momentum and conservation ofpumping station contains seven massive pumps and has the
mass. A SWMM contains four functional program blocks total capacity to 184.1 cm/s, which was the most advanced
that can simulate different components of a hydrological cir-and largest in Asia in the 1980s. When the water level of
culation. Two of them are managed herein: the RUNOFFthe river rises up to the warning level (1.8 m), the pumps turn
and the EXTRAN blocks (Huber and Dickinson, 1988). The and warm up. These pumps start pumping when the water
RUNOFF block performs hydrological computations accord- level of Keelung River is higher than start-out level (2.4 m);
ing to the theory of nonlinear reservoirs, and the RUNOFFmeanwhile, the gravity gates are immediately closed which
outputs are then taken as inputs to the EXTRAN block whichmeans the running water cannot be discharged by gravity.
is designed to route the flows in a sewerage system by usin@he start-out level is the lowest water level for pumps func-
numerical methods. tioning; the pumps may be damaged if the water is lower
Next, the SWMM parameters recruited in this researchthan this level. These seven pump sets are operated indepen-
comprise ten factors which are catchment length/width ra-dently and sequentially according to the different water levels
tio, catchment slope, maximum infiltration, minimum in- which means when a running pump cannot control the water
filtration, impervious area Manning'’s roughness coefficient, level under the level of 2.4 m, another pump will start work-
pervious area Manning'’s roughness coefficient, imperviousng rather than turn on all pumps during typhoon periods. On
area detention storage, pervious area detention storage, % tfe contrary, these pumps are turned off, respectively, as the
impervious area of catchment, and decay rate of infiltrationwater level is falling.
curve. The main reason for not using the suggested parame- In this research, the RNN-based model was constructed
ters listed in the table of the SWMM manual or the parame-for precise predictions of water levels at the gauging sta-
ters presented in previous research papers is that, empiricall§ions. The outlet of the sewerage system is the water level
these parameters may not fit in with the analysis of the storngauging station, Station YC10, and therefore Station YC10
events occurred in Taiwan. These parameters are further cals selected as the objective for a water level prediction. The
ibrated by use of the historical observation values of rainfallsreal-time water level monitoring of the sewerage systems has
and runoffs. A detailed discussion is illustrated in next sec-been operated by the Hydraulic Engineering Office of Taipei
tions. City Government for the past few years. The historical data
used in this research contained the precipitations and water
level information recorded from 2002 to 2006. The precipita-

3 Applications tion observation values collected in this research were used to
calculate the mean areal precipitation based on the Thiessen
3.1 Study area and data polygon method in order to effectively reduce the input di-

mension of the RNN. After data preprocessing, a total of
Taiwan is located in the subtropical jet stream monsoon dis2055 records of data, extracted from 14 typhoons or storm
trict of northern Pacific Ocean. Taipei City is situated in the events, with a resolution of 5 min were collected, see Table 1.
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A Water level station

Fig. 2. The locations of Yu-Cheng catchment and the monitoring stations.

Table 1. Data from storm events for water level predictions. age system. Th? p%‘fpose of.pred|ct|ng.the-water Ieyel at the
select gauged site is to provide upcoming information (pre-
Config. Event  Amount Rainfall  Meanwater Standard dictions of water level) for following operation of pumps at
accumulation level deviation Yu-Cheng station. For predicting the water level of Station
(mm) (m) (m YC10, the input information to the RNN-based hydrological
1 395 90.8 2.10 0.61 model mostly came from the upstream water levels and the
2 85 20.9 2.25 0.33 L ..
3 68 15.0 208 0.26 mean .arefal precipitations. In _add|t|on to the mean areal pre-
4 N 107 33.0 1.44 0.57 cipitation information, the variation of the water level at the
2 Training g;e igg‘s 15-?1‘; 2@; upstream gauging station may also affect the water level at
7 206 156.4 320 0.38 Station YC10 if the upstream gauging station is highly cor-
8 300 156.1 2.63 0.74 related to Station YC10. On the basis of the main drains of
9 135 123.0 2.32 0.83 the watershed, the drainage system of the Yu-Cheng catch-
10 Validation 60 61.8 177 0.62 ment can be roughly patrtitioned into three sub-drainage sys-
11 43 21.0 1.33 0.15 .
tems. The outlets of these three sub-drainage systems are
12 142 53.2 2.06 0.65 H H H
13 Testng 176 i > 04 058 Stations YC4, YC9, and YC11. Since the observations were

14 51 25.3 1.46 0.65 performed irregularly at the Station YC9, the water level in-
formation at this station was not considered in this research.
Therefore, the input variables for the water level prediction
at Station YC10 were the mean areal precipitations and the
These data were divided into three parts; (1) data associatedater level information of Stations YC4, YC10, and YC11.
with eight events were arranged to train the RNN parameters]he learning target of the RNN model can be referred to the
(2) data associated with the other three events were dedicatesater level observations of YC10. Four identical RNN struc-
to validate the RNN, and (3) data associated with the remaintures, each with a single output, were designed for 5-, 10-,
ing three events were for the testing procedure of the RNN. 15-, and 20-min-ahead water level predictions. The input-

output combination of RNN models can be represented as
3.2 Water level prediction model follows.

In this research, the RNNs were built for the water level Lycio(t +n1) = f(Lyca(t), Lycio(), Lyc11(1), P (1))
predictions at both gauged and ungauged sites in a sewer- n €5,10,15,20.
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Fig. 3. The location of the ungauged site. ' 50 100 150 200
45 ‘ (b)
whereL(z i i in- ~— ~ Obs. -
( _+n) is the model forecast at Iegd tmemfmm al SV CC=0.98
utes, L(t) is the observed water level at timgand P(z) is
the observed precipitation at timme 35}

The time step is set as 5 min because the operational time—~
step of Yu-Cheng pumping station is 5min. Owing to cur- <
rent operating procedure of pumps is highly dependent on'® , 5
the experience of local operators who require accurate infor- > e . AN o
mation on water level prediction for next few steps. The time i e e 1
of concentration of this catchment is about 70 min. There is

1.5+ B
a trade-off between the accuracy and the lead time of model
predictions. To ensure good accuracy of water level predic- 1 ‘ ‘ ‘ ‘
X X 0 50 100 150 200
tion, the outputs of the constructed model are designed for a ©
lead time up to 20 min which is required by local operators. Time (5-min)

Twenty minutes is enough for reliable and effective operation
of pumps to drain runoff water away and reduce the risk ofgig. 4. (a) The rainfall hyetograph(b) the SWMM hydrograph at
flooding if the water level prediction is precise. Station YC4,(c) the SWMM hydrograph at Station YC8.

Moreover, in consideration of the historical inundation
events recorded by the Hydraulic Engineering Office of
Taipei City Government, we selected an ungauged site, loby the SWMM corresponding to Station YC4 and Station
cated between Stations YC4 and YCS8, and marked it withYC8 were evaluated. Figure 4a showed the rainfall hyeto-
a blue square as shown in Fig. 3. In other words, this segraph of an event randomly selected from datasets, whereas
lected ungauged site is prone to inundation. Each numbeFig. 4b and ¢ showed the hydrographs of the SWMM out-
displayed in Fig. 3 indicated a manhole related to a drain.put values versus the observation values at Stations YC4 and
Before the construction of a water level prediction model atYC8, accordingly. It clearly indicated that the water levels
an ungauged site, it should be confirmed if the quality of theestimated by the SWMM well captured the main trends of
synthetic data of the water levels is appropriate or not. That iobservations at both stations. The accuracies of the simulated
to say, the errors may propagate to the RNN if there are largélows at Stations YC4 and YC8 were 0.96 and 0.98 each in
biases in the synthetic data generated by the SWMM. Henceerms of the correlation coefficient (CC). Results displayed
it is necessary to verify the applicability of a SWMM to the in Fig. 4 confirmed a high reliability of the SWMM simula-
conditions of an urban sewerage system. In this research, thgons. Frankly speaking, the calibration procedure of SWMM
parameters of the SWMM were calibrated first on the histor-is complex, for example, the optimization of parameters usu-
ical gauge measurements basis. Then, the flows simulatedlly takes time and have to be calibrated event by event in
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order to obtain accurate estimation of water level. Undoubt-

edly, a well calibrated SWMM is able to generate suitable

estimation of water level and can be applied to any ungauged

site if estimation is required. Because the future rainfall pat- — Yc8

tern is not available at current time, the SWMM could only

be used for estimation, not for prediction. Consequently, the vca

RNN is constructed to make the forecasting. Therefore, the

advantages of have both SWMM and RNN in this study are P

(1) to use SWMM to generate data at specific ungauged site| |; _
Parameters calibration Synthetic | |

I - Time-delay unit

Optimization

as the learning target of RNN; (2) to use RNN fed with the dataset

SWMM outputs as learning targets for the purpose of water ww Synthetic :
o ) — ———| Evaluat
level prediction at an ungauged site. dataset valuation

For predicting the water level at the selected ungauged site,
the input variables of a RNN consists of the precipitationsrig. 5. The architecture of a RNN to predict the water level at the
and the water level information of the nearby upstream andungauged station.
downstream stations; namely, the mean areal precipitations
and water level observation values at Stations YC4 and YC8.
It should be noticed that the learning target values to the RNNO estimate the fitness to the hydrological models in hydro-
is replaced by the synthetic data, assumed as the observéggical applications, and moreover to facilitate the compari-
tion values, of water levels generated from the SWMM at theson of different estimated/predicted results. The three criteria
ungauged site. The RNN network structure is expressed irdre defined as follows:
Fig. 5 and its input-output combination for water level pre-

N J—

diction at ungauged site can be represented as follows. > (Q(i)—@ (Q(i)—Q)

cc=—=2 5
Ly, (t+n)= f(Lyca(t),Lycs(t), P(t)) n€5,10,15,20. N _oN =2 &

) > (00)-0)°%(01)-0)

where L, (¢t +n) is the water level prediction at ungauged i=1 =1
site at lead time ofi minutes,Lyca(z) and Lycg(¢) is the N
observed water level of Stations YC4 and YCS8 at timand S (0()—0)?
P(¢) is the observed precipitation at time CE=1_1=t (6)

The best of this technique is this model can produce the
water level predictions at any specific location no matter
whether water level measurements are available or not. It

N —
Zi(Q(i)—Q)2

means this water level prediction model can be extended to N

any ungauged sites if the observation values of its nearby Y (0()—0Qi))?

rainfalls and water levels are available. The RNN learnedNRMSE== |t (7)
from both external, Stations YC4, YCS8, and P, and internal, o N

f[he feedback I||_1ks, input mform_atlon and further optimized where 0 is the forecasted water leveh{ and Q is the ob-
its parameters in accordance with the errors calculated from —

related outputs and synthetic data. As far as the model optiServed water level®); Q andQ are the means of the water

mization procedure is concerned, the number of hidden neulevels associated with observation values and forecast values,

rons was first decided (three hidden neurons) by using théespectively.o is the standard deviation of the observation

trial-and-error method after the determination of input di- values.

mension. Second, a tolerable error was set to 0.0001 and the

number of iteration was set to 500 because the learning aIgoA-f

rithm used herein was the gradient descent method which has

the characteristic of fast convergence. Such training procesg 1 performance of water level predictions at the

is usually no more than 5 min and is repeated for 50 times to Gauging Station YC10

find appropriate initial values. Consequently, the time spent

for optimizing the parameters is about 4 h. Table 2 shows the results obtained from the RNN for the wa-
Three error statistics are chosen to assess the consistentsr level predictions at Station YC10. The results implied that

between the water level monitoring records and the RNN-the model was well trained with a consistent performance

based predictions; that is, the correlation coefficient (CC),and therefore produced precise testing results for multi-step-

coefficient of efficiency (CE), and normalized root-mean- ahead forecasts. The testing performances of the water level

square error (NRMSE). All of these indices are widely usedpredictions of 5-, 10-, 15-, and 20-min-ahead are rather good.

Results and discussion
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Table 2. Results obtained from the RNN for water level prediction

at Station YC10.

Y.-M. Chiang: Dynamic neural networks for real-time water level predictions of sewerage systems

Index Lead time
5min  10min 15min 20 min
cC 0.99 0.99 0.99 0.99
Training CE 0.99 0.99 0.98 0.97
NRMSE 0.08 0.08 0.15 0.16
cC 0.99 0.99 0.97 0.97
Validation CE 0.99 0.98 0.95 0.93
NRMSE 0.12 0.16 0.23 0.26
CcC 0.99 0.99 0.97 0.97
Testing CE 0.99 0.99 0.97 0.95
NRMSE 0.11 0.11 0.22 0.26
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Fig. 7. The error distribution of RNN outputs in testing phase for
(@) 5-, (b) 10-,(c) 15-, and(d) 20-min-ahead predictions.

We feel confident that the RNN-based water level prediction
model is capable of capturing the major trends of observa-
tions with accuracy higher than 0.97 of correlation coeffi-
cient, see Table 2. In terms of coefficient of efficiency (CE),
the consistency between the water level observation values
and the prediction values indicates that the RNN has the abil-
ity to predict highly nonlinear and variable systems, such as
urban drainage/sewerage systems. Figure 6 illustrates the
scattering plots of the RNN outputs in both validation and
testing sets versus the observations for 5 to 20-min-ahead
predictions. The results also prove that the RNN can be
well trained for learning any input-output relations if suffi-
cient data can be provided.

Figure 7 shows the error distribution of RNN outputs in
testing phase for 5 to 20-min-ahead predictions. In the 5-
and 10-min-ahead predictions of the model, the biases be-
tween the outputs and observation values are mostly within

Fig. 6. The scattering plots of the RNN outputs versus the observa-10 cm except for the connection between a low water level

tions for(a) 5-, (b) 10-, (c) 15-, and(d) 20-min-ahead predictions

in both validation and testing sets.

Hydrol. Earth Syst. Sci., 14, 1302319 2010

event and a high level event with a slight underestimation.
A similar phenomenon also occurs in the 15- and 20-min-
ahead predictions since the water level measurements rise
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Table 3. Testing results of the water level prediction at an ungauged
site. 3 3

€

CC CE NRMSE z2 .
P4
o

5-min-ahead 0.98 0.83 0.36 1 1
10-min-ahead 0.97 0.82 0.42

15-min-ahead 0.97 0.76 0.43 % i P 3 4 % ] 5 3 4
20-min-ahead 0.95 0.74 0.44 SWMM (m) SWMM (m)
@ (b)
4 4
rapidly from 0.1 m to 1.27 m within 20 min. However, there 3 3
is no precipitation measured during this period. One possible§2 g 52 o0
explanation may be the failure of hardware instruments. In Z ° z o°
summary, the RNN model proved its ability to make precise 1 1
predictions of 20-min-ahead water levels and performed well
for peak flow predictions. T i ) 3 4 0 st 4
4.2 Performance of water level predictions at an © @

ungauged site Fig. 8. The scattering plots of the RNN outputs versus the SWMM

As mentioned previously, there is a need for building the wa-Sstimations fo'.(a) 5, (b) 10-, (€) 15-, and(d) 20-min-ahead pre-
dictions in testing set.

ter level prediction at an ungauged site since monitoring the
water levels in urban sewerage systems is not yet very com-

mon in Taiwan. In order to conquer the difficulty in pre-

dicting the water level at an ungauged site, we utilized thePredictions up to 20min ahead. It is interesting to inspect
precipitation and the water level information of the nearby the model performance at gauged and ungauged sites. For
stations as input and the synthetic data obtained form th&xample, the RNN models produced smaller predictive error

SWMM as the target values, because of the unavailabilityat gauged site but larger predictive error at ungauged site (in
of real observation values at this site, to train the RNN. Ta-terms of CE and NRMSE) even though the correlation coef-

the chosen ungauged site. For 5- to 20-min-ahead predictydrograph of the synthetic data generated by SWMM is not
tions, the values of CC are higher than 0.95, indicating tha@s Smooth as that of observations (see Fig. 4). In other words,
the RNN can effectively predict the water level hydrographsthe bias produced from synthetic data does propagate to RNN
even at an ungauged site. Nevertheless, values of CE, fallin§odel, and therefore resulted in larger predictive error. Be-
between 0.74 and 0.83, are relatively low which implies thatsides, the correlation coefficients of the SWMM simulations
the RNN slightly underestimated some peak flows with an@chieved 0.96 and 0.98 at YC4 and YC8, respectively, which
error percentage under 10%. Figure 8 illustrates the scatteddicates the best performance obtained at ungauged site will
ing plots of the RNN outputs versus the SWMM estimations. Not be higher than 0.98. Our results conform to this limitation
For the 5-min-ahead prediction, refer to Fig. 8a, the predic-(see Table 3) and demonstrate that the predictive capabilities
tion values are very close to the ideal line which indicates af RNN models are similar no matter where itis.
high accuracy of the RNN outputs. In the analysis of the 10- Regarding the application possibility of the constructed
to 20-min-ahead prediction values, see Fig. 8b—d, it is quitemodel, it depends on both model reliability and stability. In
obvious that the RNN underestimates some observation valthis study, the results obtained from RNN are precise and
ues. The major reason for producing such underestimatioshow that the reliability of the constructed RNN is qualified
is due to the time-lag problems which occur in the outputto be applied to the water level predictions at urban sewer-
process of the RNN. Fortunately, the phenomenon of suclage systems. As for model stability, it can be demonstrated
underestimation is not that serious. In summary, the result§Table 2) that the model was well constructed using a consid-
obtained from RNN are still acceptable, indicating that the erable amount of data during training phase. Meanwhile, the
RNN is also applicable to the water level predictions at un-second independent dataset was used to optimize the struc-
gauged sites by using synthetic data sets generated from tare and connected weights in the validation phase. The func-
well calibrated SWMM. tion of validation data is to prevent the model from being
Overall, the study demonstrates that the RNN model is ca-over-trained and to efficiently increase the model’'s general-
pable of learning the time-varying processes in urban sewization capability. Results obtained from RNN strongly re-
erage systems, and therefore providing precise water levelealed that the model has optimized and stabilized in terms of
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