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Abstract. In this research, we propose recurrent neural net-
works (RNNs) to build a relationship between rainfalls and
water level patterns of an urban sewerage system based on
historical torrential rain/storm events. The RNN allows sig-
nals to propagate in both forward and backward directions,
which offers the network dynamic memories. Besides, the
information at the current time-step with a feedback oper-
ation can yield a time-delay unit that provides internal in-
put information at the next time-step to effectively deal with
time-varying systems. The RNN is implemented at both
gauged and ungauged sites for 5-, 10-, 15-, and 20-min-ahead
water level predictions. The results show that the RNN is ca-
pable of learning the nonlinear sewerage system and produc-
ing satisfactory predictions at the gauged sites. Concerning
the ungauged sites, there are no historical data of water level
to support prediction. In order to overcome such problem, a
set of synthetic data, generated from a storm water manage-
ment model (SWMM) under cautious verification process of
applicability based on the data from nearby gauging stations,
are introduced as the learning target to the training procedure
of the RNN and moreover evaluating the performance of the
RNN at the ungauged sites. The results demonstrate that the
potential role of the SWMM coupled with nearby rainfall and
water level information can be of great use in enhancing the
capability of the RNN at the ungauged sites. Hence we can
conclude that the RNN is an effective and suitable model for
successfully predicting the water levels at both gauged and
ungauged sites in urban sewerage systems.

Correspondence to:F.-J. Chang
(changfj@ntu.edu.tw)

1 Introduction

The growth of urbanization has paralleled the growth of the
global economy over the last decades. Owing to the rapid
development of metropolitan areas, the natural hydrological
mechanisms have been changed, such as the reduction of the
infiltration and the concentration response time in a catch-
ment, which leads to unexpected inundations and failures in
operating pumping stations. Taiwan is prone to such circum-
stances. Taiwan is located in the northwestern Pacific Ocean
where the activities of subtropical air currents happen fre-
quently. Due to the irregular timing and location of precip-
itations and the increase of impervious areas, the flood hy-
drographs during typhoon seasons result in large peak flows
with fast-rising limbs which usually cause serious disasters in
Taiwan. For example, on 17 September 2001, Typhoon Nari
struck northern Taiwan accompanied with heavy rainfalls,
more than 500 mm/day, which caused 27 deaths. The flood
inundated 4151 building basements that brought on countless
economic losses.

A surface inundation will occur as the surface runoff
discharge is larger than the designed capacity of a storm
drainage system. The operation of a pumping station highly
depends on the information of water level. The risks of in-
undations may be reduced if accurate water level prediction
information can be provided. With such prediction informa-
tion, a peak flow can be mitigated by pumping out the in-
ner water prior to the approach to a peak flow. Despite of
the massive researches that have been invested in simulat-
ing the water levels of sewerage systems in storm events, the
time-delay and the magnitude of a peak flow still can not be
estimated precisely and a comprehensive solution of the as-
sessment of sewerage systems does not seem to be on hand,
either. In present practice, the assessments of the water level
variations in sewerage systems during storm events count on
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conceptual models mainly. To implement these conceptual
models, it requires data generated from sewerage systems,
e.g. storage volume, pumping capacity, contribution areas,
and so on, and hydraulic loads such as precipitations and
flows, etc. The conceptual models can only provide simu-
lation results on the basis of given rainfall conditions and are
not commonly used as real-time operation tools. For quan-
tifying the influences of water level variations in sewerage
systems and increasing the operation ability of pumping sta-
tions, this research focuses on developing real-time models
to produce accurate multi-step-ahead water level predictions
for urban sewerage systems by utilizing recurrent neural net-
works (RNNs).

The artificial neural network (ANN) has evolved as a
branch of artificial intelligence and has been regarded as
an efficient tool for the learning of any nonlinear input-
output systems. Therefore, the ANN is described as a data
processing system that composed of many nonlinear inter-
connected artificial neurons. The main benefit of adapting
ANNs are that they can effectively extract significant fea-
tures and trends from complex data structures even if the
underlying physics is either unknown or difficult to recog-
nize. In the field of hydrology, various research results that
were produced by the ANNs have reported the improvements
in the performances of simulations such as rainfall forecast-
ing (Chiang and Chang, 2009; Chiang et al., 2007a; Hung
et al., 2009; Nasseri et al., 2008), reservoir operation (Chan-
dramouli and Deka, 2005; Chang and Chang, 2001; Chaves
and Chang, 2008), stream flow forecasting (Akhtar et al.,
2009; Chang and Chang, 2006; Chiang et al., 2007b; Maity
and Kumar, 2008; Sudheer et al., 2008; Toth, 2009; Sahoo
et al., 2009; Besaw et al., 2010), and applications in urban
drainage systems (Bruen and Yang, 2006; Loke et al., 1997).

In viewing the network topologies and the structures of
the ANNs used in the field of hydrology, we can distinguish
them into two different generic neural network types: feed-
forward and feedback networks. The topology of the feedfor-
ward ANN consists of a set of neurons connected by the links
in a number of layers. The feedforward networks implanted
fixed-weights which map the input space to the output space,
so that the state of any neuron is solely determined by the
input-output pattern excluding the initial and the past states
of the neuron. That is to say, the feedforward networks are
not dynamic. The corresponding advantage is that a feed-
foward network can be built easily by a simple optimization
algorithm. For such reason, this type of network architec-
ture is the most popular in use today. Nonetheless, the static
feedforward neural network also has several drawbacks for
some applications. As for the feedback architecture, it dif-
ferentiates itself from the feedforward one by possessing at
least one feedback link. The presence of a feedback link has
a profound impact on the learning capability of the RNN and
on its performance (Coulibaly and Baldwin, 2005). Because
of the feedback link, the status of its neuron depends not only
on the current input signal, but also on the previous states of

the neuron. The chief advantage of the dynamic feedback
neural network is that it can effectively decrease the input di-
mension of the network and therefore improve the training
efficiency (Chang et al., 2002; Chiang et al., 2004). In this
research, we propose a RNN for water level predictions in
sewerage systems. There are two main features of the RNN;
(1) its nonlinear properties make the prediction of a complex
nonlinear dynamic system feasible, and (2) its temporal re-
current processing properties make the implementation eas-
ier.

Due to the limited number of water level gauging stations
in a sewerage system, the data and predictions of water levels
at ungauged sites become an important issue of flood preven-
tion. One of the advantages of predicting water levels at un-
gauged sites is to reduce the expensive engineering and main-
tenance costs. In view of this, the storm water management
model (SWMM), a well-known tool for modeling urban wa-
ter circulations, is introduced in this research. A SWMM is
an urban runoff model designed for simulating the quantity
and quality of flows associated with urban surface runoffs
and combined with sewer overflow phenomena (Huber and
Dickinson, 1988). A SWMM could provide hydrographs at
any manhole and give conceptual flood depths by water lev-
els, and therefore was adapted for simulating and generating
data of water levels at an ungauged site. Its synthetic data,
under certain verification process of applicability based on
the data from nearby gauging stations, were further used as
the learning targets to the training procedure of the RNN-
based hydrological models and also used for evaluating and
verifying the performance of the RNNs.

The difference between RNN and SWMM is that, in gen-
eral, a physically based simulation model such as SWMM
can be used to model natural systems to gain insight into
their functioning and to show the eventual real effects of al-
ternative conditions. The SWMM model could generate the
water level of time t by being fed with input data at the same
time (time t). In this study, the calibrated SWMM model
was fed with the whole series of input information to gain its
corresponding series of estimation outputs. Consequently, it
can only produce current water level because future rainfall
pattern is not available at current time. Whereas the trained
RNN can produce future water level (timet +n) by being
fed with current data (timet) and the model can be executed
through a step by step procedure. Concretely speaking, the
output of SWMM is suitable for hydraulic planning and de-
sign after a storm event because the model requires complete
rainfall pattern of an event; whereas the output of RNN is
suitable for real-time operation of pumps because the model
can be executed through a step by step procedure.

In this research, we briefly illustrate both RNN and
SWMM methods at first. And next, the study area and the
structure of water level prediction models are presented. Re-
sults obtained from both gauged and ungauged sites are ana-
lyzed in the subsequent sections, and conclusions are drawn
in the end.
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2 Methodology

2.1 Recurrent neural network (RNN)

Many types of artificial neural networks have been developed
in the last few decades, which mostly belong to feedforward
operations, so-called static neural networks, in spite of dif-
ferent architectures of these networks. The static feedfor-
ward neural network can achieve satisfactory analytical out-
comes if sufficient data are available (Chiang et al., 2004).
Nevertheless, in consideration of the temporal or short-term
dynamic property, the static neural network has difficulty
in recognizing and predicting the reality. The definition of
a RNN, so-called dynamic neural network, is that at least
one feedback link should be added to the static neural net-
work. The RNN allows signals to propagate in both forward
and backward directions, which offers the network dynamic
memories. Besides, the information at the current time-step
with a feedback operation can yield a time-delay unit that
provides internal input information at the next time-step. In
other words, the recurrent neural networks are able to capture
the true hidden dynamic memories of nonlinear systems. The
RNN has been proved to be a powerful method for handling
complicated systems such as nonlinear time-varying systems
(Coulibaly and Baldwin, 2005; Coulibaly and Evora, 2007;
Kumar et al., 2004; Mishra and Desai, 2006; Razavi and
Karamouz, 2007; Yazdani et al., 2009).

In this research, we propose a three-layer RNN with inter-
nal time-delay feedback loops in both hidden and output lay-
ers, see Fig. 1. The transfer function of both hidden and out-
put layers is of sigmoid type which can be applied to nonlin-
ear transformation. Each input neuron is connected to a hid-
den neuron, where each hidden neuron has its corresponding
time-delay unit, i.e. the number of hidden neurons is equal
to that of time-delay units. Basically, a feedback link allows
its time-delay unit to store the output information of this hid-
den neuron as an additional input to all hidden neurons at
next time-step, refer to Fig. 5 for details. Then, the RNN
has an inherent dynamic memory given by the feedback con-
nections of the time-delay units, and its output depends not
only on the current input information but also on the previous
states of the network. In this research, the RNN makes use
of the gradient descent method for calibrating the parameters
via minimizing the forecasting errors.

As shown in Fig. 1, the output of neuronJ in the hidden
layer is computed as

y
J
(t +1) = f

(
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wJiXi
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J∑
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wJjyj
(t)

)
(1)

wheref (.) denotes the transfer function,y
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Figure 1 The architecture of the recurrent neural network (RNN) 640 
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Fig. 1. The architecture of the recurrent neural network (RNN).

The output of neuronK in the output layer at timet +1 is
calculated by

Q̂
K
(t +1) = f

(
J∑

j=1

wKj yj
(t +1)+

K∑
k=1

wKkQ̂K
(t)

)
(2)

wherewKj represents the connection weight from the hidden
unit j to the output unitK, andwKk represents the time-delay
feedback weight from the output unitk to the output unitK.

The associated weight of each parameter in the RNN can
be figured out by the following formula through the chain
rule with partial derivatives.

Wnew= Wold−η
∂Etotal

∂W
(3)

whereη denotes the learning rate.
Etotal represents the objective function

Etotal=

N∑
t=1

E(t) =
1

2
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K∑
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[
Q

k
(t)−Q̂

k
(t)
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(4)

whereQ
k
(t) represents the value of the learning target to

neuronk at timet ; andQ̂
K
(t) is the network output of neu-

ronk at timet.

www.hydrol-earth-syst-sci.net/14/1309/2010/ Hydrol. Earth Syst. Sci., 14, 1309–1319, 2010



1312 Y.-M. Chiang: Dynamic neural networks for real-time water level predictions of sewerage systems

2.2 Storm water management model (SWMM)

The SWMM is a comprehensive hydrological simulation
model that is commonly applied to designing the quality and
quantity models of runoffs in urban areas (Ackerman and
Schiff, 2003; Baffaut and Delleur, 1990; Borah and Bera,
2003; Denault et al., 2006; Maharjan et al., 2009; Tsihrintzis
and Hamid, 1998). As understood, even though the RNN
can easily build a water level prediction model at the gauged
sites, the difficulty in predicting the water levels at an un-
gauged site is due to its unavailability of real observations
for the training and evaluation of a RNN. Fortunately, the
SWMM can be an appropriate tool to overcome such diffi-
culty by its simulation ability. In principle, the SWMM is ca-
pable of simulating the quantity and quality of runoffs within
a drainage basin, and thus is chosen to simulate the water lev-
els of sewerage systems at ungauged sites. Hence, the major
reason for applying a SWMM to this research is to gener-
ate synthetic data of the water levels from a specific manhole
at an ungauged site. To simulate a flow, the SWMM uses
the Saint-Venant equations for a gradually varied, turbulent,
and unsteady flow. The Saint-Venant equations represent the
principles of conservation of momentum and conservation of
mass. A SWMM contains four functional program blocks
that can simulate different components of a hydrological cir-
culation. Two of them are managed herein: the RUNOFF
and the EXTRAN blocks (Huber and Dickinson, 1988). The
RUNOFF block performs hydrological computations accord-
ing to the theory of nonlinear reservoirs, and the RUNOFF
outputs are then taken as inputs to the EXTRAN block which
is designed to route the flows in a sewerage system by using
numerical methods.

Next, the SWMM parameters recruited in this research
comprise ten factors which are catchment length/width ra-
tio, catchment slope, maximum infiltration, minimum in-
filtration, impervious area Manning’s roughness coefficient,
pervious area Manning’s roughness coefficient, impervious
area detention storage, pervious area detention storage, % of
impervious area of catchment, and decay rate of infiltration
curve. The main reason for not using the suggested parame-
ters listed in the table of the SWMM manual or the parame-
ters presented in previous research papers is that, empirically,
these parameters may not fit in with the analysis of the storm
events occurred in Taiwan. These parameters are further cal-
ibrated by use of the historical observation values of rainfalls
and runoffs. A detailed discussion is illustrated in next sec-
tions.

3 Applications

3.1 Study area and data

Taiwan is located in the subtropical jet stream monsoon dis-
trict of northern Pacific Ocean. Taipei City is situated in the

Taipei Basin of northern Taiwan and is surrounded by the
Danshui River, whose narrow estuary makes it difficult to
discharge water effectively from the city. A highly inten-
sive rainfall during a storm or a typhoon could easily cause
flooding. The flood control strategy covers two actions; (1) to
build embankments along the river sides, and (2) to set pump-
ing stations at the main drains to discharge the rain water
from the city. Pumping stations are the principal hydraulic
facilities for the sluices of floods in highly developed cities,
and therefore play important roles in mitigating the floods
in metropolitan areas. Accurate predictions of water levels
in urban drainage systems are necessary and important for
successful operations of the pumping stations. The study
area for this research is the Yu-Cheng catchment, located in
southeastern Taipei as shown in Fig. 2, which is taken for a
detailed investigation of water levels for prediction purpose.
There are five rain gauging stations, denoted blue circles in
Fig. 2, and ten water level gauging stations, denoted red tri-
angles in Fig. 2, in this region. The Yu-Cheng catchment
with an area about 1645 ha owns the biggest drainage system
in Taipei City and the pumping station was built in 1987 to
drain or pump the inner water into the Keelung River. The
pumping station contains seven massive pumps and has the
total capacity to 184.1 cm/s, which was the most advanced
and largest in Asia in the 1980s. When the water level of
the river rises up to the warning level (1.8 m), the pumps turn
and warm up. These pumps start pumping when the water
level of Keelung River is higher than start-out level (2.4 m);
meanwhile, the gravity gates are immediately closed which
means the running water cannot be discharged by gravity.
The start-out level is the lowest water level for pumps func-
tioning; the pumps may be damaged if the water is lower
than this level. These seven pump sets are operated indepen-
dently and sequentially according to the different water levels
which means when a running pump cannot control the water
level under the level of 2.4 m, another pump will start work-
ing rather than turn on all pumps during typhoon periods. On
the contrary, these pumps are turned off, respectively, as the
water level is falling.

In this research, the RNN-based model was constructed
for precise predictions of water levels at the gauging sta-
tions. The outlet of the sewerage system is the water level
gauging station, Station YC10, and therefore Station YC10
is selected as the objective for a water level prediction. The
real-time water level monitoring of the sewerage systems has
been operated by the Hydraulic Engineering Office of Taipei
City Government for the past few years. The historical data
used in this research contained the precipitations and water
level information recorded from 2002 to 2006. The precipita-
tion observation values collected in this research were used to
calculate the mean areal precipitation based on the Thiessen
polygon method in order to effectively reduce the input di-
mension of the RNN. After data preprocessing, a total of
2055 records of data, extracted from 14 typhoons or storm
events, with a resolution of 5 min were collected, see Table 1.
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Figure 2 The locations of Yu-Cheng catchment and the monitoring stations 644 
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Fig. 2. The locations of Yu-Cheng catchment and the monitoring stations.

Table 1. Data from storm events for water level predictions.

Config. Event Amount Rainfall
accumulation
(mm)

Mean water
level
(m)

Standard
deviation
(m)

1

Training

395 90.8 2.10 0.61
2 85 20.9 2.25 0.33
3 68 15.0 2.28 0.26
4 107 33.0 1.44 0.57
5 31 68.4 1.84 0.27
6 256 406.5 5.48 1.26
7 206 156.4 3.20 0.38
8 300 156.1 2.63 0.74

9
Validation

135 123.0 2.32 0.83
10 60 61.8 1.77 0.62
11 43 21.0 1.33 0.15

12
Testing

142 53.2 2.06 0.65
13 176 57.2 2.04 0.55
14 51 25.3 1.46 0.65

These data were divided into three parts; (1) data associated
with eight events were arranged to train the RNN parameters,
(2) data associated with the other three events were dedicated
to validate the RNN, and (3) data associated with the remain-
ing three events were for the testing procedure of the RNN.

3.2 Water level prediction model

In this research, the RNNs were built for the water level
predictions at both gauged and ungauged sites in a sewer-

age system. The purpose of predicting the water level at the
select gauged site is to provide upcoming information (pre-
dictions of water level) for following operation of pumps at
Yu-Cheng station. For predicting the water level of Station
YC10, the input information to the RNN-based hydrological
model mostly came from the upstream water levels and the
mean areal precipitations. In addition to the mean areal pre-
cipitation information, the variation of the water level at the
upstream gauging station may also affect the water level at
Station YC10 if the upstream gauging station is highly cor-
related to Station YC10. On the basis of the main drains of
the watershed, the drainage system of the Yu-Cheng catch-
ment can be roughly partitioned into three sub-drainage sys-
tems. The outlets of these three sub-drainage systems are
Stations YC4, YC9, and YC11. Since the observations were
performed irregularly at the Station YC9, the water level in-
formation at this station was not considered in this research.
Therefore, the input variables for the water level prediction
at Station YC10 were the mean areal precipitations and the
water level information of Stations YC4, YC10, and YC11.
The learning target of the RNN model can be referred to the
water level observations of YC10. Four identical RNN struc-
tures, each with a single output, were designed for 5-, 10-,
15-, and 20-min-ahead water level predictions. The input-
output combination of RNN models can be represented as
follows.

L̂YC10(t +n) = f (LYC4(t),LYC10(t),LYC11(t),P (t))

n ∈ 5,10,15,20.
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Figure 3 The location of the ungauged site 648 
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Fig. 3. The location of the ungauged site.

whereL̂(t +n) is the model forecast at lead time ofn min-
utes,L(t) is the observed water level at timet , andP(t) is
the observed precipitation at timet .

The time step is set as 5 min because the operational time
step of Yu-Cheng pumping station is 5 min. Owing to cur-
rent operating procedure of pumps is highly dependent on
the experience of local operators who require accurate infor-
mation on water level prediction for next few steps. The time
of concentration of this catchment is about 70 min. There is
a trade-off between the accuracy and the lead time of model
predictions. To ensure good accuracy of water level predic-
tion, the outputs of the constructed model are designed for a
lead time up to 20 min which is required by local operators.
Twenty minutes is enough for reliable and effective operation
of pumps to drain runoff water away and reduce the risk of
flooding if the water level prediction is precise.

Moreover, in consideration of the historical inundation
events recorded by the Hydraulic Engineering Office of
Taipei City Government, we selected an ungauged site, lo-
cated between Stations YC4 and YC8, and marked it with
a blue square as shown in Fig. 3. In other words, this se-
lected ungauged site is prone to inundation. Each number
displayed in Fig. 3 indicated a manhole related to a drain.
Before the construction of a water level prediction model at
an ungauged site, it should be confirmed if the quality of the
synthetic data of the water levels is appropriate or not. That is
to say, the errors may propagate to the RNN if there are large
biases in the synthetic data generated by the SWMM. Hence,
it is necessary to verify the applicability of a SWMM to the
conditions of an urban sewerage system. In this research, the
parameters of the SWMM were calibrated first on the histor-
ical gauge measurements basis. Then, the flows simulated
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Figure 4 (a) The rainfall hyetograph, (b) the SWMM hydrograph at Station YC4, (c) 651 
the SWMM hydrograph at Station YC8 652 

Fig. 4. (a)The rainfall hyetograph,(b) the SWMM hydrograph at
Station YC4,(c) the SWMM hydrograph at Station YC8.

by the SWMM corresponding to Station YC4 and Station
YC8 were evaluated. Figure 4a showed the rainfall hyeto-
graph of an event randomly selected from datasets, whereas
Fig. 4b and c showed the hydrographs of the SWMM out-
put values versus the observation values at Stations YC4 and
YC8, accordingly. It clearly indicated that the water levels
estimated by the SWMM well captured the main trends of
observations at both stations. The accuracies of the simulated
flows at Stations YC4 and YC8 were 0.96 and 0.98 each in
terms of the correlation coefficient (CC). Results displayed
in Fig. 4 confirmed a high reliability of the SWMM simula-
tions. Frankly speaking, the calibration procedure of SWMM
is complex, for example, the optimization of parameters usu-
ally takes time and have to be calibrated event by event in
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order to obtain accurate estimation of water level. Undoubt-
edly, a well calibrated SWMM is able to generate suitable
estimation of water level and can be applied to any ungauged
site if estimation is required. Because the future rainfall pat-
tern is not available at current time, the SWMM could only
be used for estimation, not for prediction. Consequently, the
RNN is constructed to make the forecasting. Therefore, the
advantages of have both SWMM and RNN in this study are
(1) to use SWMM to generate data at specific ungauged site
as the learning target of RNN; (2) to use RNN fed with the
SWMM outputs as learning targets for the purpose of water
level prediction at an ungauged site.

For predicting the water level at the selected ungauged site,
the input variables of a RNN consists of the precipitations
and the water level information of the nearby upstream and
downstream stations; namely, the mean areal precipitations
and water level observation values at Stations YC4 and YC8.
It should be noticed that the learning target values to the RNN
is replaced by the synthetic data, assumed as the observa-
tion values, of water levels generated from the SWMM at the
ungauged site. The RNN network structure is expressed in
Fig. 5 and its input-output combination for water level pre-
diction at ungauged site can be represented as follows.

L̂u(t +n) = f (LYC4(t),LYC8(t),P (t)) n ∈ 5,10,15,20.

where L̂u(t + n) is the water level prediction at ungauged
site at lead time ofn minutes,LYC4(t) andLYC8(t) is the
observed water level of Stations YC4 and YC8 at timet , and
P(t) is the observed precipitation at timet .

The best of this technique is this model can produce the
water level predictions at any specific location no matter
whether water level measurements are available or not. It
means this water level prediction model can be extended to
any ungauged sites if the observation values of its nearby
rainfalls and water levels are available. The RNN learned
from both external, Stations YC4, YC8, and P, and internal,
the feedback links, input information and further optimized
its parameters in accordance with the errors calculated from
related outputs and synthetic data. As far as the model opti-
mization procedure is concerned, the number of hidden neu-
rons was first decided (three hidden neurons) by using the
trial-and-error method after the determination of input di-
mension. Second, a tolerable error was set to 0.0001 and the
number of iteration was set to 500 because the learning algo-
rithm used herein was the gradient descent method which has
the characteristic of fast convergence. Such training process
is usually no more than 5 min and is repeated for 50 times to
find appropriate initial values. Consequently, the time spent
for optimizing the parameters is about 4 h.

Three error statistics are chosen to assess the consistency
between the water level monitoring records and the RNN-
based predictions; that is, the correlation coefficient (CC),
coefficient of efficiency (CE), and normalized root-mean-
square error (NRMSE). All of these indices are widely used
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Figure 5 The architecture of a RNN to predict the water level at the ungauged station 655 Fig. 5. The architecture of a RNN to predict the water level at the
ungauged station.

to estimate the fitness to the hydrological models in hydro-
logical applications, and moreover to facilitate the compari-
son of different estimated/predicted results. The three criteria
are defined as follows:

CC=

N∑
i=1

(
Q(i)−Q

)(
Q̂(i)−Q̂

)
√

N∑
i=1

(
Q(i)−Q

)2 N∑
i=1

(
Q̂(i)−Q̂

)2
(5)

CE=1−

N∑
i=1

(Q(i)−Q̂)2

N∑
i=1

(Q(i)−Q)2

(6)

NRMSE=
1

σ

√√√√√ N∑
i=1

(Q̂(i)−Q(i))2

N
(7)

whereQ̂ is the forecasted water level (m) andQ is the ob-

served water level (m); Q andQ̂ are the means of the water
levels associated with observation values and forecast values,
respectively.σ is the standard deviation of the observation
values.

4 Results and discussion

4.1 Performance of water level predictions at the
Gauging Station YC10

Table 2 shows the results obtained from the RNN for the wa-
ter level predictions at Station YC10. The results implied that
the model was well trained with a consistent performance
and therefore produced precise testing results for multi-step-
ahead forecasts. The testing performances of the water level
predictions of 5-, 10-, 15-, and 20-min-ahead are rather good.
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Table 2. Results obtained from the RNN for water level prediction
at Station YC10.

Index Lead time

5 min 10 min 15 min 20 min

CC 0.99 0.99 0.99 0.99
Training CE 0.99 0.99 0.98 0.97

NRMSE 0.08 0.08 0.15 0.16

CC 0.99 0.99 0.97 0.97
Validation CE 0.99 0.98 0.95 0.93

NRMSE 0.12 0.16 0.23 0.26

CC 0.99 0.99 0.97 0.97
Testing CE 0.99 0.99 0.97 0.95

NRMSE 0.11 0.11 0.22 0.26
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Figure 6 The scattering plots of the RNN outputs versus the observations for (a) 5-, 657 
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Fig. 6. The scattering plots of the RNN outputs versus the observa-
tions for (a) 5-, (b) 10-, (c) 15-, and(d) 20-min-ahead predictions
in both validation and testing sets.
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Figure 7 The error distribution of RNN outputs in testing phase for (a) 5-, (b) 10-, (c) 660 
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Fig. 7. The error distribution of RNN outputs in testing phase for
(a) 5-, (b) 10-, (c) 15-, and(d) 20-min-ahead predictions.

We feel confident that the RNN-based water level prediction
model is capable of capturing the major trends of observa-
tions with accuracy higher than 0.97 of correlation coeffi-
cient, see Table 2. In terms of coefficient of efficiency (CE),
the consistency between the water level observation values
and the prediction values indicates that the RNN has the abil-
ity to predict highly nonlinear and variable systems, such as
urban drainage/sewerage systems. Figure 6 illustrates the
scattering plots of the RNN outputs in both validation and
testing sets versus the observations for 5 to 20-min-ahead
predictions. The results also prove that the RNN can be
well trained for learning any input-output relations if suffi-
cient data can be provided.

Figure 7 shows the error distribution of RNN outputs in
testing phase for 5 to 20-min-ahead predictions. In the 5-
and 10-min-ahead predictions of the model, the biases be-
tween the outputs and observation values are mostly within
10 cm except for the connection between a low water level
event and a high level event with a slight underestimation.
A similar phenomenon also occurs in the 15- and 20-min-
ahead predictions since the water level measurements rise
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Table 3. Testing results of the water level prediction at an ungauged
site.

CC CE NRMSE

5-min-ahead 0.98 0.83 0.36
10-min-ahead 0.97 0.82 0.42
15-min-ahead 0.97 0.76 0.43
20-min-ahead 0.95 0.74 0.44

rapidly from 0.1 m to 1.27 m within 20 min. However, there
is no precipitation measured during this period. One possible
explanation may be the failure of hardware instruments. In
summary, the RNN model proved its ability to make precise
predictions of 20-min-ahead water levels and performed well
for peak flow predictions.

4.2 Performance of water level predictions at an
ungauged site

As mentioned previously, there is a need for building the wa-
ter level prediction at an ungauged site since monitoring the
water levels in urban sewerage systems is not yet very com-
mon in Taiwan. In order to conquer the difficulty in pre-
dicting the water level at an ungauged site, we utilized the
precipitation and the water level information of the nearby
stations as input and the synthetic data obtained form the
SWMM as the target values, because of the unavailability
of real observation values at this site, to train the RNN. Ta-
ble 3 shows the testing results calculated by all criteria at
the chosen ungauged site. For 5- to 20-min-ahead predic-
tions, the values of CC are higher than 0.95, indicating that
the RNN can effectively predict the water level hydrographs
even at an ungauged site. Nevertheless, values of CE, falling
between 0.74 and 0.83, are relatively low which implies that
the RNN slightly underestimated some peak flows with an
error percentage under 10%. Figure 8 illustrates the scatter-
ing plots of the RNN outputs versus the SWMM estimations.
For the 5-min-ahead prediction, refer to Fig. 8a, the predic-
tion values are very close to the ideal line which indicates a
high accuracy of the RNN outputs. In the analysis of the 10-
to 20-min-ahead prediction values, see Fig. 8b–d, it is quite
obvious that the RNN underestimates some observation val-
ues. The major reason for producing such underestimation
is due to the time-lag problems which occur in the output
process of the RNN. Fortunately, the phenomenon of such
underestimation is not that serious. In summary, the results
obtained from RNN are still acceptable, indicating that the
RNN is also applicable to the water level predictions at un-
gauged sites by using synthetic data sets generated from a
well calibrated SWMM.

Overall, the study demonstrates that the RNN model is ca-
pable of learning the time-varying processes in urban sew-
erage systems, and therefore providing precise water level
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Figure 8 The scattering plots of the RNN outputs versus the SWMM estimations for 663 
(a) 5-, (b) 10-, (c) 15-, and (d) 20-minute-ahead predictions in testing set 664 
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Fig. 8. The scattering plots of the RNN outputs versus the SWMM
estimations for(a) 5-, (b) 10-, (c) 15-, and(d) 20-min-ahead pre-
dictions in testing set.

predictions up to 20 min ahead. It is interesting to inspect
the model performance at gauged and ungauged sites. For
example, the RNN models produced smaller predictive error
at gauged site but larger predictive error at ungauged site (in
terms of CE and NRMSE) even though the correlation coef-
ficients at both sites are higher than 0.95. This is because the
hydrograph of the synthetic data generated by SWMM is not
as smooth as that of observations (see Fig. 4). In other words,
the bias produced from synthetic data does propagate to RNN
model, and therefore resulted in larger predictive error. Be-
sides, the correlation coefficients of the SWMM simulations
achieved 0.96 and 0.98 at YC4 and YC8, respectively, which
indicates the best performance obtained at ungauged site will
not be higher than 0.98. Our results conform to this limitation
(see Table 3) and demonstrate that the predictive capabilities
of RNN models are similar no matter where it is.

Regarding the application possibility of the constructed
model, it depends on both model reliability and stability. In
this study, the results obtained from RNN are precise and
show that the reliability of the constructed RNN is qualified
to be applied to the water level predictions at urban sewer-
age systems. As for model stability, it can be demonstrated
(Table 2) that the model was well constructed using a consid-
erable amount of data during training phase. Meanwhile, the
second independent dataset was used to optimize the struc-
ture and connected weights in the validation phase. The func-
tion of validation data is to prevent the model from being
over-trained and to efficiently increase the model’s general-
ization capability. Results obtained from RNN strongly re-
vealed that the model has optimized and stabilized in terms of
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highly accurate and consistent performance in both training
and validation phases. Once the model was well trained and
validated, it would be able to make on-line forecast instanta-
neously and recursively for the coming storm event. There-
fore, we then make recursive forecast by using the testing
dataset. The testing results produced by RNN were com-
parable to those of training and validation which means the
stability of RNN is robust. Overall, we believe that the built
RNN model can be applied and perform well in practice.

5 Conclusions

In this research, the recurrent-neural-network-based hydro-
logical models have been developed to predict the water lev-
els at both gauged and ungauged sites. This technique was
applied to a sewerage system in the biggest urbanized catch-
ment in Taipei City. Eight RNN models (four for YC10
gauged site, and four for ungauged site), each with a single
output, were calibrated by using the mean areal precipita-
tions and upstream hydrological information, and then built
for the multi-step-ahead water level predictions. The related
outputs can provide important prior knowledge and/or infor-
mation for the successful operation of pumping stations in an
urban sewerage system, and the accurate water level predic-
tions should offer an improvement in preventing a city from
inundation.

The RNN-based hydrological models can precisely pre-
dict the observation values at the catchment outlet. For the
prediction at the gauged site, Station YC10, the RNN pro-
duced excellent water level outputs for 5- up to 20-min-ahead
predictions. As far as the statistical criteria are concerned,
the values of both CC and CE are higher than 0.97 in test-
ing phase, indicating that the RNN is very suitable to model
the nonlinear and time-varying mechanisms of an urban sew-
erage system. For the prediction at the ungauged site, the
SWMM was used for computing storm sewer flow and gen-
erating data at the selected manhole. Based on the evalua-
tion of the SWMM’s applicability to an urban sewerage sys-
tem, the synthetic data at an ungauged manhole were gener-
ated for the training of the RNN. These results pointed out
that even though the forecasts of the RNN slightly underes-
timated the peak flows, the RNN model effectively captured
the major trends of the water level hydrographs produced by
the SWMM. This paper provided an applicable way to pre-
dict water level at ungauged site and the preliminary inves-
tigation showed that the result of prediction obtained from
RNN trained with data generated from SWMM is reliable.
We are certain that this proposed method can be used in a
more flexible way for constructing the hydrological predic-
tion model at any specific manhole. Likewise, the results can
be of great help to verify the inundation risk and to enhance
the efficiency of a pumping station in an inundation-prone
area if a suitable operational strategy can be made.
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