
GPU-BASED SPATIALLY DIVIDED PREDICTIVE PARTITIONED VECTOR
QUANTIZATION FOR GIFTS ULTRASPECTRAL DATA COMPRESSION

Shih-Chieh Wei1 and Bormin Huang2*

1Department of Information Management, Tamkang University, Tamsui 25137, Taiwan
2Space Science and Engineering Center, University of Wisconsin-Madison, Madison, WI 53706, USA

* Corresponding author. E-mail: bormin@ssec.wisc.edu

ABSTRACT

Predictive partitioned vector quantization (PPVQ) has been
proven to be an effective lossless compression scheme for
ultraspectral sounder data. In previous work, we have
identified the two most time-consuming stages of PPVQ for
implementation on GPU. By using 4 GPUs and a spectral
division design in sharing the workload, we showed a 42x
speedup on NASA’s Geostationary Imaging Fourier
Transform Spectrometer (GIFTS) dataset compared to its
original single-threaded CPU code. In this paper, an
alternative spatial division design is developed to run on 4
GPUs. The experiment on the GIFTS dataset shows that a
72x speedup can be further achieved by this new design of
the GPU-based PPVQ compression scheme.

Index Terms—Graphic processor unit, data
compression, GIFTS sounder data

1. INTRODUCTION

Used mainly for earth surface observation, ultraspectral
sounder data is known for its large size due to high
resolution in spectral, spatial and temporal dimensions. For
retrieval of geophysical parameters, the sounder data can
tolerate little noise. Thus lossless compression is often
desired for archiving the ultraspectral sounder data.
Predictive partitioned vector quantization (PPVQ) has been
proven to be an effective lossless compression scheme for
ultraspectral sounder data [1]. It consists of linear
prediction, bit depth partitioning, vector quantization, and
entropy coding.

Our previous work [2] showed that among the four
stages, linear prediction takes up 10% and vector
quantization takes up 87% of the compression time. Both
stages are suitable for GPU implementation. By a spectral
division design in using 4 GPUs, we have demonstrated a
42x speedup on NASA’s Geostationary Imaging Fourier
Transform Spectrometer (GIFTS) [3] dataset compared to its
original single-threaded CPU code. In this paper, an
alternative spatial division design is developed to run on 4

GPUs. Section 2 will describe our methodology. Section 3
shows the experimental result. A short summary will be
given in section 4.

2. THE GPU-BASED PPVQ COMPRESSION
SCHEME

GIFTS represents a revolutionary step in satellite remote
sensing of geophysical parameters, and poses a challenge to
process the large amount of data it will collect [3]. Most of a
raw GIFTS data cube is made up of a 128x128 array of
interferograms as shown in Fig. 1.

Fig. 1. A typical GIFTS data cube.

2.1. The PPVQ algorithm

A data flow diagram for the PPVQ compression scheme is
shown in Fig. 2. The original sounder data mainly goes
through the following 4 stages in sequence to produce a
compressed result.

Linear prediction (LP) This stage can reduce the dynamic
range of a pixel by knowledge of its previous channels. The

spatial frame X of channel i can be linearly predicted by ˆ
iX

as follows.

221978-1-4577-1005-6/11/$26.00 ©2011 IEEE IGARSS 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225204795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 2. The data flow diagram for PPVQ.

Channel index Reordered channel index
(a) (b)

Fig. 3. The bit depth of interferograms before (a) and after (b) bit depth partitioning.

pn

k
kiki XcX

1

ˆ
or CXX pi

ˆ with

)ˆ()(1
i

T
pp

T
p XXXXC (1)

where ˆ
iX is the vector of channel i representing the

predicted 2D spatial frame, Xp is the matrix consisting of np

neighboring channels, and C is the vector of the prediction
coefficients for channel i.

Bit depth partitioning (BP) This stage groups the channel
residual by bit depth as shown in Fig. 3. Channels with the
same bit depth are assigned to the same partition and VQ is
applied to each partition separately.

Vector quantization (VQ). This stage divides high-
dimensional data (vectors) into groups having approximately
the same number of points closest to them. Each group is
represented by its centroid point [4].

Entroy coding (AC) This stage assigns codes to symbols so
as to match code lengths with the probabilities of the
symbols [5]. AC is applied on the VQ output of each bit
depth partition which includes the codebook, residual, and
the index.

Based on profiling of its CPU code, linear prediction
and vector quantization are identified as the two most time-
consuming stages of PPVQ. Both are suitable for massively
parallel computation on GPUs [2].

Fig.4. The three kernels used for linear prediction.

nc

np np np

A=Xp
TXp B=Xp

TXi

nc nc

nsnp

Ei Xi XpCC

222

2.2.The GPU-CPU pipeline implementation

For GPU implementation, three kernels are used for
performing the linear prediction as shown in Fig. 4. The first
kernel prepares the matrix p

T
p XXA and the vector

i
T

p XXB where Xp consists of the previous neighboring
np channel frames of channel i. This kernel is launched with
a total of nc (np np + np) threads, each responsible for
computing an element in the matrix A (of size np np) or the
vector B (of size np) for a specific channel. These threads
can be executed in thread blocks of maximum capacity
allowable by the hardware.

The second kernel solves the linear equation AC = B for
the np prediction coefficients in solution vector C. This
kernel is launched with a total of nc threads, each responsible
for computing the prediction coefficient vector C (of size np)
for a specific channel. The third kernel then computes the
linear prediction residual iii XXE ˆ where CXX pi

ˆ

is the linearly predicted frame of channel i. This kernel is
launched with a total of nc ns threads, each responsible for
computing the residual of a spatial location in the vector Ei

for a particular channel i. A thread block of maximum
capacity of threads can be used for execution.

Fig.5. The schematic of a thread block in codeword assignment.

The vector quantization consists of codebook training
and codeword encoding. The codebook training uses the
well-known Linde-Buzo-Gray (LBG) algorithm [4] but for
fast learning, just takes the first training vector in each group
as the initial codeword of the codebook. LBG is an iterative
process of codeword assignment and codeword computation.
In particular, codeword assignment is most time-consuming
for GIFTS. Given a codebook of nq codeword vectors, the
task of codebook assignment is to assign the smallest
codeword in distortion to each of the ns training vectors. All
vectors have a dimension of nd channels. For GIFTS data,
typical values are ns = 16384; nq = 256, 512, 1024, or 2048;
and nd = 1~500. Consider ns training vectors and each needs
to find the closest one among all nq codewords. As shown in
Fig. 5, a GPU thread block shares the workload of k training
vectors using k by p threads. All vectors have a dimension of
nd channels.

In one observation, a GIFTS data cube of 192MB is
obtained which is divided into 6 sub-cubes of equal size

32MB, each containing 1031 channels. The 6 sub-cubes are
the LW real part, the LW imaginary part, the SMW real part
of channels 1 ~ 1031, the SMW real part of channels 1032 ~
2062, the SMW imaginary part of channels 1 ~ 1031, and
the SMW imaginary part of channels 1032 ~ 2062. As
shown in Fig. 6, each sub-cube goes through the LP, BP, VQ
and AC steps sequentially for compression. The LP and VQ
steps are mainly done on GPU, while the BP and AC steps
are done on CPU. The length of each step is not drawn to
scale. The pipeline is synchronized (denoted by the 6
vertical dotted lines) such that when one sub-cube is doing
AC, the next sub-cube is doing LP, BP, and VQ. Overlap of
the LP, BP, VQ steps with the AC step in time can reduce
the total processing time of a data cube [2].

When there are more than one GPU available, more
speedup can be achieved by using multiple GPUs
simultaneously. For division of the compression workload
among several GPUs, the spatial division design is used in
this paper compared to the spectral division design used in
previous work [2]. For spectral division design, each GPU is
assigned to do the linear prediction of (nc – np)/ ng

contiguous channels where ng is the number of GPUs in use.
In VQ stage, each GPU is responsible for quantization of a
bit depth partition whose number of grouped channels might
vary in size. For current spatial division design, each data
cube is spatially divided into ng equal-sized sub-cubes. Then
each spatial sub-cube is assigned an independent GPU to do
the subsequent LP and VQ stages of compression work.

3. THE EXPERIMENTAL RESULT

The experiment is carried out on a machine with a quad-core
2.4 GHz AMD CPU, and 4 Nvidia Tesla 1.3 GHz GPUs.
Earlier we have developed a source code in C for PPVQ.
For comparison, the single threaded C code was used as the
CPU reference version. It was compiler-optimized by the
gcc O3 optimization option. All GPU speedup was
compared against this optimized CPU version. Using only
one CPU core

Fig. 7 shows the speedup result of using multiple GPUs
on the 5 GIFTS data cubes. In Fig. 7 (a), the speedup profile
of PPVQ using 4 GPUs on the 5 GIFTS data cubes is shown
for our spatial division design. Note that the speedup for LP
is quite dependent on data and shows a large variation. In
Fig. 7 (b), the speedup profile of PPVQ using 1 through 4
GPUs is shown for our spatial division design. The speedup
in (b) is averaged over the 5 data cubes. It can be seen that
when more GPUs are used, a quite scalable speedup in VQ
can be obtained using the current spatial division design.
Using the pipeline design of LP and VQ on GPU and AC on
CPU, the average compression time of the GPU-based
PPVQ on a data cube takes about 13 seconds for the spatial
division design.

223

Fig.6. The pipeline design of PPVQ for GIFTS data

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

Sp
ee

du
p

GIFTS Data Cube No.

LP

VQ

Total

0

20

40

60

80

100

120

140

160

180

1 2 3 4

Sp
ee

du
p

Number of GPUs

LP

VQ

Total

(a) (b)

Fig. 7. The GPU speedup profile of PPVQ on GIFTS data using the spatial division design. (a) The 4 GPU speedup for the 5 cubes in

dataset; (b) The 1~4 GPU speedup averaged over the 5 cubes in dataset.

4. SUMMARY

The predictive partitioned vector quantization (PPVQ)
compression scheme is known for its effectiveness in
lossless compression of ultraspectral sounder data [1]. In
previous work [2], the two most time-consuming stages of
linear prediction and vector quantization are identified and
implemented on GPU. Furthermore a sounder dependent
speedup technique is designed for a GIFTS data cube which
is divided into 6 equal-sized parts to facilitate CPU and
GPU processing in pipeline. In current work, we found that
when up to four GPUs are used to share the workload, the
spatial division design can achieve a promising 72x speedup
compared to its original single-threaded CPU code for
lossless compression of NASA’s GIFTS ultraspectral
sounder data.

5. REFERENCES

[1] B. Huang, A. Ahuja, and H.-L. Huang, “Predictive partitioned
vector quantization for hyperspectral sounder data compression, ”
Proc. SPIE., vol. 5548, pp.70-77, 2004.

[2] S.-C. Wei and B. Huang, “A GPU-based implementation of
predictive partitioned vector quantization for compression of
ultraspectral sounder data,” Proc. SPIE., vol. 7810, p.781017,
2010.

[3] W. L. Smith, F. W. Harrison, D. E. Hinton, H. E. Revercomb,
G. E. Bingham, R. Petersen, and J. C. Dodge, “GIFTS - the
precursor geostationary satellite component of the future Earth
Observing System,” Proc. IGARSS’02, vol. 1, pp. 357-361, 2002.

[4] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector
quantization design, ” IEEE Trans. Commun., vol. 28, pp. 84-95,
1980.

[5] I. H. Witten, R. M. Neal, and J. C. Cleary, “Arithmetic coding
for data compression,” Commun. ACM, vol. 30, no. 6, pp.520-541,
June 1987.

224

