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ABSTRACT

Predictive partitioned vector quantization (PPVQ) has been 
proven to be an effective lossless compression scheme for
ultraspectral sounder data. In previous work, we have 
identified the two most time-consuming stages of PPVQ for 
implementation on GPU. By using 4 GPUs and a spectral 
division design in sharing the workload, we showed a 42x 
speedup on NASA’s Geostationary Imaging Fourier 
Transform Spectrometer (GIFTS) dataset compared to its 
original single-threaded CPU code. In this paper, an 
alternative spatial division design is developed to run on 4 
GPUs. The experiment on the GIFTS dataset shows that a 
72x speedup can be further achieved by this new design of 
the GPU-based PPVQ compression scheme.

Index Terms—Graphic processor unit, data 
compression, GIFTS sounder data

1. INTRODUCTION

Used mainly for earth surface observation, ultraspectral 
sounder data is known for its large size due to high 
resolution in spectral, spatial and temporal dimensions. For 
retrieval of geophysical parameters, the sounder data can 
tolerate little noise. Thus lossless compression is often
desired for archiving the ultraspectral sounder data. 
Predictive partitioned vector quantization (PPVQ) has been
proven to be an effective lossless compression scheme for 
ultraspectral sounder data [1]. It consists of linear 
prediction, bit depth partitioning, vector quantization, and 
entropy coding. 

Our previous work [2] showed that among the four 
stages, linear prediction takes up 10% and vector 
quantization takes up 87% of the compression time. Both 
stages are suitable for GPU implementation. By a spectral 
division design in using 4 GPUs, we have demonstrated a 
42x speedup on NASA’s Geostationary Imaging Fourier
Transform Spectrometer (GIFTS) [3] dataset compared to its 
original single-threaded CPU code. In this paper, an 
alternative spatial division design is developed to run on 4 

GPUs. Section 2 will describe our methodology. Section 3 
shows the experimental result. A short summary will be 
given in section 4.

2. THE GPU-BASED PPVQ COMPRESSION 
SCHEME

GIFTS represents a revolutionary step in satellite remote 
sensing of geophysical parameters, and poses a challenge to 
process the large amount of data it will collect [3]. Most of a 
raw GIFTS data cube is made up of a 128x128 array of 
interferograms as shown in Fig. 1.

Fig. 1. A typical GIFTS data cube.

2.1. The PPVQ algorithm

A data flow diagram for the PPVQ compression scheme is 
shown in Fig. 2. The original sounder data mainly goes 
through the following 4 stages in sequence to produce a 
compressed result.

Linear prediction (LP) This stage can reduce the dynamic 
range of a pixel by knowledge of its previous channels. The 

spatial frame X of channel i can be linearly predicted by ˆ
iX

as follows.
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Fig. 2. The data flow diagram for PPVQ.
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Fig. 3. The bit depth of interferograms before (a) and after (b) bit depth partitioning.
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where ˆ
iX is the vector of channel i representing the 

predicted 2D spatial frame, Xp is the matrix consisting of np

neighboring channels, and C is the vector of the prediction
coefficients for channel i.

Bit depth partitioning (BP) This stage groups the channel 
residual by bit depth as shown in Fig. 3. Channels with the 
same bit depth are assigned to the same partition and VQ is 
applied to each partition separately.

Vector quantization (VQ). This stage divides high-
dimensional data (vectors) into groups having approximately 
the same number of points closest to them. Each group is 
represented by its centroid point [4].

Entroy coding (AC) This stage assigns codes to symbols so 
as to match code lengths with the probabilities of the 
symbols [5]. AC is applied on the VQ output of each bit 
depth partition which includes the codebook, residual, and 
the index.

Based on profiling of its CPU code, linear prediction 
and vector quantization are identified as the two most time-
consuming stages of PPVQ. Both are suitable for massively 
parallel computation on GPUs [2]. 

Fig.4. The three kernels used for linear prediction.
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2.2.The GPU-CPU pipeline implementation

For GPU implementation, three kernels are used for 
performing the linear prediction as shown in Fig. 4. The first 
kernel prepares the matrix p

T
p XXA and the vector 

i
T

p XXB where Xp consists of the previous neighboring 
np channel frames of channel i. This kernel is launched with 
a total of nc (np np + np) threads, each responsible for 
computing an element in the matrix A (of size np np) or the 
vector B (of size np) for a specific channel.  These threads 
can be executed in thread blocks of maximum capacity 
allowable by the hardware.

The second kernel solves the linear equation AC = B for 
the np prediction coefficients in solution vector C. This 
kernel is launched with a total of nc threads, each responsible 
for computing the prediction coefficient vector C (of size np)
for a specific channel. The third kernel then computes the 
linear prediction residual iii XXE ˆ where CXX pi

ˆ

is the linearly predicted frame of channel i. This kernel is 
launched with a total of nc ns threads, each responsible for 
computing the residual of a spatial location in the vector Ei

for a particular channel i. A thread block of maximum 
capacity of threads can be used for execution.

Fig.5. The schematic of a thread block in codeword assignment.

The vector quantization consists of codebook training 
and codeword encoding. The codebook training uses the 
well-known Linde-Buzo-Gray (LBG) algorithm [4] but for 
fast learning, just takes the first training vector in each group 
as the initial codeword of the codebook. LBG is an iterative 
process of codeword assignment and codeword computation. 
In particular, codeword assignment is most time-consuming 
for GIFTS. Given a codebook of nq codeword vectors, the 
task of codebook assignment is to assign the smallest 
codeword in distortion to each of the ns training vectors. All 
vectors have a dimension of nd channels. For GIFTS data, 
typical values are ns = 16384; nq = 256, 512, 1024, or 2048; 
and nd = 1~500. Consider ns training vectors and each needs 
to find the closest one among all nq codewords. As shown in 
Fig. 5, a GPU thread block shares the workload of k training 
vectors using k by p threads. All vectors have a dimension of 
nd channels. 

In one observation, a GIFTS data cube of 192MB is 
obtained which is divided into 6 sub-cubes of equal size 

32MB, each containing 1031 channels.  The 6 sub-cubes are 
the LW real part, the LW imaginary part, the SMW real part 
of channels 1 ~ 1031, the SMW real part of channels 1032 ~ 
2062, the SMW imaginary part of channels 1 ~ 1031, and 
the SMW imaginary part of channels 1032 ~ 2062. As 
shown in Fig. 6, each sub-cube goes through the LP, BP, VQ 
and AC steps sequentially for compression. The LP and VQ 
steps are mainly done on GPU, while the BP and AC steps 
are done on CPU. The length of each step is not drawn to 
scale. The pipeline is synchronized (denoted by the 6 
vertical dotted lines) such that when one sub-cube is doing 
AC, the next sub-cube is doing LP, BP, and VQ. Overlap of 
the LP, BP, VQ steps with the AC step in time can reduce 
the total processing time of a data cube [2].

When there are more than one GPU available, more 
speedup can be achieved by using multiple GPUs 
simultaneously. For division of the compression workload 
among several GPUs, the spatial division design is used in 
this paper compared to the spectral division design used in 
previous work [2]. For spectral division design, each GPU is 
assigned to do the linear prediction of (nc – np)/ ng

contiguous channels where ng is the number of GPUs in use.
In VQ stage, each GPU is responsible for quantization of a 
bit depth partition whose number of grouped channels might 
vary in size. For current spatial division design, each data 
cube is spatially divided into ng equal-sized sub-cubes. Then 
each spatial sub-cube is assigned an independent GPU to do 
the subsequent LP and VQ stages of compression work.

3. THE EXPERIMENTAL RESULT

The experiment is carried out on a machine with a quad-core
2.4 GHz AMD CPU, and 4 Nvidia Tesla 1.3 GHz GPUs. 
Earlier we have developed a source code in C for PPVQ. 
For comparison, the single threaded C code was used as the 
CPU reference version. It was compiler-optimized by the 
gcc O3 optimization option. All GPU speedup was 
compared against this optimized CPU version. Using only 
one CPU core

Fig. 7 shows the speedup result of using multiple GPUs 
on the 5 GIFTS data cubes. In Fig. 7 (a), the speedup profile 
of PPVQ using 4 GPUs on the 5 GIFTS data cubes is shown 
for our spatial division design. Note that the speedup for LP 
is quite dependent on data and shows a large variation. In 
Fig. 7 (b), the speedup profile of PPVQ using 1 through 4 
GPUs is shown for our spatial division design. The speedup 
in (b) is averaged over the 5 data cubes. It can be seen that 
when more GPUs are used, a quite scalable speedup in VQ 
can be obtained using the current spatial division design.
Using the pipeline design of LP and VQ on GPU and AC on 
CPU, the average compression time of the GPU-based 
PPVQ on a data cube takes about 13 seconds for the spatial 
division design.
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Fig.6. The pipeline design of PPVQ for GIFTS data
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Fig. 7. The GPU speedup profile of PPVQ on GIFTS data using the spatial division design. (a) The 4 GPU speedup for the 5 cubes in 

dataset; (b) The 1~4 GPU speedup averaged over the 5 cubes in dataset.

4. SUMMARY

The predictive partitioned vector quantization (PPVQ) 
compression scheme is known for its effectiveness in 
lossless compression of ultraspectral sounder data [1]. In 
previous work [2], the two most time-consuming stages of 
linear prediction and vector quantization are identified and 
implemented on GPU. Furthermore a sounder dependent 
speedup technique is designed for a GIFTS data cube which 
is divided into 6 equal-sized parts to facilitate CPU and 
GPU processing in pipeline. In current work, we found that 
when up to four GPUs are used to share the workload, the 
spatial division design can achieve a promising 72x speedup 
compared to its original single-threaded CPU code for 
lossless compression of NASA’s GIFTS ultraspectral 
sounder data. 
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