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Image and conductivity reconstruction of a
variable conducting cylinder in a half-space

Wei Chien, Chien-Ching Chiu∗ and Ching-Lieh Li
Electrical Engineering Department, Tamkang University, Tamsui, Taiwan

Abstract. In this paper we address an inverse scattering problem whose aim is to determine the geometrical and the physical
properties of a variable conducting cylindrical body buried in a half-space. The variable conductivity boundary leads to a
mathematically ill-posed nonlinear equation. To overcome this difficulty, the attained system of nonlinear integral equations
is reformulated into an optimization problem and solved by using the genetic algorithm. The genetic algorithm is employed
to search the global extreme of the object function, such that the shape and the variable conductivity of the scatterer can be
reconstructed. Even when the initial guess is far away from the exact one, the genetic algorithm can avoid the local extreme and
attain to a global extreme solution sucessfully. In such a case, the gradient-based methods often get stuck in a local extreme. It
is found that multiple incidentwavesfrom different directions permit good reconstruction of the shape and, to a lesser extent,
the conductivity in the presence of noise for the measured data. Numerical results are given to show the effectiveness of the
genetic algorithm.

1. Introduction

Due to the large area of applications such as non-destructive problems, geophysical prospecting and
determination of underground tunnels and pipelines, etc, the inverse scattering problems related to the
buried bodies are of particular importance in the scattering theory. In the past 20 years, many rigorous
methods have been developed to solve the exact equations [1–9]. However, inverse problems of this
type are difficult to solve because they are ill-posed and nonlinear [10]. As a result, many inverse
problems are reformulated into optimization ones and then numerically solved by different iterative
methods such as the Newton-Kantorovitch method [1–5], the Levenberg-Marquardt algorithm [6–8],
and the successive-overrelaxation method [9]. Most of these approaches employ the gradient-based
searching scheme to find the extreme of the cost function, which are highly dependent on the initial guess
and usually get trapped in the local extreme. The genetic algorithm [11] is an evolutionary algorithm that
uses the stochastic mechanism to search through the parameter space. As compared to the gradient-based
searching techniques, the genetic algorithm is less prone to converge to a local extreme. This renders it
an ideal candidate for global optimization. A few papers had applied the genetic algorithm to reconstruct
the shape of a conductor [12–16]. However, to the best of our knowledge, there are still no numerical
results by using the genetic algorithm for the buried variable conducting scatterers. In this paper, we
present a computational method to recover the shape of a buried variable conducting cylinder based on
the genetic algorithm. In Section 2, the theoretical formulation for the inverse scattering is reported. The
general principle of the genetic algorithms and the way we apply them are described. Numerical results
are given for various objects of different shapes in Section 3. Finally, some conclusions are drawn in
Section 4.
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Fig. 1. Geometry of the proposed problem in (x, y) plane.

2. Theoretical formulation

Let’s consider a variable conducting cylinder with finite conductivity profile buried in a lossy homoge-
neous half-space, as shown in Fig. 1. The media in regions 1 and 2 are characterized by the permittivity
and conductivity (ε1, σ1) and (ε2, σ2), respectively, while the permeabilityµ0 is used for each region,
i.e., only non-magnetic media are concerned here. The cross section of the cylinder is described by polar
coordinates in thexy plane through the shape functionρ = F (θ). The cylinder is illuminated by a plane
wave with time dependence exp(jωt), of which the electric field is assumed parallel to thez-axis (i.e.,
transverse magnetic or TM polarization). LetE inc denote the incidentE field from region 1 to region 2
with incident angleφ1. Owing to the interface between region 1 and region 2, the incident plane wave
would generate two waves in the absence of the conducting object: the reflected wave (fory � −a) and
the transmitted wave (fory > −a). Thus the unperturbed field is given by

�Ei(�r) = Ei(x, y)ẑ (1)

with

Ei(x, y) =
{

E1(x, y) = e−jk1[x sin φ1+(y+a) cos φ1] + R1e
−jk1[x sin φ1−(y+a) cos φ1], y � −a

E2(x, y) = Te−jk2[x sinφ2+(y+a) cos φ2] y > −a

where

R1 =
1 − n

1 + n
, T =

2
1 + n

, n =
cos φ2

cos φ1

√
ε2 − jσ2/ω
ε1 − jσ1/ω

k1 sin φ1 = k2 sin φ2

k2
i = ω2εiµ0 − jωµ0σi, i = 1, 2 with Im (ki) � 0
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As the buried object is present, the scattered field can be expressed by

Es(x, y) = −
∫ 2π

0
G(x, y;F (θ′), θ′)J(θ′)dθ′ (2)

with

J(θ) = −jωµ0

√
F 2(θ) + F ′2(θ)Js(θ)

G(x, y;x′, y′) =
{

G1(x, y;x′, y′), y � −a
G2(x, y;x′, y′) = Gf (x, y;x′, y′) + Gs(x, y;x′, y′), y > −a

(3)

where

G1(x, y;x′, y′) =
1
2π

∫ ∞

−∞

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a)e−jα(x−x′)dα (3a)

Gf (x, y;x′, y′) =
j

4
H

(2)
0 [k2

√
(x − x′)2 + (y − y′)2] (3b)

Gs(x, y;x′, y′) =
1
2π

∫ ∞

−∞

j

2γ2
(
γ2 − γ1

γ2 + γ1
)e−jγ2(y+2a+y′)e−jα(x−x′)dα (3c)

γ2
i = k2

i − α2, i = 1, 2, Im (γi) � 0, y′ > a

HereJs(θ) is the induced surface current density that is proportional to the normal derivative of the
electric field on the conductor surface.G(x, y;x′, y′) is the Green’s function in terms of the Fourier
transform [3]. Note that we might face some difficulties in calculating the Green’s function since
the Green’s function, given by Eq. (3), take the form of an improper integral that must be evaluated
numerically. However, the integral converges very slowly when (x, y) and (x ′, y′) approach the interface,
for which the acceleration of converging speed is possible by rewriting the Green’s function as a closed-
form term plus a rapidly converging integral (see appendix). In Eq. (3b),H

(2)
0 is the Hankel function

of the second kind of order zero. For a variable conducting scatterer with finite conductivity, the
electromagnetic wave is able to penetrate into the interior of the scatterer such that the total tangential
electric field at the surface of the scatterer is not equal to zero. As described in [17] and [18], the
boundary condition for this case can be approximated by assuming that the total tangential electric field
on the scatterer surface is related to surface current density through a surface impedanceZ s(ω, θ):

n̂ × ⇀

E = n̂ × (Zs

⇀

Js) (4)

wheren̂ is the outward unit vector normal to the surface of the scatterer. Assuming the scatterer of
interest here is a nonmagnetic and imperfectly conducting cylinder with minimum radius of curvature
denoted bya. The surface impedance can be expressed byZ s(ω, θ) ∼=

√
jωµ0/σ (θ) as given in [17]

and [18]. This approximation is valid as long as|Im(Nc)ka| >> 1 andσ (θ) � ωε0, where “Im”
means taking the imaginary part, andNc is the complex index of refraction of the conductor, given by
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Nc =
√

1 + σ(θ)
jωε0

. The boundary condition at the surface of the scatterer given by Eq. (4) then leads to

an integral equation forJ(θ):

E2 (F (θ) , θ) =
∫ 2π

0
G2

(
F (θ) , θ;F

(
θ′

)
, θ′

)
J

(
θ′

)
dθ′ + j

√
j

ωµ0σ (θ)
J (θ)√

F 2 (θ) + F ′2 (θ)
(5)

The total fieldEout in region 1 is given by

Eout(r) = E1(r) −
∫ 2π

0
G1(r;F (θ′), θ′)J(θ′)dθ′ (y � −a) (6)

The direct problem is to compute the total field in region 1 when the shape functionF (θ) is given. This
can be achieved by first solving forJ from Eq. (5) and then calculatingE out by Eq. (6).

For numerical calculation of the direct problem, the contour is first divided into sufficient small
segments so that the induced surface current can be considered constant over each segment. Then the
moment method is employed to solve Eqs (5) and (6) with pulse basis functions for expanding and the
Dirac delta functions for testing [19].

For the inverse problem, the scattered electric fieldsEs measured outside the scatterer, are used to
determine the shapeF (θ) and the conductivity of the object. Assume the approximate center of the
scatterer, which in fact can be any point inside the scatterer, is known. Then the shape functionF (θ) can
be expanded as:

F (θ) ∼=
N
2∑

n=0

Bn cos (nθ) +

N
2∑

n=1

Cn sin (nθ) (7)

σ(θ) =
M/2∑
m=0

Dm cos(mθ) +
M/2∑
m=1

Em sin(mθ) (8)

whereBn, Cn, Dm andEm are the real coefficients to be determined, and(N + 1) + (M + 1) is the
number of the unknowns. Note that the discretization number ofJ(θ) for the inverse problem must be
different from that for the direct problem. Since it is crucial that the synthetic data generated by a direct
solver are not like those obtained by the inverse solver, the discretization number for the direct problem
is twice of that for the inverse problem in this study. For the inversion procedure, the genetic algorithm
is employed to maximize the following object function:

SF =

{
1

XT

XT∑
i=1

∣∣∣Eexp
s (�ri) − Ecal

s (�ri)
∣∣∣2

/
XT∑
i=1

[|Eexp
s (�ri)|2 + β

∣∣F ′ (θ)
∣∣2]

}−1/2

(9)

whereXT is the total number of measurement points, andE cal
s (�r) andEexp

s (�r) are the calculated scattered
field and the measured scattered field, respectively. Note that there is a regularization termβ |F ′ (θ)|2
added in Eq. (9). The added termβ |F ′ (θ)|2 can, to a certain extent, be interpreted as the smoothness
requirement for the shape functionF (θ). Therefore, the maximization ofSF can be interpreted as the
minimization of the least-square error between the measured and the calculated fields with the constraint
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of smooth boundary. Typical values ofβ range from 0.00001 to 10. The optimal value ofβ depends
mostly on the dimensions of the geometry. One can always choose a large enough value to ensure the
convergence, although overestimation would result in a very smooth reconstructed image. Technically,
we can let the value ofβ decrease gradually during the course of convergence [6].

Genetic algorithms are the global optimization methods based on the genetic recombination and
evoluation in nature [11]. They use the iterative optimization procedures that start with a randomly
generated population of potential solutions, and then gradually evolve toward a better solution through
the application of the genetic operators. Genetic algorithms typically operate on a discretized and coded
representation of the parameters rather than on the parameters themselves. These representations are
considered as the “chromosomes”,while the elements that constitutes the chromosome are called “genes”.
Simple but often very effective chromosome representations for optimization problem involving several
continuous parameters can be obtained through the juxtaposition of discretized binary representations
of the individual parameters. In our problem the parametersBn, Cn, Dm andEm are given by the
following equation. As an exampleBn is shown

Bn = pmin +
pmax − pmin

2L − 1

L−1∑
i=0

bBn
i 2i (10)

wherebBn
0 , bBn

1 , . . . andbBn
L−1 (gene) are theL-bit string of the binary representation ofBn, andpmin and

pmax are the minimum and the maximum values admissible forBn. Similar expressions exist for the
parametersCn, Dm andEm and are omitted here for brevity. Here,pmin andpmax can be determined
by prior knowledge of the object. Also, the finite resolution withBn (Cn, Dm or Em) can be tuned in
practice by changing the number of bits assigned to it. The unknown coefficients in Eqs (7), (8) and
(10) would then be described by a string (chromosome) with(N + M + 2) × L bits in total. The flow
chart of a basic GA is shown in Fig. 2, which starts with a large initial population containing a total of
X random chromosomes. Then, the GA iteratively generates a new population that offspring from the
previous population through the application of the reproduction, crossover, and mutation operators.

The new population contain increasingly better chromosomes and will eventually converge to a
population that consists of the optimal chromosomes. As soon as the cost function (CF ) changes by<
1% in two successive generations or exceeds 1000 generations, the genetic algorithm will be terminated
and the final solution is then obtained.

3. Numerical results

Let us consider a variable conducting cylinder buried in a lossless half-space (σ 1 = σ2 = 0). The
permittivities in region 1 and region 2 are characterized byε1 = ε0 andε2 = 2.56ε0, respectively. A
TM polarization plane wave of unit amplitude is incident from region 1 upon the object in region 2 as
shown in Fig. 1. The frequency of the incident wave is chosen to be 3 GHz, of which the wavelengthλ 0

in free space is 0.1 m. The object is buried at a deptha ∼= λ0 and the scattered fields are measured on
a probing line along the interface between region 1 and region 2. The goal is to reconstruct the shape
and the variable conductivity of the object by using the measured scattered field due to multiple incident
waves from different angles. The object is illuminated by three incident waves from different directions,
while 20 measurement points at equal spacing are used along the interfacey = −a for each incident
angle. There are 60 measurement points in each simulation. The measurement is taken fromx = 0 to
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Fig. 2. Flow chart for the genetic algorithm.

0.2 m for incident angleφ1 = −60◦, from x = − 0.1 to 0.1 m for incident angleφ1 = 0◦, and from
x = − 0.2 to 0m for incident angleφ1 = 60◦. To save computing time, the number of unknowns is set
to 16 (i.e.N + M + 2 = 14), and the population size is chosen as 300 (i.e.X = 300). The binary string
length of the unknown coefficientsBn, Cn, Dm andEm is set to 16 (i.e.,L = 16). In other words, the bit
number of a chromosome is 224. The search ranges for the unknown coefficients of the shape function
are chosen to be from 0 to 0.1 and the unknown coefficients of the conductivity function are chosen to
be from 1 to 100. The extreme values of the coefficients of the shape function and conductivity function
can be determined by some priori knowledge of the objects. Here, the prior knowledge means that we
can get the approximate position and the size of the buried cylinder by first using tomography technique,
and then get the exact solution by the genetic algorithm. The crossover probabilityp c and mutation
probabilitypm are set to be 0.8 and 0.1, respectively. The value ofβ in Eq. (9) is chosen to be 0.001.

In the first example, the shape function is given byF (θ) = (0.03+0.012 cos 2θ) m and the conductivity
function byσ(θ) = (80 + 15 cos θ + 15 sin 2θ) S/m. The reconstructed shape function and conductivity
function for the best population member (chromosome) are plotted in Fig. 3(a) and (b), respectively. The
errors for the reconstructed shape DR and the reconstructed conductivity DSIG are shown in Fig. 3(c),
of which DR and DSIG are defined as

DR =

{
1
N ′

N ′∑
i=1

[F cal(θi) − F (θi)]2/F 2(θi)

}1/2

(11)
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Fig. 3. (a) Shape function for example 1. The star curve represents the exact shape, while the other curves are the calculated
shapes in iterative process. (b) Conductivity function for example 1. The star curve represents the exact conductivity, while
the other curves are the calculated conductivities in iterative process. (c) The shape and conductivity function errors versus
generation.
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Fig. 4. The relative errors of shape and conductivity as functions of the noise.

DSIG =

{
1
N ′

N ′∑
i=1

[σcal(θi) − σ(θi)]2/σ2(θi)

}1/2

(12)

where N ′ is set to 60. The quantities DR and DSIG provide measures of how wellF cal (θ)
approximatesF (θ) andσcal (θ) approximatesσ (θ), respectively. From Fig. 3(a) and (b), it is clear
that the reconstruction of the shape function and conductivity function is quite good. Note that the initial
guess is far away from the exact one. In such a case, the gradient-based methods often get stuck in a
local extreme and can’t find the exact shape and conductivity of the scatterer. In addition, it is observed
that the reconstruction of conductivity function converges toward the exact value only after DR is small
enough. This is consistent with the fact that the shape function contributes more to the scatteredE
field than the conductivity function does. In other words, the reconstruction of the shape function has a
higher priority than the reconstruction of the conductivity function. For the simulation, the needed CPU
time is about 2 hours for this case on a Celeron 2.0 GHz Computer. To investigate the sensitivity of the
imaging algorithm against random noise, two independent Gaussian noises with zero mean have been
added to the real and imaginary parts of the simulated scattered fields. Normalized standard deviations
of 10−5, 10−4, 10−3, 10−2 and10−1 are used in the simulations. The normalized standard deviation
mentioned earlier is defined as the standard deviation of the Gaussian noise divided by the rms value of
the scatteredE fields. Here, the signal-to-noise ratio (SNR) is inversely proportional to the normalized
standard deviation. The reconstructed errors vs noise level for this example are plotted in Fig. 4. It is
found that the effect of noise is negligible for normalized standard deviations below10−3. It is also
observed that the reconstructed conductivity is more sensitive to the noise than the reconstructed shape
is.

In the second example, we select the following shape functionF (θ) = (0.03 + 0.005 cos θ −
0.005 cos 2θ +0.005 cos 3θ) m and conductivity functionσ(θ) = (80+15 cos 2θ +15 sin θ +20 sin 3θ)
S/m. The purpose of this example is to show the capability of the proposed method to reconstruct a
scatter whose shape and conductivity function has two concavities. Satisfactory results are shown in
Fig. 5(a) and 5(b).

In the third example, the shape and conductivity function are selected to beF (θ) = (0.05+0.01 sin θ+
0.01 sin 2θ + 0.01 sin 3θ) m andσ(θ) = (80 + 12 cos θ + 12 sin 2θ + 24 sin 3θ) S/m, respectively. Note
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Fig. 5. (a) Shape function for example 2. The star curve represents the exact shape, while the other curves are the calculated
shapes in iterative process. (b) Conductivity function for example 2. The star curve represents the exact conductivity, while the
other curves are the calculated conductivities in iterative process.

that the shape function is not symmetrical about either x axis or y axis. This example is to further verify
the reliability of the algorithm. Refer to Fig. 6(a) and 6(b) for details. It is concluded that satisfactory
results can be obtained as long as the noise level is< 10−3.

4. Conclusions

We have presented a study of applying the genetic algorithm to reconstruct the shape and conductivity
of a buried metallic object through the measured of scatteredE fields. Based on the boundary condition
and the measured scattered fields, we have derived a set of nonlinear integral equations and reformulated
the imaging problem into an optimization one. By using the genetic algorithm, the shape and conductivity
of the object can be reconstructed, even when the initial guess is far from exact one. The genetic algorithm
converges to a global extreme of the cost function, while the gradient-based methods often get stuck
in a local extreme. Good reconstruction has been achieved from the measured scattered fields both
with and without the additive Gaussian noise. Numerical results also illustrate that the conductivity
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Fig. 6. (a) Shape function for example 3. The star curve represents the exact shape, while the other curves are the calculated
shapes in iterative process. (b) Conductivity function for example 3. The star curve represents the exact conductivity, while the
other curves are the calculated conductivities in iterative process.

reconstruction is more sensitive to noise than the shape recontruction is. According to our experience,
the main difficulties in applying the genetic algorithm to this problem lie on the choice of the parameters,
such as the population size (X), bit length of the string (L), crossover probability (pc), and mutation
probability (pm). Different parameter sets will affect the speed of convergence as well as the computation
time required. From the numerical simulation, it is found that the population size from 300 to 600, the
string length from 8 to 16 bits,pc andpm in the ranges of 0.7< pc < 0.9 and 0.0005< pm < 0.05 are
suitable for the imaging problems of this type.
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Appendix

To calculate the Green’s function, we can use the following formula.∫ ∞

u
xr−1e−βx cos δxdx =

1
2
(β + jα)−rΓ [r, (β + jδ)u] +

1
2
(β − jα)−rΓ [r, (β − jδ)u]

(A1)
for Re β > |Imδ|

whereΓ(α,Z) =
∫ ∞
z e−ttα−1dt

Γ is the incomplete Gamma function that satisfies

Γ(−n, z) =
(−1)n

n!

[
Γ(0, Z) − e−z

n−1∑
m=0

(−1)m
m!

zm+1

]
(A2)

Γ(0, z) = −γ − ln z −
∞∑

n=1

(−1)n
zn

(n + 1)!
[|arg(z)| < π]

in whichγ is Euler’s constant, i.e.,γ = 0.5772156649.
Let us consider the following integral

G1 =
1
2π

∫ ∞

−∞

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a)e−jα(x−x′)dα

=
1
π

∫ ∞

0

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a) cos α(x − x′)dα

whereγ2
i = k2

i − α2, i = 1, 2, 3 Im(γi) �0, y′ > −a
The integral G1 may be rewritten as follows

G1 =
1
π

∫ ∞

0

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a) cos α

(
x − x′) dα

+
1
2π

∫ ∞

α0

1
α

e−α(y′−y) cos α
(
x − x′) dα − 1

2π

∫ ∞

α0

1
α

e−α(y′−y) cos α
(
x − x′) dα

in general, we chooseα0 � |ki|,i = 1, 2
By Eq. (A1), we get

− 1
2π

∫ ∞

α0

1
α

e−α(y′−y) cos α(x − x′)dα = − 1
4π

{Γ[0, [(y − y′) + j(x − x′)]α0]

+Γ[0, [(y − y′) − j(x − x′)]α0]}
Using the above relation, we obtain

G1 =
1
π

∫ ∞

0

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a) cos α

(
x − x′) dα

+
1
2π

∫ ∞

α0

1
α

e−α(y′−y) cos α
(
x − x′) dα (A3)

− 1
4π

{
Γ

[
0,

[
(y − y′) + j(x − x′)

]
α0

]
+ Γ

[
0,

[
(y − y′) − j(x − x′)

]
α0

]}
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Now, the integral G1 is written as a rapidly converging integral plus a dominant integral which can be
calculated by means of Simpson’s rule easily.

Similarly, we can have

GS =
1
2π

∫ ∞

−∞

J

2γ2

(
γ1 − γ2

γ1 + γ2

)
e−jγ2(y+2a+y′)e−jα(x−x′)dα

=
[

1
π

∫ ∞

0

j

2γ2

(
γ2 − γ1

γ2 + γ1

)
e−jγ2(y+2a+y′) cos α(x − x′)dα − k2

2 − k2
1

8π

∫ ∞

α0

1
α3

0

e−α(y+2a+y′) cos α(x − x′)dα

]

+
k2
2 − k2

1

16π

{
[(y + 2a + y′) + j (x − x′)]2 Γ [−2, [(y + 2a + y′) + j (x − x′)] α0] +
[(y + 2a + y′) − j (x − x′)]2 Γ [−2, [(y + 2a + y′) − j (x − x′)] α0]

}
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