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Comparison of particle swarm optimization
and asynchronous particle swarm
optimization for inverse scattering of a two-
dimensional perfectly conducting cylinder
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Electrical Engineering Department, Tamkang University, Tamsui, Taiwan

Abstract. This paper reports a two dimensional time domain inverse scattering algorithm based upon the finite-difference time
domain method for determining the shape of perfectly conducting cylinder. Finite difference time domain method (FDTD)is
used to solve the scattering electromagnetic wave of a perfectly conducting cylinder. The inverse problem is resolved by an
optimization approach and the global searching scheme asynchronous particle swarm optimization (APSO) is then employed
to search the parameter space. By properly processing the scattered field, some EM properties can be reconstructed. One is the
location of the conducting cylinder, the others is the shapeof the perfectly conducting cylinder. This method is testedby several
numerical examples; numerical results indicate that the APSO outperforms the PSO in terms of reconstruction accuracy and
convergence speed. Both techniques have been tested in the case of simulated measurements contaminated by additive white
Gaussian noise.

Keywords: Index terms – inverse scattering, time domain, FDTD, subgridding finite difference time domain, asynchronous
particle swarm optimization (APSO), cubic-spline

1. Introduction

Numerical inverse scattering studies found in the literature are based on either frequency or time
domain approaches. With frequency domain algorithms, the interaction of the entire medium with the
incident field is considered simultaneously [1,5]. Time domain approaches can exploit causality to limit
the region of inversion, potentially reducing the number ofunknowns. Time domain inverse scattering
problems somewhat related to the present study commonly appear in the area of geosciences and remote
sensing [6,8]. The scatterer reconstruction belongs to thegeneral category of limited angle microwave
imaging problems. These problems are both nonlinear and ill-posed [9]. The nonlinearity emerges from
the fact that the scattered field is a nonlinear function of the electromagnetic properties of the scatterers
due to multiple scattering phenomena. On the other hand, theill-posedness appears because the operator
that maps the scatterer properties to the scattered field is compact [9].

In general, the nonlinearity of the problem is coped with by applying iterative optimization tech-
niques [10,15], these algorithms based on stochastic strategies, offer advantages relative to local inver-
sion algorithms including strong search ability simplicity, robustness, and insensitivity to ill-posedness.
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Compared with genetic algorithm (GA), particle swarm optimization (PSO) is much easier to implement
and converge faster. Concerning the shape reconstruction of conducting scatterers, the PSO has been
investigated whereas the PSO has been utilized in the reconstruction of dielectric scatterers [16]. In
this case, the reported results indicate that the PSO is reliable tools for inverse scattering applications.
Moreover, it has been shown that both differential evolution (DE) and PSO outperform real-coded GA
in terms of convergence speed [17,18]. In recent decade years, some papers have compared different
algorithm in inverse scattering [19,21]. However, to our knowledge, a comparative study about the per-
formances of particle swarm optimization (PSO) and asynchronous particle swarm optimization (APSO)
when applied to inverse scattering problems has not yet beeninvestigated.

In recently ten years, Chiu [3,4] have applied the GA for the inversion of buried or immersed perfectly
conducting cylinders with the geometry described by a Fourier series. Alternatively, Zhou [26] and
Chiu [27,30] used cubic-spline to describe the geometry of aperfect conducting cylinder. The 2-D
perfectly conducting cylinders are denoted by local shape functionsρ = F (θ) with respect to their local
origins which can be continuous or discrete.

There are two main advantages for cubic-spline expansion asfollowing: (i) For complicated shape,
the number of unknown for expanding the shape function by cubic-spline expansion is less than that
by Fourier series expansion. (ii) The exact center of the object is insensitive for cubic-spline expansion
instead of Fourier series expansion. If there is some displacement for the exact center of the object, the
number of unknown for expanding the shape function by Fourier series expansion will increase a lot. On
the other hand, the number of unknown does not vary for cubic-spline expansion.

The present work focuses on comparing these two methods for inverse scattering problems under time
domain. The forward problem is solved by the FDTD method, forwhich the subgridding technique [22]
is implemented to closely describe the fine structure of the cylinder. The inverse problem is formulated
into an optimization one, and then the global searching PSO and APSO are used to search the parameter
space. Cubic spline interpolation technique [23] is employed to reduce the number of parameters needed
to closely describe a cylinder of arbitrary shape as compared to the Fourier series expansion. In section
II, the subgridding FDTD method for the forward scattering are presented. In section III and IV, inverse
problem and the numerical results of the proposed inverse problem are given, respectively. Finally, in V
section some conclusions are drawn for the proposed time domain inverse scattering.

2. Forward problem

Let us consider a two-dimensional metallic cylinder in a free space as shown in Fig. 1, the cylinder
is parallel to z axis, while the cross-section of the cylinder is arbitrary. The object is illuminated by
Gaussian pulse line source located at the points denoted by Tx and reflected waves are recorded at
those points denoted by Rx. The computational domain is discretized by Yee cells [24]. It should be
mentioned that the computational domain is surrounded by the optimized perfect matching layers (PML)
absorber [25] to reduce the reflection from the environment-PML interface.

For the forward scattering problem the shape and location ofthe perfectly conducting cylinder to be
determined is given first, and then the FDTD code with coarse grids is employed to calculate the scattered
E fields that are utilized to mimic the experiments. It should be noted that in the forward problem, the
shape functionF (θ) of the 2-D perfectly conducting cylinder is described by thetrigonometric series in
this study as follows:

F (θ) =

N/2
∑

n=0

Bn cos(nθ) +

N/2
∑

n=1

Cn sin(nθ) (1)
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Fig. 1. Geometry for the inverse scattering of a perfectly conducting cylinder of arbitrary shape in free space.

Fig. 2. The structure of the TMz FDTD major grids and local grids for the scaling ratio (1:3),H fields are aligned with the
MG-LG boundary.

In order to closely describe the shape of the cylinder for both the forward and inverse scattering
procedures, the subgridding technique is implemented in the FDTD code; the details are presented next.

In Fig. 2,E andH stand for the electric and magnetic fields on the major grids,respectively, whilee
andh denote the electric and magnetic fields on the local grids. Ifthe scaling ratio is set at odd-ratio, for
example1 : 3, theE andH fields coincide withe andh fields in the fine region as shown in Fig. 2. Note
that thee and fields inside the fine region can be updated through the normal Yee-cell algorithm except
those at the MG-LG boundary, such ash1, h2 andh3 in Fig. 2.

Theh fields at the MG-LG interface can be linearly interpolated asfollows:

hn+v
1 = Hn+v

1 + 2/3
(

Hn+v
2 − Hn+v

1

)
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Fig. 3. The flowchart to update the (E,H) fields on the major grids and (e, h) fields on local grids.

hn+v
2 = Hn+v

2 , forv =
1

3
,
2

3
and

3

3
.

(2)
hn+v

3 = Hn+v
2 + 1/3

(

Hn+v
3 − Hn+v

2

)

Note that theH fields don’t exist on the main grids actually forv = 1
3 and 2

3 and need extra parabolic
interpolation calculation by

Hn+v = Hn + Av +
Bv2

2
(3)

with A = Hn+1
−Hn−1

2

B = Hn+1 − Hn−1 − 2Hn

The corresponding flow chart for updating the EM fields in the fine region is shown in Fig. 3. Note
that at the time step the fields on the main grids should be updated by the coincided fields on the local
grids. Similarly, at the time stepn + 6

6 theHn+1 fields are updated by the coincidedhn+ 6
6 fields.

For the time domain scattering and/or inverse scattering problem, the scatterers are assigned with the
fine region such that the fine structure can be easily described. If higher resolution is needed, only the
fine region needs to be rescaled using a higher ratio for subgridding. This can avoid gridding the whole
problem space using the finest resolution such that the computational resources are utilized in a more
efficient way, which is quite important for the computationally intensive inverse scattering problems.
More detail on the FDTD-Subgridding scheme can be found in [22]

For the time domain scattering and/or inverse scattering problem, the scatterers can be assigned with
the fine region such that the fine structure can be easily described. If higher resolution is needed, only
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the fine region needs to be rescaled using a higher ratio for subgridding. This can avoid gridding the
whole problem space using the finest resolution such that thecomputational resources are utilized in a
more efficient way, which is quite important for the computational intensive inverse scattering problems.

3. Inverse problem

The first set ofE field data is obtained in the forward problem by the FDTD code with fine grids to
mimic the experiment measurement data, while the second setof E field data is obtained in the inverse
problem by the FDTD code with coarse grids. The secondE field data are obtained in the inverse problem
by the FDTD code with coarse grids. As compared with the firstE field data obtained in the forward
scattering procedure, the inverse scattering problem can be formulated into an optimization problem.
The proposed global searching APSO and PSO scheme are employed to reconstruct the location, shape
and permittivity of the perfectly conducting cylinder under test by minimizing the errors between twoE
filed dates.

During the course of optimization process, the following objective function (OF) is defined for each
candidate cylinder in the APSO scheme:

OF =

Ni
∑

n=1

M
∑

m=1

B
∑

b=0

∣

∣Eexp
z (n,m, b∆t) − Ecal

z (n,m, b∆t)
∣

∣

Ni
∑

n=1

M
∑

m=1

B
∑

b=0

|Eexp
z (n,m, b∆t)|

(4)

WhereEexp
z andEcal

z are experimental electric fields and the calculated electric fields, respectively.
TheNi andM are the total number of the transmitters and receivers, respectively. B is the total time
step number of the recorded electric fields. The details of the proposed PSO and APSO are represented
as follows.

3.1. Modified asynchronous Particle swarm optimization(APSO)

Particle swarm global optimization is a class of derivative-free, population-based and self-adaptive
search optimization technique. Particles (potential solutions) are distributed throughout the searching
space and their positions and velocities are modified based on social behavior. The social behavior in PSO
is a population of particles moving towards the most promising region of the search space. Clerc [31]
proposed the constriction factor to adjust the velocity of the particle for obtaining the better convergence;
the algorithm was named as constriction factor method. PSO starts with an initial population of potential
solutions that is randomly generated and composedNp individuals (also called particles). Each individual
contains certain number of the shape parameters (eleven unknown parameters in our test cases), which
includes the center position, the radius and the slope of thecubic spline to describe the cylinder shape.

After the initialization step, each particle of populationhas assigned a randomized velocity and
position. Thus, each particle has a position and velocity vector, and moves through the problem space.
In each generation, the particle changes its velocity by itsbest experience, calledxpbest, and that of the
best particle in the swarm, calledxgbest.

Assume there areNp particles in the swarm that is in a search space inD dimensions, the position and
velocity could be determine according to the following equations (constriction factor method):

vk
id = χ ·

(

vk−1
id + c1 · ϕ1 ·

(

xpbest, id − xk−1
id

)

+ c2 · ϕ2 ·
(

xgbest, id − xk−1
id

))

(5)
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xk
id = xk−1

id + vk
id (6)

whereχ = 2
∣

∣

∣

2−φ−
√

φ2
−4φ

∣

∣

∣

, φ = c1 + c2 > 4. c1 andc2 are learning coefficients, used to control the

impact of the local and global component in velocity Eq. (3).vk
id andxk

id are the velocity and position of
thei-th particle in thed-th dimension atk-th generation,ϕ1 andϕ2 are both the random number between
0 and 1. The “damping boundary condition” proposed by Huang and Mohan [32] to ensure the particles
move within the legal search space.

The key distinction between APSO and a typical synchronous PSO is on the population updating
mechanism. In the synchronous PSO, the algorithm updates all the particles velocities and positions
using Eqs (3) and (4) at end of the generation. And then updatethe best positions,xpbest andxgbest.
Alternatively, the updating mechanism of APSO is that the new best position is found after each particle
position updates if the new position is better than the current best position. The new best position
will be used in following particles swarm immediately. The swarm reacts more quickly to speedup
the convergence because the updating occurs immediately after objective function evaluation for each
particle.

The flowchart of the APSO is shown in Fig. 4. APSO goes through seven procedures as follows:

I. Initialize a starting population: Randomly generate a swarm of particles that consists of the shape
parameters.

II. CalculateE fields by a home-made FDTD code.
III. Evaluate the population using objective function: TheAPSO algorithm evaluates the objective

function Eq. (4) for each individual in the population.
IV. Find xpbest andxgbest.
V. Mutation scheme: The PSO algorithm has been shown to converge rapidly during the initial

stages of a global search, but when around global optimum, the search can become very slow. For
the reason, mutation scheme is introduced in this algorithmto speed up the convergence when
particles are around global optimum. The mutation scheme can also avoid premature convergences
in searching procedure and help thexgbest escape from the local optimal position. As shown in
Fig. 4, there is an additional competition between thexgbest andxpbestmu

. The currentxgbest will
be replaced by thexgbest mu if the xgbest mu is better than the currentxgbest. Thexgbest mu is
generated by following way:

Xgbestmu
=







Xgbest − ϕ3 ·
[

c3 − (c3 − c4) · k
kmax

]

· (xmax − xmin) , if ϕmu < 0.5

Xgbest + ϕ3 ·
[

c3 − (c3 − c4) · k
kmax

]

· (xmax − xmin) , if ϕmu > 0.5
(7)

wherec3 andc4 are the scaling parameter.ϕ3 andϕmu are both the random number between 0
and 1.k is the current iteration number.kmax is the maximum iteration number.xmax andxmin

are the upper limit and lower limit of the search space, respectively.
VI. Update the velocity and position.
VII. Stop the process and print the best individual if the termination criterion is satisfied, else go to

step II.

3.2. Cubic spline interpolation technique

It should be noted that in the inverse problem, the shape function of the 2-D metallic cylinder is
described by a cubic spline in this study instead of the trigonometric series described in the section of
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Fig. 4. Flowchart for the asynchronous particle swarm optimization.

the forward problem. The cubic spline is more efficient in terms of the unknown number required to
describe a cylinder of arbitrary cross section. By using thecubic spline the coordinates of local origin
inside the cylinder serve as the searching parameter and canmove around the searching space, which is
impossible if the trigonometric series expansion is used inthe inversion procedure.

As shown in Fig. 5, the cubic spline consists of the polynomials of degree 3Pi(θ), i = 1, 2, · · ·, N ,
which satisfy the following smooth conditions:

Pi(θi) = Pi+1(θi) ≡ ρi

P ′

i (θi) = P ′

i+1(θi) i = 1, 2, · · ·, N (8)

P ′′

i (θi) = P ′′

i+1(θi)

and

P1(θ0) = PN (θN )
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Fig. 5. A cylinder of arbitrary shape is described in terms ofa closed cubic spline.

P ′

1(θ0) = P ′

N (θN ) ≡ ρ′N (9)

P ′′

1 (θ0) = P ′′

N (θN )

Through the interpolation of the cubic spline, an arbitrarysmooth cylinder can be easily described
through the radius parametersρ1, ρ2, · · ·, ρN and the slopeρ′N , of which the details are referred to [23].
By combining the modified APSO and the cubic spline interpolation technique, we are able to reconstruct
the microwave image efficiently.

It should be noted that the coordinates of local origin inside the cylinder plus the radiuses of the
geometrical spline used to describe the shape of the cylinder will be determined by the APSO and PSO
scheme.

4. Numerical results

As shown in Fig. 1, the problem space is divided in68 × 68 grids with the grid size∆x = ∆y =
5.95 mm. The metallic cylinder is located in free space. The cylindrical object is illuminated by a
transmitter at four different positions,Ni = 4. The scattered E fields for each illumination are collected
at the eight receivers,M = 8. Note that the simulated result using one incident wave is much worse
than that by two incident waves. In order to get accurate result, four transmitters are used here. The
transmitters and receivers are collocated at a distance of 24 grids from the origin. The incident current
pulseIz(t) is expressed as:

Iz(t) =

{

Ae−α(t−β∆t)2

0

, t ≤ Tw

, t > Tw
(10)
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Fig. 6. The reconstructed shape of the cylinder at differentgenerations for example 1 by APSO.

whereβ = 24,A = 1000,∆t = 13.337ps,Tw = 2β∆t, andα =
(

1
4β∆t

)2
.

The time duration is set to 250∆t(T = 250). Note that in order to accurately describe the shape of
the cylinder, the subgridding FDTD technique is used both inthe forward scattering (1:9) and the inverse
scattering (1:5) parts – but with different scaling ratios as indicated in the parentheses. For the forward
scattering, the E fields generated by the FDTD with fine subgrids are used to mimic the experimental
data in Eq. (4).

Two examples are investigated for the inverse scattering ofthe proposed structure by using the
modified APSO. There are eleven unknown parameters to retrieve, which include the center position
(XO, YO), the radiusρi, i = 1, 2, · · ·, 8 of the shape function and the slopeρ′N . Very wide searching
ranges are used for the modified APSO to optimize the objective function given by Eq. (7). The
parameters and the corresponding searching ranges are listed follows: -47.6 mm6 XO 6 47.6 mm,
-47.6 mm6 YO 6 47.6 mm, 5.95 mm6 ρi 6 71.4 mm,i = 1,2,· · ·, 8,−1 6 ρ′N 6 1. The operational
coefficients for the PSO are set out below. The learning coefficients,c1 andc2, are set to 2 [33], and
the population size is set to 30. The relative coefficient of the modified APSO are set as below: The
learning coefficients,c1 andc2, are set to 2.8 and 1.3 respectively. The mutation probability is 0.1 and
the population size is set to 30 [34].

For the first example, the metallic cylinder with shape function F (θ) = 29.75 − 5.95 cos(3θ) mm is
considered. The final reconstructed shape by APSO at the 600th generation is compared to the exact
shape in Fig. 6. The final reconstructed shapes by PSO and APSOat the 600th generation are compared
to the exact shape in Fig. 7. The discrepancy of shape Function (DF) of the reconstructed shapeF cal(θ)
with respect to the exact values versus generations is shownin Fig. 8. It is shown that the APSO scheme
is able to achieve good convergences within 50 generations.Here, DF is defined as

DF = { 1

N ′

N ′

∑

i=1

[F cal(θi) − F (θi)]
2/F 2(θi)}1/2 (11)

where theN ′ is set to 720. The r.m.s. error DF for PSO and APSO are about 17.3% and 5.32% in the
final generation, respectively. In order to investigate thesensitivity of the imaging algorithm against
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Fig. 7. The reconstructed shapes of the cylinder for example1 by PSO and APSO, respectively.

Fig. 8. Shape function error versus generation for example 1by PSO and APSO, respectively.

random noise, the additive white Gaussian noise of zero meanwith standard deviationσg is added into
the scattered electric fields to mimic the possible measurement errors. The relative noise level (RNL) is
defined as:

RNL =
σg

√

√

√

√

Ni
∑

n=1

M
∑

m=1

K
∑

k=0

|Eexp
z (n,m,k∆t)|2

(Ni)(Mi)(K+1)

(12)

The relative noise level of 10−4, 10−3, 10−2 and 0.1 are used in PSO and APSO for simulation
purpose. Figure 9 shows the reconstructed results under thecondition that the experimental scattered
field is contaminated by the noise. It could be observed that good reconstruction has been obtained for
shape of the metallic cylinder when the relative noise levelis below 10−1.

In the second example, we would like to test the robustness ofthe algorithm for the complex shapes,
the metallic cylinder with shape functionF (θ) = 29.75 + 5.95 cos(4θ) mm is considered. The final
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Fig. 9. Shape error as function of RNL by PSO and APSO, respectively.

Fig. 10. The reconstructed shapes of the cylinder for example 2 by PSO and APSO, respectively.

reconstructed shapes by PSO and APSO at the 600th generationare compared to the exact shape in Fig. 10.
Figure 11 shows that APSO the relative errors of the shape decrease quickly and good convergences are
achieved within 40 generation. The r.m.s. error DF for PSO and APSO are about 17.9% and 8.55%
in the final generation, respectively. From the reconstructed results this object, we conclude the APSO
scheme can be used to reconstruct metallic cylinder. For complex shapes, it is found that APSO has
better reconstruction results than PSO does.

5. Conclusion

In this paper, we study the time domain inverse scattering ofan arbitrary cross section metallic cylinder
in free space. By combining the FDTD method and the APSO, goodreconstructed results are obtained.
The key differences between PSO [16] and APSO are about the convergence speed, the computation time
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Fig. 11. Shape function error versus generation for example2 by PSO and APSO, respectively.

and the accuracy, since APSO includes “damping boundary condition” scheme and mutation scheme.
The subgridding scheme is employed to closely describe the shape of the cylinder for the FDTD method.
Some stabilization techniques to avoid the mismatch at the MG-LG interface are adopted. In order to
describe the shape of the scatterer more effectively, cubicspline interpolation technique is utilized. The
inverse problem is reformulated into an optimization one, and then the global searching scheme APSO is
employed to search the parameter space. By using the APSO, the shape of the object can be successfully
reconstructed. In our study, even when the initial guess is far from the exact one, the APSO can still
yield a good solution for the properties of the object. Numerical results have been carried out and good
reconstruction has been obtained even in the presence of white Gaussian noise in experimental data.
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