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Abstract. In this work we consider the existence of traveling plane wave
solutions of systems of delayed lattice differential equations in competitive
Lotka-Volterra type. Employing iterative method coupled with the explicit
construction of upper and lower solutions in the theory of weak quasi-monotone
dynamical systems, we obtain a speed, c

∗, and show the existence of traveling
plane wave solutions connecting two different equilibria when the wave speeds
are large than c

∗.

1. Introduction. The purpose of this work is to investigate the existence of trav-
eling plane wave solutions of systems of N delayed 2-dimensional lattice differential
equations (2D-LDEs) in competitive Lotka-Volterra type. The nth 2D-LDE in the
systems is of the form

d

dt
un;i,j(t) = Ln[un;i,j](t) + un;i,j(t)fn

(
ui,j(t), (ui,j)

n̂
t

)
, (1)

for (i, j) ∈ Z
2 and 1 ≤ n ≤ N , where ui,j(t) := (u1;i,j(t), · · · , uN ;i,j(t)),

(ui,j)
n̂
t (τ1, · · · , τn−1, τn+1, · · · , τN )

:=(u1;i,j(t− τ1), · · · , un−1;i,j(t− τn−1), un+1;i,j(t− τn+1), · · · , uN ;i,j(t− τN )),

and

Ln[un;i,j ](t) = dn,1un;i+1,j(t)+dn,2un;i,j+1(t)

+ dn,3un;i−1,j(t) + dn,4un;i,j−1(t) − dn,0un;i,j(t).

Here τi and di,j are positive real constants which represent the time delays and
coupling coefficients respectively. Let τ := max{τ1, · · · , τn−1, τn+1, · · · , τN}. All
fn are C1 functions from R

N × C1([−τ, 0],R)N−1 to R where C1([−τ, 0],R)N−1 is
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the Banach space of continuous differentiable N −1 dimensional functions mapping
the interval [−τ, 0] into R with supremum norm. For any C1 function u : R

1 →
R

N , (u)n̂
t ∈ C1([−τ, 0],R)N−1 means that (u)n̂

t (s) =
(
u1(t + s1), · · · , un−1(t +

sn−1), un+1(t + sn+1), · · · , uN(t + sN )
)

for sn ∈ [−τ, 0] and 1 ≤ n ≤ N . Here the
natation “n̂” means that in the n-layer there is no delay effect from the same layer.

Systems (1) are infinite dimensional, consisting of infinitely many ordinary dif-
ferential equations, indexed by points in a three-dimensional lattice which consist
of N layers of two-dimensional plane lattice. In the position (i, j) of nth-layer,
the state un;i,j is linear coupling with nearest neighbor states, un;i+1,j , un;i,j+1,
un;i−1,j, and un;i,j−1. Interactions between different layers are governed by the
nonlinear function

Fn

(
(ui,j)t

)
= un;i,j(t)fn

(
ui,j(t), (ui,j)

n̂
t

)
for 1 ≤ n ≤ N. (2)

Such systems arise from the study of dynamics of multi-layer neural networks [28],
material science [4], chemical reaction theory [12], image processing and pattern
recognition [9, 10, 33, 34], and population dynamics of multiple species in biology
[31]. We also refer to the papers [7, 25] for the detailed account of the theory and
applications of lattice differential equations.

On the other hand, it is often that when one discretizes some partial differential
equations one ends up with a lattice differential equation to solve. For example,
if dn,i = 1 for i = 1, · · · , 4, and dn,0 = 4 then the operator Ln represents the
discrete two-dimensional Laplacian operator. Thus equations (1) can be viewed as
the spatial discretization of the following partial differential equations defined in
the plane

∂un(x, t)

∂t
= dn∆un(x, t) + un(x, t)fn

(
u(x, t),ut(x)n̂

)
,

with x ∈ R
2 and 1 ≤ n ≤ N . Specifically, if

fn

(
u(x, t),ut(x)n̂

)
= (rn − pnun(x, t) −

N∑

m=1,m 6=n

sn,mum(x, t− τm))

for some positive constants rn, pn and sn,m, then systems (1) can be viewed as
the spatial discretization of the diffusive competitive Lotka-Volterra systems of N -
species equations with delay effects in the plane. The systems model the interaction
among various competing species, has been studied extensively, and various suffi-
cient conditions for the coexistence and extinction of the competing species are
obtained, cf. [11, 22, 29, 36].

Our aim is to study the existence of traveling plane wave solutions of (1). A
traveling plane wave solution of systems (1) is a solution of the form

un;i,j(t) = φn(t− ic cos θ − jc sin θ), n = 1, · · · , N, (3)

where 1/c > 0 is the wave speed; θ ∈ [0, π/2] is the direction of waves propagation;
φn are continuously differentiable functions. According to (3), the profile equations
of systems (1) can be written as

φ′n(t) = Ln[φn](t) + Fn(Φt),

Fn(Φt) = φn(t)fn(Φ(t),Φn̂
t )

(4)
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for n = 1, · · · , N, with c1 := c cos θ, c2 := c sin θ, Φ(t) = (φ1(t), · · · , φN (t)), Φn̂
t ∈

C1([−τ, 0],R)N−1, and

Ln[φn](t) := dn,1φn(t− c1)+dn,2φn(t− c2)

+ dn,3φn(t+ c1) + dn,4φn(t+ c2) − dn,0φn(t).

Typically, traveling wavefront solutions arise from the competition between two
equilibria. To find a traveling plane wave solution of (1) connecting two equilibria
is equivalent to find a heteroclinic trajectory of (4) with asymptotically boundary
conditions. It is obvious that (4) has a trivial solution 0 := (0, · · · , 0). Some
sufficient conditions for the uniqueness of positive equilibrium and global asymptotic
stability for Lotka-Volterra competition-diffusion systems with discrete time delays
were given in [30]. Generalizing the ideas of [30], we will give sufficient conditions
to guarantee the existence of a positive equilibrium Φ⋆ of (4) in Section 2. Then
we look for the existence of heteroclinic orbits of (4) that satisfies the following
asymptotically boundary conditions:

lim
t→−∞

Φ(t) = 0 and lim
t→∞

Φ(t) = Φ⋆. (5)

Traveling wave solutions for a single lattice differential equation without or with
delay have drawn considerable attention in the past decades, see, e.g., [2, 3, 5, 6, 8,
13, 17, 18, 21, 26, 24, 35, 37, 38] and many references cited therein. Particularly,
Wu and Zou [35] developed a monotone iterative scheme and used a non-standard
ordering, quasi-monotone or exponentially quasi-monotone, in the profile set to
prove the existence of traveling wave solutions LDEs with asymptotical boundary
conditions of by an upper-lower solution method. This technique was generalized
to a delayed LDEs on higher dimensional lattices [38]. From another point of view,
to show the existence of traveling wave solutions with asymptotically boundary
conditions is equivalent to find a heteroclinic orbit connecting two equilibria of the
corresponding profile equation which is a mixed type functional differential equation.
Hence, by the same approach, Hsu et al. [17, 18] generalized the results of [35] to a
general scalar functional differential equation in delay, advance or mixed type with
some suitable conditions.

Recently, researchers have started to investigate systems of LDEs [1, 12, 20, 27,
31]. Huang et al. [20] considered the following systems of two delayed LDEs:

dun

dt
=

m∑

j=1

aj [g(un+j(t)) − 2g(un(t)) + g(un−j(t))] + f1(un(t), vn(t− τ)),

dvn

dt
=

m∑

j=1

bj [g(vn+j(t)) − 2g(vn(t)) + g(vn−j(t))] + f2(un(t− τ), vn(t)).

(6)

Let the nonlinear reaction terms of (6) satisfy the quasi monotonicity condition
[35].

(QM) There exist two positive constants β1 and β2 such that

f1(ψ1, ψ2) − f1(φ1, φ2) + β1[ψ1(0) − φ1(0)] ≥ 2A[g(ψ1(0)) − g(φ1(0))],

f2(ψ1, ψ2) − f2(φ1, φ2) + β2[ψ2(0) − φ2(0)] ≥ 2B[g(ψ2(0)) − g(φ2(0))]

for (ψ1, ψ2), (φ1, φ2) ∈ C([−τ, 0],R)2 with 0 � (φ1(s), φ2(s)) � (ψ1(s), ψ2(s)) �
(k1, k2), for s ∈ [−τ, 0] and some positive constant k1, k2, where A =

∑m
j=1 aj and
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B =
∑m

j=1 bj . Then the existence of traveling wave solutions of (6) can be estab-

lished by the results of Wu and Zou [35]. Here the notation “≺ (�)” denote the stan-
dard order in high dimension, that is, Φ = (φ1, · · · , φN ) and Ψ = (ψ1, · · · , ψN ) ∈
C([−τ, 0],R)N , denote Φ � (≺)Ψ if φn(s) ≤ (<)ψn(s) for n = 1, · · · , N with
s ∈ [−τ, 0].

However, the nonlinear reaction terms of some important examples from practical
problems may not satisfy the condition (QM). Hence the methods used in [35] cannot
be applied. Here is a example which is the discrete diffusive predator-prey model
with delay for ecological systems:

dun

dt
= d1[un+1 − 2un + un−1] + un[1 − un] − aunvn(t− τ1),

dvn

dt
= d2[vn+1 − 2vn + vn−1] − vn + bun(t− τ2)vn,

(7)

Hence a modified (QM) condition for the reaction terms called partial quasi mono-
tonicity (PQM) was introduced simultaneously in delayed LDEs [20] and in delayed
reaction diffusion systems [19].

(PQM) There exist two positive constants β1 and β2 such that

f1(ψ1, ψ2) − f1(φ1, ψ2) + β1[ψ1(0) − φ1(0)] ≥ 2A[g(ψ1(0)) − g(φ1(0))],

f1(ψ1, ψ2) − f1(ψ1, φ2) ≤ 0,

f2(ψ1, ψ2) − f2(φ1, φ2) + β2[ψ2(0) − φ2(0)] ≥ 2B[g(ψ2(0)) − g(φ2(0))]

for (ψ1, ψ2), (φ1, φ2) ∈ C([−τ, 0],R)2 with 0 � (φ1(s), φ2(s)) � (ψ1(s), ψ2(s)) �
(k1, k2), for s ∈ [−τ, 0] and some positive constant k1, k2, where A =

∑m
j=1 aj

and B =
∑m

j=1 bj. We remark that the functions f2 satisfies the same monotone

condition (QM). A new cross-iteration scheme was given to show the existence of
traveling wave solutions of (6) if a pair of upper-lower solutions can be constructed
and the condition (PQM) are satisfied for reaction terms. In particular, this results
can be applied to (7) to show the existence of traveling wave solutions.

The same story happened to the following two species delayed competition sys-
tems.

∂

∂t
u1(x, t) = d1

∂2

∂x2
u1(x, t) + r1u1(x, t)[1 − a1u1(x, t) − b1u2(x, t− τ1)],

∂

∂t
u2(x, t) = d2

∂2

∂x2
u2(x, t) + r2u2(x, t)[1 − b2u1(x, t− τ2) − a2u2(x, t)],

(8)

where di and τi are positive constants. It is easy to check that the reaction terms
of (8) satisfies neither the condition (QM) nor the condition (PQM). Thus Li et
al. [23] provided a condition on the reaction terms called the weak quasi monotone
condition (WQM) stated in the following:

(WQM) There exist β1 > 0 and β2 > 0 such that

f1(ψ1(0), ψ2(−τ1)) − f1(φ1(0), ψ2(−τ1)) + β1[ψ1(0) − φ1(0)] ≥ 0,

f1(ψ1(0), ψ2(−τ1)) − f1(ψ1(0), φ2(−τ1)) ≤ 0,

f2(ψ1(−τ2), ψ2(0)) − f2(ψ1(−τ2), φ2(0)) + β2[ψ2(0) − φ2(0)] ≥ 0,

f2(ψ1(−τ1), ψ2(0)) − f2(φ1(−τ2), ψ2(0)) ≤ 0

for (φ1, φ2), (ψ1, ψ2) ∈ C([−τ, 0],R)2 with 0 � (φ1(s), φ2(s)) � (ψ1(s), ψ2(s)) �
(M1,M2), and s ∈ [−max{τ1, τ2}, 0]. Based on the assumption (WQM), they
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reduced the existence of traveling wave solutions of (8) to the existence of an ad-
missible pair of upper and lower solutions (cf. Definition 3.1). By assuming the
existence of an admissible pair of upper and lower solutions of (8), they applied the
cross-iterative method to establish the existence of traveling wave solutions.

Motivated by the previous works of [23, 20, 19, 35], we will provide a condition
which we still denote it by the same name (WQM) on the nonlinear reaction terms
of N -systems of LDEs in Section 2. In the strategy of iterative scheme, the con-
struction of lower and upper solutions is nontrivial for any specific model. Following
the ideas of [23, 24], we can explicitly construct upper and lower solutions of the
corresponding systems of the wave profiles of (1) for some classes of nonlinear re-
action functions F satisfying the condition (WQM). Applying the technique of the
cross-iterative method and Schauder’s fixed point theorem, we show the existence
of traveling plane wave solutions of (1). The results can be applied to many models,
e.g. the Lotka-Volterra competition systems with distributive time delays.

The remainder of this paper is organized as follows. In Section 2, some necessary
notations and definitions are introduced. Then the existence of strictly positive
equilibrium is obtained under suitable assumptions. We also examine the weak
quasi monotone properties of the systems (4). In Section 3, with the aid of real
roots of the corresponding characteristic function of (4) at the trivial solution, we
construct the upper and lower solutions of (4). Based on the results of Sections
2 and 3, we show the existence of traveling plane wave solutions of (4) and (5) in
Section 4 by using the cross-iterative method and Schauder’s fixed point theorem.
In the last section, we apply our main results to the Lotka-Volterra competition
systems with distributive time delays, and obtain the existence of traveling plane
wave solutions.

2. Preliminary. In this section, we have three main purposes. The first one is to
show the existence of a positive equilibrium of (4) under some sufficient conditions
on reaction terms. The second one is to state a general (WQM) condition on N -
systems of LDEs. Then some sufficient conditions are imposed on reaction functions
to guarantee that the condition (WQM) is satisfied. Finally, we investigate the
characteristic equations about the trivial solution 0. The characteristic roots will
help us to construct a pair of upper-lower solutions of (4).

From now on in this paper, we just consider the existence of a heteroclinic orbit
of (4) with asymptotical boundary condition (5) instead of finding the traveling
wavefront solutions of (1). And the nonlinear reaction functions Fn are always of
the form (2).

2.1. The existence of a positive equilibrium. We use the notation [Ψ|φn] =
[ψ1, · · · , ψN |φn] to denote a vector or a vector function Ψ which the nth component
is replaced by φn, that is,

[Ψ|φn] := (ψ1, · · · , ψn−1, φn, ψn+1, · · · , ψN ).

And the notation Ψn̂ = (ψ1, · · · , ψN )n̂ is denoted a vector or a vector function
which is removed the nth component, that is,

Ψn̂ = (ψ1, · · · , ψn−1, ψn+1, ψN )

for 1 ≤ n ≤ N .
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To find the equilibrium Φ⋆ of (4) satisfying Φ⋆ ≻ 0, we have to solve the following
systems of nonlinear algebraic equations,

(
4∑

i=1

dn,i − dn,0)φ
∗
n + φ∗nfn(Φ⋆, (Φ⋆)n̂) = 0 for n = 1, · · · , N.

For mathematical simplicity, we assume that
∑4

i=1 dn,i = dn,0. Then the above
equation can be simplified as

fn(Φ⋆, (Φ⋆)n̂) = 0 for n = 1, · · · , N.

Lemma 2.1. Let K = (k1, · · · , kN ) and L = (ℓ1, · · · , ℓN) be two constant vectors
such that 0 ≺ K � L. If gn ∈ C1(R2N−1,R),

∂gn/∂xm ≤ 0 and gn([K|ℓn],K n̂) ≤ 0 ≤ gn([L|kn], Ln̂),

for 1 ≤ n ≤ N and 1 ≤ m ≤ 2N − 1, then there exist two constant vectors
Φ = (φ1, · · · , φN ) and Ψ = (ψ1, · · · , ψN ) in R

N such that K � Φ � Ψ � L and

gn([Φ|ψn],Φn̂) = 0 = gn([Ψ|φn],Ψn̂)

for all 1 ≤ n ≤ N .

Proof. Let Λ := {X = (x1, · · · , xN ) ∈ R
N : K � X � L} and Mn be positive

constants such that

Mn > max

{
−

∂

∂xn

(xngn(X,X n̂)) : X ∈ Λ

}
, (9)

for all n = 1, · · · , N . For any X,Y ∈ Λ, define

Gn(X) := xngn(X,X n̂),

Zn(α;X,Y ) :=
(
(1 − α)y1, · · · , (1 − α)yn−1, αyn, (1 − α)yn+1, · · · , (1 − α)yN

)

+
(
αx1, · · · , αxn−1, (1 − α)xn, αxn+1, · · · , αxN

)

= [(1 − α)Y |αyn] + [αX |(1 − α)xn],

for n = 1, · · · , N and α ∈ [0, 1]. Obviously, Zn(α;X,Y ) ∈ Λ if X and Y in Λ. If
X � Y , by (9) and the Mean Value Theorem, we have

yngn([X |yn], X n̂) − xngn([Y |xn], Y n̂)

=Gn([X |yn]) −Gn([Y |xn]))

=Gn(Zn(1;X,Y )) −Gn(Zn(0;X,Y ))

=
d

dα

∣∣
α=α̃

Gn([(1 − α)Y |αyn] + [αX |(1 − α)xn])

≤Mn(xn − yn)

for some α̃ ∈ [0, 1]. Hence,

Mnxn + xngn([Y |xn], Y n̂) ≥Mnyn + yngn([X |yn], X n̂). (10)

Let Φ(0) = K, Ψ(0) = L, and consider the following iterations:

Mnφ
(m)
n = Mnφ

(m−1)
n + φ(m−1)

n gn

(
[Ψ(m−1)|φ(m−1)

n ], (Ψ(m−1))n̂
)
,

Mnψ
(m)
n = Mnψ

(m−1)
n + ψ(m−1)

n gn

(
[Φ(m−1)|ψ(m−1)

n ], (Φ(m−1))n̂
)
.

We claim that

K � Φ(m−1) � Φ(m) � Ψ(m) � Ψ(m−1) � L,
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for all m ≥ 1. Once the claim is true, then the assertion of this lemma follows by
letting m→ ∞.

Now we prove the above claim by using the induction method. From (9) and
(10), it is obviously that

K � Φ(0) � Φ(1) � Ψ(1) � Ψ(0) � L.

Suppose that

K � Φ(m−1) � Φ(m) � Ψ(m) � Ψ(m−1) � L

for some m ≥ 1. Applying (10) to the inequalities:

[Ψ(m−1)|φ(m)
n ] � [Ψ(m)|φ(m−1)

n ], Ψ(m) � Φ(m) and [Φ(m)|ψ(m−1)
n ] � [Φ(m−1)|ψ(m)

n ],

the claim holds obviously. Hence the proof is complete.

2.2. Weak quasi monotonicity. Now the conditions (WQM) conditions are stated
for the nonlinear reaction functions F = (F1, · · · , FN ) for general N as follows.

(WQM): there exist N positive constants β1, · · · , βN such that
(i) Fn([Ψ|φn]) − Fn

(
Φ

)
≤ 0,

(ii) Fn([Φ|ψn]) − Fn(Φ) + βn

(
ψn(0) − φn(0)

)
≥ 0

for 1 ≤ n ≤ N , Ψ,Φ ∈ C1([−τ, 0],R)N with 0 � Φ(s) � Ψ(s) � M for
s ∈ [−τ, 0] and a positive constant vector M .

Now we explore the condition (WQM) on the reaction functions of the form

Fn(Φ) =φn(0)fn(Φ(0),Φn̂)

=φn(0)fn(φ1(0), · · · , φN (0),

φ1(−τ1), · · · , φn−1(−τn−1), φn+1(−τn+1), · · · , φN (−τN ))

(11)

for Φ = (φ1, · · · , φN ) ∈ C1([−τ, 0],R)N .

Lemma 2.2. Assume that Φ and Ψ ∈ C1([−τ, 0],R)N such that 0 � Φ(s) � Ψ(s) �
M for some constant vector M = (M1, · · · ,MN ) ≻ 0. If the functions fn of (11)
satisfies ∂fn/∂xm ≤ 0 for 1 ≤ m ≤ 2N − 1, then reaction function Fn satisfies the
condition (WQM).

Proof. (i). It is sufficiently to check that

fn

(
[Ψ|φn](0),Ψn̂

)
− fn

(
Φ(0),Φn̂

)
≤ 0

since φn is nonnegative. According to the assumptions of fn, it is obviously that

fn([Ψ|φn](0),Ψn̂) − fn(Φ(0),Φn̂) = Dfn(ξ1, ξ2) · ([Ψ − Φ|0n](t),Ψn̂ − Φn̂) ≤ 0,

for some ξ1 and ξ2. Hence the results follows.

(ii). Based on the assumptions, we have

ψn(0)fn([Φ|ψn](0),Φn̂) − φn(0)fn(Φ(0),Φn̂)

=ψn(0)fn([Φ|ψn](0),Φn̂) − ψn(0)fn(Φ(0),Φn̂)

+ ψn(0)fn(Φ(0),Φn̂) − φn(0)fn(Φ(0),Φn̂)

=ψn(0)Df(ξ1, ξ2) · ([0|ψn − φn](0),0) +
(
ψn(0) − φn(0)

)
fn(Φ(0),Φn̂)

≥
(
ψn(0) − φn(0)

)
(−Mn max

0�ξ1�M, 0�ξ2�M n̂
‖Df(ξ1, ξ2)‖ + fn(M,M n̂)

)
,
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for some ξ1 and ξ2. Thus, the assertion of this part follows by taking

βn > Mn max
0�η1�M,0�η2�M n̂

‖Df(η1,η2)‖ − fn(M,M n̂), i = 1, · · · , N.

The proof is complete.

According to Lemma 2.2, we can define operators H = (H1, · · · , HN ), G =
(G1, · · · , GN ) : C1([−τ, 0],R)N → C1(R,RN ) by

Hn(Φ)(t) := Ln[φn](t) + φn(t)fn(Φ(t),Φn̂
t ) + βnφn(t),

Gn(Φ)(t) := e−βnt

∫ t

−∞

eβnsHn(Φ)(s)ds, t ∈ R, i = 1, · · · , N.

Then the profile equation (4) can be represented as

φ′n(t) + βnφn(t) −Hn(Φ)(t) = 0, n = 1, · · · , N,

and a fixed point of G is equivalent to the solutions of (4). By Lemma 2.2, Gn and
Hn have the following properties.

Lemma 2.3. Assume Φ and Ψ satisfy the assumptions of Lemma 2.2. Then

(1) Hn([Ψ|φn]) ≤ Hn(Φ) ≤ Hn([Φ|ψn]), for n = 1, · · · , N .
(2) Gn([Ψ|φn]) ≤ Gn(Φ) ≤ Gn([Φ|ψn]), for n = 1, · · · , N .

Proof. The results follow obviously from Lemma 2.2. We omit the details.

By Lemma 2.3, it motivates us to use the iterative scheme to obtain the existence
of traveling plane wave solutions. But some properties of characteristic equations
and characteristic roots should be investigated.

2.3. Characteristic functions and characteristic roots. First, we give the
definition of the characteristic functions of (4). The characteristic function arises
from the linearized equation of (4) at the equilibrium 0, and its roots play crucial
roles in studying the behavior of solutions of (4) near 0.

Definition 2.4. Let c > 0 and θ ∈ [0, π/2]. The characteristic function of (4) at 0
is defined by

∆(λ, c) =
N∏

n=1
∆n(λ, c),

where ∆n(λ, c), n = 1, · · · , N , are of the form

∆n(λ, c) = −λ+ dn,1e
−λc1 + dn,2e

−λc2 + dn,3e
λc1 + dn,4e

λc2 − dn,0 + fn(0,0),

where c1 = c cos θ and c2 = c sin θ.

Now, we explore some properties of the functions ∆n(λ, c).

Lemma 2.5. Assume that for all n dn,3 ≥ dn,1 > 0, dn,4 ≥ dn,2 > 0,
∑4

i=1 dn,i =
dn,0, and fn(0,0) > 0. There exists a c∗ > 0 which depends on {dn,i}

4
i=1 such that

if 0 < c < c∗ we can find two real characteristic roots λn,1(c) and λn,2(c) such that
0 < λn,1(c) < λn,2(c) and

∆n(λ, c) =





= 0, if λ = λn,1, λn,2,
> 0, if 0 < λ < λn,1(c),
< 0, if λn,1(c) < λ < λn,2(c),
> 0, if λ > λn,2(c).

(12)
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Proof. We first define

c̄ = min{c̃, 1/(dn,3 − dn,1 + dn,4 − dn,2)}

where
c̃ := inf{c > 0 : ∆n(λ, c) > 0, for all λ > 0}.

(If dn,1 = dn,3 and dn,2 = dn,4, then we take 1/(dn,3 − dn,1 + dn,4 − dn,2) = ∞.) It
is clear that c̃ > 0. Hence c̄ > 0. For 0 < c < c̄ and λ > 0, we have

∂∆n(λ, c)

∂c
= λ cos θ(dn,3e

λc1 − dn,1e
−λc1) + λ sin θ(dn,4e

λc2 − dn,2e
−λc2) > 0,

∂∆n(λ, c)

∂λ
= −1 + c1(dn,3e

λc1 − dn,1e
−λc1) + c2(dn,4e

λc2 − dn,2e
−λc2),

∂2∆n(λ, c)

∂λ2
= c21(dn,3e

λc1 + dn,1e
−λc1) + c22(dn,4e

λc2 + dn,2e
−λc2) > 0.

Then we yield

∂∆n(0, c)

∂λ
= −1 + c1(dn,3 − dn,1) + c2(dn,4 − dn,2) < 0,

∆n(0, c) = dn,1 + dn,2 + dn,3 + dn,4 − dn,0 + fn(0, 0) > 0.

Thus there exists a λ∗(c) > 0 such that ∆n(λ, c) attains its global minimum at
λ = λ∗(c). Moreover, λ∗ satisfy the equation

1 = c1(dn,3e
λ∗c1 − dn,1e

−λ∗c1) + c2(dn,4e
λ∗c2 − dn,2e

−λ∗c2), (13)

and hence we have
dλ∗

dc
< 0 by implicit differentiation of (13).

Now we study the behavior of the curve λ∗(c). From (13) it is easy to see that
λ∗(c) → ∞ as c→ 0+, and λ∗(c) → 0 as c→ ∞. These imply that

lim
c→0+

∆n(λ∗(c), c) = −∞ and lim
c→∞

∆n(λ∗(c), c) > 0.

Furthermore, ∆n(λ∗(c), c) is monotone increasing with respect to c. Since if c1 > c2,
then

∆n(λ∗(c1), c1) > ∆n(λ∗(c1), c2) ≥ ∆n(λ∗(c2), c2).

Note that ∆n(λ∗(c2), c2) is a global minimum for such fixed c2. Hence we can find
a particular c∗ ∈ (0, c̃) such that the statement of lemma is true. The proof is
complete.

Summarize the above results, we make the following assumptions on reaction
terms and coupling coefficients of (4).

(A1) There exist K = (k1, · · · , kN ) and L = (ℓ1, · · · , ℓN ) in R
N such that 0 ≺

K � L and fn([K|ℓn],K n̂) ≤ 0 ≤ fn([L|kn], Ln̂) for all n.
(A2) The functions fn are C1 functions from R

N × C1([−τ, 0],R)N−1 to R and
∂fn/∂xm ≤ 0 for 1 ≤ m ≤ 2N − 1.

(A3) Assume that for all n dn,3 ≥ dn,1 > 0, dn,4 ≥ dn,2 > 0 ,
∑4

i=1 dn,i = dn,0,
and fn(0,0) > 0.

Remark 1. (i) Let us reexamine (4) with the assumptions (A1)∼(A3). The
assumption (A1) implies that the systems (4) have a positive equilibrium.
The conditions (WQM) is satisfied for the reaction terms if (A2) is hold. The
assumption (A3) help us to understand the linear behavior of the heteroclinic
solution near the trivial solution 0. This is crucial to construct a pair of
upper-lower solutions in next section.
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(ii) The reaction terms of many classical and typical models have the form Fn

in (11) and satisfy the assumption (A2). Here we list some continuous and
discrete delayed reaction diffusion equations which we know:
• The logistic scalar equation.

∂u(x, t)

∂t
= D

∂2

∂x2
u(x, t) + ru(x, t)[1 − au(x, t)].

• A diffusive delay equation which can be used to model the growth of the
population of Daphnia. [32, 16]

∂u(x, t)

∂t
= D

∂2u(x, t)

∂2x
+ ru(x, t)

(1 − au(x, t)

1 + bu(x, t)

)

• The Belousov-Zhabotinskii reaction model with delay.

∂u(x, t)

∂t
= D

∂2

∂x2
u(x, t) + u(x, t)[1 − u(x, t) − rv(x, t − τ1)],

∂v(x, t)

∂t
= D

∂2

∂x2
v(x, t) − bu(x, t− τ2)v(x, t).

• The Lotka-Volterra competition-diffusion systems of N -species equations
in the plane.

∂un(x, t)

∂t
=dn∆un(x, t)

+ un(x, t)
(
rn − pnun(x, t) −

N∑

m=1,m 6=n

sn,mum(x, t− τm)
)
,

where x ∈ R
2 , and rn, pn and sn,m are nonnegative constants.

3. Construction of upper and lower solutions. This section is devoted to the
construction of upper and lower solutions of (4). First, we give the definition.

Definition 3.1. Assume Φ =
(
φ1, · · · , φN

)
and Ψ =

(
ψ1, · · · , ψN

)
belong to

C(R,R)N such that 0 � Φ,Ψ � M = (M1, · · · ,MN) � 0. Then Ψ and Φ are
called an upper solution and a lower solution of (4) respectively, if they are differ-
entiable almost everywhere and satisfy

(1) φ′n(t) ≤ Ln[φn](t) + φn(t)fn([Ψ|φn](t),Ψn̂
t ), n = 1, · · · , N , a.e.;

(2) ψ′
n(t) ≥ Ln[ψn](t) + ψn(t)fn([Φ|ψn](t),Φn̂

t ), n = 1, · · · , N , a.e..

Now we construct a pair of upper-lower solutions of (4). First, let η be the
number satisfying

1 < η < min
{λn,2

λn,1
,
λn,1 + λm,1

λn,1

∣∣∣ m,n = 1, · · · , N
}
≤ 2. (14)

For δ > 1, we define functions hn(t) by

hn(t) := eλn,1t − δeηλn,1t, n = 1, · · · , N. (15)

Then it is easy to see that

lim
t→−∞

hn(t) = 0, lim
t→∞

hn(t) = −∞ and h′n(t) = λn,1(e
λn,1t − δηeηλn,1t).

Thus there exists a unique t⋆n(δ) < 0 such that

h⋆
n := hn(t⋆n) = max

t∈R

hn(t) > 0 and lim
δ→∞

t⋆n(δ) = −∞.
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If δ is large enough then hn(0) < 0 and there exists σn > 1 such that the length of the
intervals In := {t| hn(t) ≥ h⋆

n/σn, t ∈ R} is equal to max{c∗, τ} for n = 1, · · · , N.
Denote σ := max{σn| n = 1, · · · , N} and tn(δ) by

tn(δ) := max{t| hn(t) = h⋆
n/σ}, n = 1, · · · , N,

then limδ→∞ tn(δ) = −∞ and h⋆
n < φ⋆

n for all n when δ is large enough. Further-
more, for any γ > 0, let εn > 0, n = 1, · · · , N be such that

hn(tn) = φ⋆
n − εne

−γtn , (or εn = (φ⋆
n − h⋆

n/σ)eγtn), (16)

then is easy to see that hn(t) > hn(tn) for tn − c∗ < t < tn.

Next, we assume that there exist ε̂n > 0, n = 1, · · · , N satisfying the following
assumption:

(A4)





εn

∂fn

∂xn

(X,Y ) <

N∑

m=1,m 6=n

ε̂m

( ∂fn

∂xm

(X,Y ) +
∂fn

∂ym

(X,Y )
)
,

ε̂n

∂fn

∂xn

(X,Y ) <
N∑

m=1,m 6=n

εm

( ∂fn

∂xm

(X,Y ) +
∂fn

∂ym

(X,Y )
)
,

for X,Y ∈ R
N × R

N−1. We further define the numbers t̂n, n = 1, · · · , N by

φ⋆
n + ε̂ne

−γt̂n = eλn,1t̂n , n = 1, · · · , N. (17)

Then it is obvious that min{t̂n| n = 1, · · · , N} > τ + max{tn| n = 1, · · · , N} if δ is

large enough, since t̂n is bounded below by (17).

Finally, we define the functions φ−n , φ+
n , n = 1, · · · , N by

φ−n (t) :=

{
eλn,1t − δeηλn,1t, t ≤ tn,
φ⋆

n − εne
−γt, t > tn,

φ+
n (t) :=

{
eλn,1t, t ≤ t̂n,

φ⋆
n + ε̂ne

−γt, t > t̂n,

and Φ− := (φ−1 , · · · , φ
−
N ) and Φ+ := (φ+

1 , · · · , φ
+
N ). Then

lim
t→−∞

Φ−(t) = lim
t→−∞

Φ+(t) = 0 and lim
t→∞

Φ−(t) = lim
t→∞

Φ+(t) = Φ⋆, (18)

and Φ−(t) < Φ+(t) for t ≤ tn or t ≥ t̂n, see Figure 1. On the interval [tn, t̂n], φ−n (t)
and φ+

n (t) are concave downwards and concave upwards respectively. Consequently,
if (φ−n (tn))′ ≤ (φ+

n (tn))′ then φ−n (t) ≤ φ+
n (t) for all t ≥ tn by taking γ satisfying

0 < γ ≤ min
1≤n≤N

{λn,1e
λn,1tn/εn}.

Lemma 3.2. Assume that δ is large enough, 0 < γ ≤ min1≤n≤N{λn,1e
λn,1tn/εn}

small enough, and there exists positive numbers {ε̂n}
N
n=1 satisfying (A4). Then Φ−

and Φ+ are lower and upper solutions of (4) respectively.

Proof. We only have to show that Φ− and Φ+ satisfy the differential inequalities
of Definition 3.1 for t ∈ R \ {tn, t̂n| n = 1, · · · , N}. To simplify the computations,
we introduce the notation

(d̄n,0, d̄n,1, d̄n,2, d̄n,3, d̄n,4) := (−dn,0, dn,1, dn,2, dn,3, dn,4),

(α0, α1, α2, α3, α4) := (0,−c1,−c2, c1, c2).

Then the function ∆n(λ, c) in the characteristic equations can be rewritten as

∆n(λn,1, c) = −λn,1 +
∑

i d̄n,ie
λn,1αi + fn(0, 0) = 0. (19)
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tn t̂n
0

Φ⋆

eλn,1t − δeηλn,1t

φ⋆
n − εne

−γt
eλn,1t

φ⋆
n + ε̂ne

−γt

Figure 1. Graphs of a pair of upper-lower solutions Φ+ and Φ−.

Note that

∆n(ηλn,1, c) = −ηλn,1 +
∑

i d̄n,ie
ηλn,1αi + fn(0, 0) < 0. (20)

Now we start the proof of the first differential inequality of Definition 3.1.
If t ≤ tn, then (φ−n )′(t) = λn,1e

λn,1t − δηλn,1e
ηλn,1t. According to equations (19),

(20) and the Mean Value Theorem, we have

Ln[φ−n ](t) + φ−n (t)fn([Φ+|φ−n ](t), (Φ+
t )n̂)

≥
∑

i

d̄n,i(e
λn,1(t+αi) − δeηλn,1(t+αi)) + φ−n (t)fn([Φ+|φ−n ](t), (Φ+

t )n̂)

=(φ−n )′(t) − δeηλn,1t∆(ηλn,1, c) + φ−n (t)
(
fn([Φ+|φ−n ](t), (Φ+

t )n̂) − fn(0, 0)
)

=(φ−n )′(t) − δeηλn,1t∆(ηλn,1, c) + φ−n (t)Dfn(Ψ1,Ψ2) ·
(
[Φ+|φ−n ](t), (Φ+

t )n̂
)
,

(21)

for some Ψ1 and Ψ2. By (14), we have −δeηλn,1t∆(ηλn,1, c) = O(eηλn,1t) and

φ−n (t)Dfn(Ψ1,Ψ2) · ([Φ
+|φ−n ](t), (Φ+

t )n̂)

=φ−n (t)
( ∂fn

∂xn

(Ψ1,Ψ2)φ
−
n (t) +

∑

m 6=n

(
∂fn

∂xm

(Ψ1,Ψ2)e
λm,1t +

∂fn

∂ym

(Ψ1,Ψ2)e
λm,1(t−τm))

)

=O(e2λn,1t) +O(e(λn,1+λm,1)t),

as t→ −∞. Since ∆(ηλn,1, c) < 0, the summation in equation (21) is positive if tn
is small enough.

If t > tn then

Ln[φ−n ](t) + φ−n (t)fn([Φ+|φ−n ](t), (Φ+
t )n̂) − (φ−n )′(t)

≥
∑

i

d̄n,i(φ
⋆
n − εne

−γ(t+αi)) + φ−n (t)fn([Φ+|φ−n ](t), (Φ+
t )n̂) − γεne

−γt

= −εne
−γtI(γ) + φ−n (t)

(
fn([Φ+|φ−n ](t), (Φ+

t )n̂) − fn(Φ⋆, (Φ⋆)n̂)
)
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where I(γ) :=
∑

i dn,ie
−γαi + fn(Φ⋆, (Φ⋆)n̂) + γ. Note that I(γ) → 0 as γ → 0+.

For tn < t ≤ t̂n, we have

fn([Φ+|φ−n ](t), (Φ+
t )n̂) − fn(Φ⋆, (Φ⋆)n̂)

= Dfn(Ψ1,Ψ2) · ([Φ
+|φ−n ](t) − Φ⋆, (Φ+

t )n̂ − (Φ⋆)n̂)

≥ −εne
−γt̂n

∂fn

∂xn

(Ψ1,Ψ2) +
∑

m 6=n

∂fn

∂xm

(Ψ1,Ψ2)ε̂me
γt̂n +

∑

m 6=n

∂fn

∂ym

(Ψ1,Ψ2)ε̂me
γt̂n

= e−γt̂n
(
− εn

∂fn

∂xn

(Ψ1,Ψ2) +
∑

m 6=n

∂fn

∂xm

(Ψ1,Ψ2)ε̂m +
∑

m 6=n

∂fn

∂ym

(Ψ1,Ψ2)ε̂m

)

> 0.

Similarly, for t ∈ (t̂n,∞) we have

fn([Φ+|φ−n ](t), (Φ+
t )n̂) − fn(Φ⋆, (Φ⋆)n̂)

= Dfn(Ψ1,Ψ2) · ([Φ
+|φ−n ](t) − Φ⋆, (Φ+

t )n̂ − (Φ⋆)n̂)

= e−γt
(
− εn

∂fn

∂xn

(Ψ1,Ψ2) +
∑

m 6=n

∂fn

∂xm

(Ψ1,Ψ2)ε̂m +
∑

m 6=n

∂fn

∂ym

(Ψ1,Ψ2)ε̂me
γτm)

)

> 0.

Combining the above discussions, if γ is small enough then we obtain the first
differential inequality of Definition 3.1.

Next, we prove of the second differential inequality of Definition 3.1. If t ≤ t̂n,
then (φ+

n )′(t) = λn,1e
λn,1t and

Ln[φ+
n ](t) + φ+

n (t)fn([Φ−|φ+
n ](t), (Φ−

t )n̂)

≤
∑

i

d̄n,ie
λn,1(t+αi) + eλn,1tfn([Φ−|φ+

n ](t), (Φ−
t )n̂)

= (φ+
n )′(t) + eλn,1t

(
fn([Φ−|φ+

n ](t), (Φ−
t )n̂) − fn(0, 0n̂)

)
≤ (φ+

n )′(t)

for n = 1, · · · , N . On the other hand, if t > t̂n, then (φ+
n )′(t) = −γε̂ne

−γt and

Ln[φ+
n ](t) + φ+

n (t)fn([Φ−|φ+
n ](t), (Φ−

t )n̂) − (φ+
n )′(t)

≤
∑

i

d̄n,i(φ
⋆
n + ε̂ne

−γ(t+αi)) + φ+
n (t)fn([Φ−|φ+

n ](t), (Φ−
t )n̂) + γε̂ne

−γt

= ε̂ne
−γtI(γ) + φ+

n (t)
(
fn([Φ−|φ+

n ](t), (Φ−
t )n̂) − fn(Φ⋆, (Φ⋆)n̂)

)
.

Similar to previous estimation, I(γ) → 0 as γ → 0+ and

fn([Φ−|φ+
n ](t), (Φ−

t )n̂) − fn(Φ⋆, (Φ⋆)n̂)

= Dfn(Ψ1,Ψ2) · ([Φ
−|φ+

n ](t) − Φ⋆, (Φ−
t )n̂ − (Φ⋆)n̂)

= e−γt
(
ε̂n

∂fn

∂xn

(Ψ1,Ψ2) −
∑

m 6=n

∂fn

∂xm

(Ψ1,Ψ2)εm −
∑

m 6=n

∂fn

∂ym

(Ψ1,Ψ2)εme
γτm)

)

< 0.

Therefore, the second differential inequality holds when γ is small enough. The
proof is complete.
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4. Existence of traveling plane waves. After constructing the upper and lower
solutions of (4) in previous section, now we start to show the existence of travel-
ing plane wave solutions by using the iterative method and Schauder’s fixed point
theorem.

Denote CM (R,RN ) := {(u1, · · · , uN)|un ∈ C(R,R), 0 ≤ un ≤M, n = 1, · · · , N}
where M = maxt∈R,1≤n≤N φ+

n , and subspace Γ of CM (R,RN ) by

Γ := {Φ ∈ CM (R,RN ) | Φ− � Φ � Φ+}. (22)

Then Γ is closed, convex and bounded under the supremum norm. To apply the
Schauder’s fixed point theorem for the existence of traveling plane wave solutions,
we need the following properties of the operator G on the space Γ.
Lemma 4.1.

(i) G is a continuous operator from CM (R,RN ) to C(R,RN ).
(ii) G is an invariant and compact operator on Γ.

Proof. (i) First, we show that Gmaps CM (R,RN ) into C(R,RN ). By the definitions
of Gn, for any t ∈ R and h > 0, we have

|Gn(Φ)(t+ h) −Gn(Φ)(t)|

= |e−βn(t+h)

∫ t+h

−∞

eβnsHn(Φ)(s)ds − e−βnt

∫ t

−∞

eβnsHn(Φ)(s)ds|

≤ (1 − e−βnh)

∫ t

−∞

eβn(s−t)|Hn(Φ)(s)|ds +

∫ t+h

t

eβn(s−t−h)|Hn(Φ)(s)|ds.

Therefore,

lim
h→0+

|Gn(Φ)(t + h) −Gn(Φ)(t)| = 0, uniformly for t ∈ R.

The above result holds similarly for h < 0. Hence G(Φ) ∈ C(R,RN ). Moreover,
{G(Φ)|Φ ∈ CM (R,RN )} is uniformly equicontinuous.Next, by the assumption (A2)

of fn, if Φ, Ψ ∈ CM (R,RN ) then there exists a constant Lf (M) > 0 such that

|φnfn(Φ,Ψn̂
t ) − ψnfn(Ψ,Ψn̂

t )| ≤ Lf

N∑

n=1

‖φn − ψn‖.

Hence

|Gn(Φ)(t) −Gn(Ψ)(t)| ≤

∫ t

−∞

eβn(s−t)
(∣∣φnfn(Φ,Φn̂

t ) − ψnfn(Ψ,Ψn̂
t )

∣∣

+βn|φn − ψn| + |Ln[φn] − Ln[ψn]|
)
(s)ds

≤ (Lf + βf + 2
4∑

n=0

dn,i)(
N∑

n=1

‖φn − ψn‖)

∫ t

−∞

eβn(s−t)ds

≤ (Lf + βf + 2

4∑

n=0

dn,i)(

N∑

n=1

‖φn − ψn‖)/βn (23)

for all n = 1, · · · , N , where βf := max1≤n≤N βn. Since the right hand side of above
inequality is independent on t, this implies that for any ε > 0 there exists δ > 0
such that if ‖Φ − Ψ‖ < δ then

‖Gn(Φ) −Gn(Ψ)‖ < ε.
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Therefore the assertion of part (1) follows.(ii) By Lemma 2.3 and the properties of

upper and lower solutions, if t ∈ R \ {tn, t̂n}
N
n=1 then

φ−n (t) ≤ Gn([Φ+|φ−n ])(t) ≤ Gn(Φ−)(t) ≤ Gn([Φ−|φ+
n ])(t) ≤ φ+

n (t). (24)

Following the same arguments, we have Φ− ≤ G(Φ) ≤ Φ+ for any Φ ∈ Γ. Hence,
G is invariant on Γ.

The proof of compactness property for the iterations can be found in [23], so we
omit it. The proof is complete.

By Lemma 4.1, we obtain the following main results.

Main Theorem. Assume (A1)-(A3) and the same assumptions of Lemma 3.2
Then for any 0 < c < c∗, there exists traveling plane wave solutions of (4) and (5).

5. Applications. In this section we will apply the main theorem to show the exis-
tence of traveling plane wave solutions of the Lotka-Volterra N -species competition
systems on two-dimensional lattices with discrete diffusion and distributive time de-
lays. The dynamics of this competition model is governed by the following systems:

dun;i,j

dt
=Ln[un;i,j ]

+ un;i,j

(
rn − pnun;i,j −

N∑

m=1,m 6=n

sn,m

∫ 0

−τn

kn(s)um;i,j(t+ s)ds
)
,

(25)

for (i, j) ∈ Z
2, 1 ≤ n ≤ N , where Ln[un;i,j ](t) are defined as before in Section 1, rn

are the natural growth rates; pn account for self-regulation of each spicy; sn,m are
the competing rates; kn(s) ∈ C([−τn, 0], (0,∞)) are delay kernels and normalized
such that ∫ 0

−τn

kn(s)ds = 1, for n = 1, · · · , N.

The systems (25) model the interaction among various competing species, has been
studied extensively, and various sufficient conditions for the coexistence and extinc-
tion of the competing species are obtained, cf. [11, 22, 29, 36]. The coefficients
rn, pn, sn,m play a fundamental row in its asymptotic behavior. In particular, if
N = 2 and dn,i = 0 for all n and i, that is no diffusion term, Gopalsamy studied
the stability of the equilibrium of systems (25). For the ecological significance of
(25), one can refer to [14, 15] and the references cited therein.

To find a strictly positive stationary solution Φ⋆ = (φ⋆
1, · · · , φ

⋆
N ) of (25), we

should solve the following systems of linear algebraic equations.

0 = dn + rn − pnφ
⋆
n −

N∑

m=1,m 6=n

sn,mφ
⋆
m, (26)

where dn :=
∑4

i=1 dn,i − dn,0. Denote the matrices S, P and the vector r, d by

P = (pn,m) with pn,n = pn and pn,m = 0, if n 6= m;

S = (sn,m) with sn,n = 0, n,m = 1, · · · , N ;

r = (r1, · · · , rN )T and d = (d1, · · · , dN )T .

In matrix form, we have to solve a linear systems

(P + S)Φ⋆ = d + r. (27)
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It is obvious that the solution Φ⋆ exists and is unique if and only if P + S is
nonsingular. More additional conditions on the parameters should be imposed to
ensure the strictly positivity of Φ⋆. Hence we assume the following conditions hold
for systems (25).

(LV1) assume dn,3 ≥ dn,1 > 0, dn,4 ≥ dn,2 > 0 and dn + rn > 0 for all n;
(LV2) assume the matrix P+S is nonsingular, and there exists two constant vectors

L � K ≻ 0 such that

PK + SL � d + r � PL+ SK.

Next, let we check assumptions (A1)∼(A4). According the conditions (LV1)
and (LV2), conditions (A1)∼(A3) hold obviously. The following we illustrate some
specific examples which satisfy (A4).

Example. Assume N ≥ 2, rn = r, dn = d, r + d > 0, pn = 1 for n = 1, · · · , N ,
sn,m = α > 0 for all n 6= m and sn,n = 0 for all n. Let α be small enough, e.g.
(N − 1)α < 1, then there exists a unique positive equilibrium Φ⋆ = (φ⋆

1, · · · , φ
⋆
N )

with

φ⋆
n =

rn + dn

1 + (N − 1)α
, n = 1, · · · , N.

The condition (A4) is equivalent to

α
∑

m 6=n

εm < ε̂n <
εn

(N − 1)α
, n = 1, · · · , N.

Let us fix any numbers ε1, · · · , εN . If α is small enough then it is easy to see that
there exist positive numbers ε̂1, · · · , ε̂N satisfying the above conditions.

Therefore, we have the following results.

Theorem 5.1. Assume the systems (25) satisfies the assumptions (LV1)∼(LV2)
and (A4). Then there exists c∗ > 0 such that for any 0 < c < c∗, (25) has a
traveling plane wave solution satisfying the asymptotically boundary conditions (5).
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