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Abstract

In recent years, computer applications have increased in the computational complexity. The

speed requirement forces designers of general-purpose microprocessors to pay particular attention to

implement the floating point unit (FPU). A new floating-point division architecture that complies with

the IEEE 754-1985 standard is proposed in this paper. This architecture is based on the New

Svoboda-Tung (NST) division algorithm and radix-8 MROR (maximally redundant optimally recoded)

signed digit number system. In NST division, the dividend and divisor must be prescaled. For the

divider implementation, a signed digit adder with carry free characteristic is proposed for addition and

subtraction, and this adder can improve the cycle time significantly. A radix-8 MROR divider by

TSMC 0.25 �m technology is thus designed and simulated. The simulation results show that the

performance, hardware cost, and power consumption of the proposed divider is competitive to the

conventional SRT divider.

Key Words: New Svoboda-Tung Division, Floating-Point Division, Prescaling, Radix-8, Signed

Digit Number System

1. Introduction

For computer arithmetic division the most common

format found in modern computers is the IEEE 754-1985

standard for binary floating point arithmetic [1]. This

standard defines single and double precision formats.

Most implementations of the division operation are ba-

sed on digit-recurrence that one digit of the quotient is

produced per iteration. There are two main classes of al-

gorithms for digit-recurrence division, the SRT (Swee-

ney, Robertson, and Tocher) approach [2,3] and the ST

(Svoboda and Tung) approach [4,5].

A lot of efforts have been expended in improving the

design and implementation of SRT based dividers [6�

11]. SRT stands for the initials of Sweeney, Robertson,

and Tocher. They developed the algorithm independently

at approximately the same time. The SRT division proce-

dure iteratively employs the P-D plot [12] to determine

the next quotient digit and an adder is used to update the

partial remainder. The P-D plot approach is usually im-

plemented by table look-up. However, the table size in-

creases drastically with high radices. The Pentium FDIV

bug is the most famous story of the Intel microprocessor

bugs. It was caused by an error in a look-up table. Intel

decided to use the SRT algorithm that can generate two

quotient digits per clock cycle. The weakness is that the

SRT algorithm needs to store quotient digit derived from

a P-D plot. This look-up table was incorrectly entered

into the Pentium FPU. Many researchers have presented

several classes of SRT dividers that consider variations

of the P-D plot, but the complexity of the P-D plot makes

it difficultly to implement high-radix SRT dividers [13].

On the other hand, there are no P-D plot problems in

Svoboda-Tung algorithm. However, Svoboda-Tung pre-

sents several drawbacks:

(1) As the Svoboda-Tung division theorem accurately

points out, the radix should be greater than 4.

(2) Without compensation, the quotient digit may ex-
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ceed the radix base of the signed digit-set.

(3) Compared to the conventional high radix SRT divi-

sion, the Svoboda-Tung division needs prescaling.

In order to overcome the drawbacks of ST division,

in 1998, Montalvo et al. [14] presented the New Svo-

boda-Tung division algorithm, and it showed a way to

rectify the original defect in the NST algorithm. They de-

fine a new radix to avoid drawbacks (1) and (2) of the ST

division algorithm.

The iterative division can be implemented either us-

ing the NST approach that requires prescaling of the

operands or the SRT approach that does not require pre-

scaling. For NST the prescaling of dividend and divisor

is needed so as to transform the divisor range from [1,2)

to [1,1+�), where � is a fraction. In this work we summa-

rize a general systematic method to accomplish the pre-

scaling, and we also propose a hardware scheme such

that the timing complexity is constant regardless of the

bit length of the divisor. The delay of this prescaling ar-

chitecture is constant, i.e. O(1).

Based on [14], we propose a new radix-8 division by

the MROR (maximally redundant optimally recoded) al-

gorithm. Our division approach involves a simple recur-

rence with carry free addition and employs prescaling of

the operands. The input operands comply with the IEEE

754-1985 floating-point standard. The result of the ex-

periment shows that the performance of this divider is

competitive to a conventional SRT divider.

The rest of this paper is organized as follows: Sec-

tion 2 briefly reviews the digit recurrence. The New

Svoboda-Tung division algorithm is described in Sec-

tion 3. The prescaling scheme is described in Section 4.

Section 5 analyzes the detailed architecture of the pro-

posed NST radix-8 MROR divider. The comparison re-

sults of speed, area, and power dissipation are presented

in Section 6. Finally, we make a concluding remark in

Section 7.

2. Digit Recurrence Overview

The New Svoboda-Tung division takes its basis as

the most basic division expression. The basic recursive

division expression is as follows:

X = Q � Y + R

where X, Y, Q and R, represent the dividend, divisor,

quotient, and remainder, respectively. Division instruc-

tions are executed in most of today’s digital computers

via a digit-recurrence procedure. The time required for

the digital division is spent primarily in repeating exe-

cution of this recursive procedure. Dividend X and divi-

sor Y are normalized IEEE numbers with a range of 1 �

X, Y < 2. The recursive expression of the NST division

is defined as follows:

R(j+1) = b � R(j) � qj+1 � Y (1)

The simplest and most widely implemented class of di-

vision algorithms is digit recurrence. Digit recurrence

algorithms use subtractive methods to calculate quoti-

ents one digit in each iteration. Implementation of digit

recurrence algorithms is typically of low complexity. In

equation (1), R(j) is the current partial remainder; R(j+1)

is the next partial remainder; b is the radix; qj+1 is the

next quotient digit, and Y is the divisor. The dividend

(or initial partial reminder) is R(0). Without loss of gen-

erality, we assume that both the dividend R(0) and divi-

sor Y are fractions and so is the generated quotient Q,

Q = q0q1q2q3…qn-1qn (2)

The division procedure can be verified by applying the

recursive equality (1) repeatedly.

Iteration 1: For j = 0, R(1) = b � R(0) � q1 � Y

Iteration 2: For j = 1, R(2) = b � R(1) � q2 � Y

= b2 � R(0) � (b � q1 + q2)Y

……………………………

Iteration n: For j = n-1, R(n) = bn � R(0)

� (bn-1 � q1 +…+ b � qn-1 + qn) � Y

3. NST Division Algorithm

In NST, the signed digit-set D<b,�> = {��,…, �1, 0,

1,…, �} such that
b

b
2

1� � �� , where b is the radix, and

� is the maximum digit in the balanced signed digit-set

D<b,�>. It is used to represent the remainder R(j+1) and the

quotient Q. The conventional digit-set, D<b,�> = {0, 1,…,

�}, is used to represent the divisor Y.

In 1998, Montalvo [14] derived the range of divisor

186 Fun Ye et al.



Y in the NST algorithm and defined the range of divisor Y

as follows:

(3)

In equation (3), the strictest range is t = �, and � is a

positive integer. Hence, the range of divisor Y in the

NST algorithm becomes:

1 � Y < 1+�, (4)

where �
� �

	
�

�b t
, and � < �.

The NST algorithm is valid if and only if � < �.

Hence, if r1
j and r2

j have different signs, then r2
j must

meet the condition |r2
j| = � < �. If this condition does not

meet, r1
j and r2

j must be recoded as r1a
j and r2a

j respec-

tively to fulfill the following expression:

b � r1
j + r2

j = b � r1a
j + r2a

j

The recoded condition resolves into the following two

cases.

Case 1: if r1
j is positive but not zero, then r1a

j is set to

r1a
j = r1

j
� 1, and r2a

j = r2
j + b.

Case 2: if r1
j is negative but not zero, then r1a

j is set to

r1a
j = r1

j + 1, and r2a
j = r2

j
� b.

As mentioned above, the purpose of recoding the two

most significant digits of the residual is to ensure r0
j+1 =

0 [14].

In the NST algorithm, the range of the divisor Y is 1 �

Y < 1+�. However, in the IEEE 754 floating point stan-

dard, the range of the divisor Y is 1 � Y < 2. We need a

prescaling procedure to transform the divisor Y and divi-

dend R(0) in the NST division. In other words, the original

division defined by Xstd = Q � Ystd + R, where Xstd and Ystd

are IEEE 754 normalized significant, is replaced by the

equivalent division defined by K � Xstd = Q � (K � Ystd) +

K � R, where K, K � Ystd, and K � Xstd are the scaling fac-

tor, the scaled divisor Y, and the scaled dividend X, re-

spectively.

Montalvo classified the NST algorithm into four ca-

tegories: MRMR (Maximally Redundant Maximally

Recoded) algorithm, MROR (Maximally Redundant Op-

timally Recoded) algorithm, MRmr (Maximally Redun-

dant minimally recoded) algorithm, and mr (minimally

redundant) algorithm. The algorithms of the four catego-

ries are analyzed according to the possible digit-sets and

recoded conditions. According to the range of the nu-

merical values �, � and �, we summarize the four algo-

rithms in Table 1.

The NST division algorithm consists of two steps:

Firstly, the input operands of the dividend and the divisor

must be prescaled; secondly, the NST algorithm performs

division recursion with partial reminder and quotient se-

lection computation. In general, the basic procedure of the

NST division algorithm can be summarized as follows:

(1) Prescale input operands of dividend R(0) and divi-

sor Y such that1 1� 
 �
�

�
Y

b t

� �
.

(2) Select the most significant digit of the partial re-

mainder R(j) as the (j+1)th quotient digit.

(3) Execute digit-recurrence R(j+1) = b � R(j)
� qj+1 � Y.

(4) Recode partial reminder R(j+1).

(5) Repeat steps (2)~(4) till the division iteration is

complete.

4. Prescaling Scheme of the NST Division

In the NST algorithm, the range of divisor Y is de-

fined as 1 � Y < 1+�, where �
� �

�
	

�

�b
. After calculation

� is 1/14. Therefore, for a NST radix-8 division, we have

to define the range of the divisor for the input in between
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Table 1. � for the special algorithms [14]

� = �� � �
��b � �


Algorithm � � Radix-b Radix-2 Radix-4 Radix-8 Radix-16 Radix-32

MRMR b�1 0 1/b 1/2 1/4 1/80 1/16 1/32

MROR b�1 b/2�1 1/2(b�1) 1/2 1/6 1/14 1/30 1/62

MRmr b�1 b�2 1/b(b�1) 1/2 01/12 1/56 01/240 01/992

mr b/2 b/2�1 2/b
2

1/2 1/8 1/32 01/128 01/512



1 and 15/14, 1 � Y < 15/14. Since the IEEE 754 standard

specifies a normalized range for the operands to be 1 � X,

Y < 2, dividend X and divisor Y must be multiplied by a

scaling factor K, such that 1 � Y < 2 becomes 1 � Y � K <

1+�. The range of divisor Y is 1 � Y < 2, so the range of K

is 1/2 � K < 1.

The prescaling unit is to find K corresponding to

each segment of the divisor Y, and to multiply each K by

dividend X and divisor Y. The design procedure of the

prescaling unit is as follows:

(1) Set Y = 1+d and K = 1-e, where 0 < d < 1 and 0 < K

< 1/2. Because 1 � Y � K < 1+�, Y and K are substi-

tuted to find:

1 � (1�e) � (1+d) < 1+�. (5)

(2) Accumulate inequality (5) to obtain

(6)

To simplify the hardware of the prescaling unit, �, d,

and e in expression (5) can be replaced by the approxi-

mate values. These approximate values are comprised

by 2-h, where h is an integer. The following procedures

are used to find the values of d, e, and K in each range:

(a) Find the approximate value of �, �t, where �t = 2-s �

� and s = [log2(1/�)].

(b) Find ei and Ki by ei = i � �t/2 and Ki = 1 � i � 2-(s+1)

respectively, where 0 � i < 1/�t, in different seg-

ments.

(c) Use expression (6) and ei to find the range of di.

The value di found in procedure (c) must satisfy di = m �

2-p, where m and p are integers.

In the NST radix-8 division, the parameters in the

prescaling unit are listed as follows:

(a) � = b – 1 = 8 – 1 = 7

(b) � = (b/2) – 1 = 4 – 1 = 3

(c) 1 � Ys < 1+�

(d) �
� �

�
	

�

�
	

�

�
	

b

7 3

8 7
1 14/

(e) s = log2 (1/�) = log2 14 = log 14/log 2 = (log 2 + log

7)/log 2 = 3.8 � 4

(f) �t = 2-s = 2-4

According to 0 � i < 16 and Ki = 1 – i � 2-(s+1), we can

find Ki of different prescales. The scaling factors are

listed in Table 2, and the relationship of range Y, scaling

factor K, and transition point di is graphically shown in

Figure 1. The detailed architecture of our proposed pre-

scaling scheme is discussed in next section.

5. Architecture of the NST Radix-8 MROR

Divider

The proposed divider includes three sub circuits, pre-

scaling, iteration, and registers, as shown in Figure 2.

The digit set of the radix-8 MROR signed digit number

system is D<8,7> = {7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7}.

In order to represent a number in radix-8 signed digit for-

mat, it requires a sign bit and three magnitude bits, and

totally 4 bits are used to represent a digit. The interpreta-

tion of these digits is shown in Table 3. In NST division,

prescaling is to adjust the numerical values of the divi-

dend and the divisor. Only once the adjustment has been

executed that the dividend and the divisor correspond to

the input operands of NST, then the partial remainder

R(j+1) and the divisor Y in the recursive equation can be

selected correctly. Only after selecting the correct partial

remainder and divisor, the divider is able to do the opera-

tion in the iteration unit, R(j+1) = b � R(j) � qj+1 � Y.

A. Prescaling

Although the meaning of “prescale” is to multiply a

scaling factor K, in actual hardware we use an addition/

subtraction operation to replace the multiplication op-
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Table 2. K scaling factor for radix-8 numbers

Range of Y K K in binary

1 � Y < 17/16 1 1/2 + 1/2

17/16 � Y < 35/32 0.96875 1/2 + 1/2 - 1/32

32/35 � Y < 9/8 0.93750 1/2 + 1/4 + 1/8 + 1/16

9/8 � Y < 37/32 0.90625 1/2 + 1/4 + 1/8 + 1/32

37/32 � Y < 19/16 0.87500 1/2 + 1/4 + 1/8

19/16 � Y < 5/4 0.84375 1/2 + 1/4 + 1/8 - 1/32

5/4 � Y < 41/32 0.81250 1/2 + 1/4 + 1/16

41/32 � Y < 43/32 0.78125 1/2 + 1/4 + 1/32

43/32 � Y < 45/32 0.75000 1/2 + 1/4

45/32 � Y < 47/32 0.71875 1/2 + 1/4 - 1/32

47/32 � Y < 49/32 0.68750 1/2 + 1/8 + 1/16

49/32 � Y < 51/32 0.65625 1/2 + 1/8 + 1/32

51/32 � Y < 27/16 0.62500 1/2 + 1/8

27/16 � Y < 57/32 0.59375 1/2 + 1/16 + 1/32

57/32 � Y < 15/8 0.56250 1/2 + 1/16

15/8 � Y < 2 0.53125 1/2 + 1/32



eration. It is to facilitate the addition/subtraction opera-

tion to arrange the scaling factor K into various combina-

tions of 2n in the previous calculation. According to Ta-

ble 2, Y is divided into 16 intervals, and each interval has

the related scaling factor K. The first five most signifi-

cant bits of the divisor Y can decide the interval location

of the divisor Y and the details are shown in Table 4. In

other words it decides the range of the input through

Y(n-1)~Y(n-5), and then decides the scaling factor K, and

finally conducts addition and subtraction operations on

the data selected by the multiplexer. The prescaling ar-

chitecture of the prescaling block is shown in Figure 3.

B. Iteration

The iteration unit must satisfy the recurrence R(j+1)

= b � R(j) � r1a
j � Y. The iteration unit is composed of
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Figure 2. The operation flow of the proposed divider.

Table 3. The conversion table of Radix-8 MROR digit set

Digit number Binary coding

7 0111

6 0110

5 0101

4 0100

3 0011

2 0010

1 0001

0 0000

7 1001

6 1010

5 1011

4 1100

3 1101

2 1110

1 1111

Figure 1. The relationship of range Y, factor K, and transition point di.



recoded unit, shifter unit, compensation unit, signed

digit adder, and quotient converter as shown in Figure

4. We can use an on-the-fly converter to convert the re-

dundant quotient to binary form [14]. The detailed de-

scription of the various units is described in the fol-

lowing subsections.

C. Recoded Unit

The recoded unit can be implemented through sim-

ple logic circuits, and the design process is aimed to find
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Table 4. Deciding table for the divisor Y intervals

b-1b-2b-3b-4b-5

2
-1

2
-2

2
-3

2
-4

2
-5

Range of Y Transition point di di value di in binary

1 � Y < 17/16 0 � d0 � 1/16 d0 = 1/16 00010

17/16 � Y < 35/32 1/31 � d1 � 3/31 d1 = 3/32 00011

32/35 � Y < 9/8 1/15 � d2 � 2/15 d2 = 1/8 00100

9/8 � Y < 37/32 3/29 � d3 � 5/29 d3 = 5/32 00101

37/32 � Y < 19/16 1/7 � d4 � 3/14 d4 = 3/16 00111

19/16 � Y < 5/4 5/27 � d5 � 7/27 d5 = 8/32 01000

5/4 � Y < 41/32 3/13 � d6 � 4/13 d6 = 9/32 01001

41/32 � Y < 43/32 7/25 � d7 � 9/25 d7 = 11/32 01011

43/32 � Y < 45/32 1/3 � d8 � 5/12 d8 = 13/32 01101

45/32 � Y < 47/32 9/23 � d9 � 11/23 d9 = 15/32 01111

47/32 � Y < 49/32 5/11 � d10 � 6/11 d10 = 17/32 10001

49/32 � Y < 51/32 11/21 � d11 � 13/21 d11 = 19/32 10011

51/32 � Y < 27/16 3/5 � d12 � 7/10 d12 = 11/16 10110

27/16 � Y < 57/32 13/19 � d13 � 15/19 d13 = 25/321 11001

57/32 � Y < 15/81 7/9 � d14 � 8/9 d14 = 7/8 11100

5/8 � Y < 2 15/17 � d15 � 1 d15 = 1 11111

Figure 3. Architecture of the prescaling block.



regularity in the recoded conditions. The logic diagram

of the recoded unit is shown in Figure 5.

D. Shifter Unit

This unit implements the b � R(j) operation of the re-

currence, and in a radix-8 system it is to implement 8 �

R(j). In the hardware implementation, it can simply be im-

plemented through the shifter circuit.

E. Compensation Unit

This unit mainly implements r1a
j � Y in the recur-

rence. This unit can be implemented by multiplexers.

F. Signed-Digit Adder

A new radix-8 MROR signed digit adder with carry

free characteristic is proposed in this work. Usually, in

conventional computers the addition is performed by

employing the carry propagation technique, which es-

sentially limits the computing speed. In order to elimi-

nate the carry propagation and thereby speed up the addi-

tion process, the carry out signal should be independent

of the carry in value. The logic diagram of the proposed

signed-digit adder is shown in Figure 6.

The truth table of the final sum is shown in Table 5.

Each sub circuit of the signed-digit adder described in

Figure 6 represents a logic function. This partitioning al-

lows the overall circuit to be easily expressed as follows:

carry1 = ( ), ,a bi s i s�

carrys1 = [( ) ] [ ], , , ,a b i a b ii s i s c i s i s c� � � � �2 2

� � � � � �[( ) ( )], , , ,a b i a b ii s i s c i s i s c2 2

its = [( ) ( )] [ ( )], , , ,a b i i i i a bi s i s s s s c i s i s� � � � � � �2 1 0 2

carrys2 = ( )i i i its ts s s� � �2 1 0

carry2 = ( ) ( )i i i i i i i its s s s ts s s s� � � � � � �2 1 0 2 1 0

	 � � � �( )i i i i carrysts s s s2 1 0 2

When performing the addition operation, the signed di-

git adder in [15], apart from generating the final sum,
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Figure 4. Architecture of the iteration block.

Figure 5. Recoded unit.

Figure 6. Signed-digit adder diagram.



also generates a control signal for the next level. The

logic circuit for this adder is composed of two parts: a

full-adder circuit and a sign and carry control circuit.

The number of logic gates needed by the full-adder cir-

cuit is 2 � (n+1)AFA, where AFA is the area of a full ad-

der. The second part, sign and carry control circuit,

needs 24 logic gates. Therefore, the adder unit needs a

total of 8 full adders and one sign and carry control cir-

cuit for the radix-8 number system. 8 full adders require

40 logic gates; the sign and carry control logic circuit

needs 24 gates, and totally 64 logic gates are needed to

comprise the adder unit in [15]. However, the proposed

signed-digit adder only needs 52 logic gates, and in

comparison with the area of the adder circuits in [15],

ours makes a reduction of about 1/4.

6. The Design and Simulation of a

Radix-8 Divider

Based on the proposed NST MROR radix-8 division

approach, a NST radix-8 divider was designed and si-

mulated by TSMC 1P4M 0.25 �m process. The perfor-

mance of the designed divider is summarized in Table 6.

A comparison of the computation time of several di-

vider designs is presented in [9]. The references do not

consider quotient conversion time, and therefore the fi-

nal quotient conversion time is ignored here. Table 7 is
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Table 5. Truth table of the final sum block

Ci-1,s = 0 Ci-1 = 1

tss ts2 ts1 ts0 Si,s Si,2 Si,1 Si,0 tss ts2 ts1 ts0 Si,s Si,2 Si,1 Si,0

1 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0

1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1

1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0

1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 1

1 1 1 0 1 1 1 1 0 1 0 1 0 1 1 0

1 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1

0 0 0 0 0 0 0 1

Ci-1,s = 1 Ci-1 = 1

tss ts2 ts1 ts0 Si,s Si,2 Si,1 Si,0 tss ts2 ts1 ts0 Si,s Si,2 Si,1 Si,0

1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0

1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1

1 1 0 0 1 0 1 1 0 0 1 1 0 0 1 0

1 1 0 1 1 1 0 0 0 1 0 0 0 0 1 1

1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0

1 1 1 1 1 1 1 0 0 1 1 0 0 1 0 1

0 0 0 0 1 1 1 1

Table 6. Characteristics of the designed divider

Process Technology TSMC 1P4M 0.25 �m

Voltage, Temperature 2.5 V, 25 �C

Single precision 22780.6Gate Count

Double precision 30987.3

Single precision 11Number of Cycles

Double precision 21

Single precision 6.01 nsCycle Time (ns)

Double precision 6.12 ns

Single precision 97.4Power Consumption

(mW) Double precision 138

Table 7. Speedup achieved by the proposed design over

other designs (Single precision)

Single precision

Design Radix Speedup

Proposed Divider 8 1

Prescaled NST MROR [17,29] 4 1.5

Prescaled NST MROR [9] 4 1.8

Regular [10] 4 2.1

Prescaled regular [18] 4 2.25

Prescaled over redundant (i) [19] 4 2.16

Prescaled over redundant (ii) [19] 4 2.05

Trade-off SRT [20] 4 1.5

Prescaled regular [21] 2 2.2

Regular (i) [22] 2 2.39

Regular (ii) [23] 2 2.7



the speedup comparison table among other single preci-

sion dividers. The performance of the proposed divider

is better than others. We also compare the operation time

of the proposed divider with other SRT dividers in the

double precision system, and the experimental result is

shown in Table 8. Gate count comparisons are shown is

Table 9. The power consumption comparisons are shown

in Table 10 for implementations of radixes 2, 4, 8, and

16, respectively.

7. Conclusion

A NST radix-8 divider complied with the IEEE 754-

1985 is presented in this paper. The main architecture of

this divider is composed of the prescaling scheme of the

dividend and divisor and the signed-digit adder. For pre-

scaling operation, we generate a table for K prescaling

factors and the prescaling can be easily implemented by

simply shifting and adding of the operands. For speed

and hardware cost consideration we propose a new

signed-digit adder. Compared to the conventional ap-

proach, the proposed signed-digit adder can save 1/4

hardware cost. The presented NST radix-8 divider is de-

signed both for single precision and double precision op-

erations by TSMC 1P4M 0.25 �m technology. The simu-

lation results indicate that our divider has the best opera-

tion speed in the single precision operation among the

SRT dividers, and good performance compared with other

SRT dividers in double precision operations. The power

consumption is competitive to other dividers.
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