
A Multi-Agent Distributed Scripting System for

COTS-Based Distributed Software Integration

Jim-Min Lin1*, Hongji Yang2, Guo-Ming Fang1, Che-Tai Lee1 and Wei-Tsong Lee3

1Department of Information Engineering and Computer Science, Feng Chia University,

Taichung, Taiwan 407, R.O.C.
2Software Technology Research Laboratory, De Montfort University,

Leicester, England
3Department of Electrical Engineering, Tamkang University,

Tamsui, Taiwan 251, R.O.C.

Abstract

This paper presents an approach to distributed commercial off-the-shelf (COTS) based software

integration by using the concepts of a multi-agent system and the distributed scripting mechanism.

COTS software products are increasingly used to be software components in large-scale systems. Most

organisations try to gain the promises of rapidly development and lower cost from reusing COTS

components. Nevertheless, COTS-based software system development needs an efficient and useful

integration approach. We developed a multi-agent system as an execution platform for distributed

COTS software products. Instead of an RPC-like invocation approach, we adopt mobile agents to

interoperate COTS software. We also developed a scripting mechanism for helping the software

integrator to write a gluer. By using our scripting language constructs and the associated rules, a

software integrator can easily write various scripts in various styles. To illustrate this multi-agent

system, a distributed CPU-utilisation data collection system, is experimented in our study. Finally, we

also successfully developed a graphical user interface tool that would be beneficial and useful for

software integrator to edit, debug and display script programs and results.

Key Words: Software Reuse, Distributed Software Integration, Multi-Agent Distributed Scripting

System (MADSS), Scripting Language, COTS

1. Introduction

The use of COTS software products in developing

software systems is on increase. We have noticed many

studies being carried out in COTS-based systems and

initial conclusions show that these systems do make the

cost of initial development lower and the promise of time

to market shorter. The most practical issue on COTS-

based software systems is integration of COTS compo-

nents [1�4,23,24]. Though COTS software components

can be sufficient building blocks, an effective mecha-

nism and useful technique for component integration are

still needed. Recently, it is realised that Scripting is a

useful tool for gluing existing software [5,6]. A scripting

language is different from programming languages like

C. A scripting language is typeless and provides a sim-

pler grammar, which enables an easy and quick inte-

gration code to assemble diverse software components.

Thus a useful scripting mechanism can be a means to

meet the requirements of efficient COTS software inte-

gration.

A scripting mechanism often consists of a scripting

language, an executing platform and a specification of

object model. For example, UNIX shell [5] is a popular

scripting language for a UNIX expert to write scripts to

glue pipes, which are the common components in UNIX.

Tamkang Journal of Science and Engineering, Vol. 10, No. 4, pp. 351�362 (2007) 351

*Corresponding author. E-mail: jimmy@fcu.edu.tw

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225196946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tcl/Tk [7] is another scripting example under UNIX to

develop X Windows applications. Similarly, Visual Ba-

sic scripting was proposed by Microsoft and is to serve

as a programming tool allowing a programmer put visual

components into a container and then transform it into a

Windows application. However the above instances are

based on a single centralised operation. Because soft-

ware development has moved towards a distributed com-

ponent environment, to facilitate a high-level task execu-

tion through scripting, it will be beneficial to extend a

scripting mechanism into a distributed and heteroge-

neous system, particularly the Internet environment.

There existed basic scripting mechanisms to develop

distributed software systems, especially for Internet ap-

plications. Microsoft ASP [5] selects VBScript or Java-

Script as scripting languages to glue distributed Active-

X, which is an object model commonly applied on Win-

dows applications. Nevertheless this technique is pro-

posed for Microsoft products and is not suitable for

COTS software integration. On the contrary, the existing

popular object frameworks, such as CORBA [8,25] and

Java RMI [9], support many general platforms but no

scripting language is available for this. GScript [10], an

academic research, is a scripting language that extended

from Microsoft Visual Basic, which tries to provide con-

venience and efficiency for Basic experts. Furthermore,

GScript can inherit lexical and grammar rules from Ba-

sic. The purpose of GScript is to integrate Microsoft

COM and CORBA objects into application logic. By

combining the properties of CORBA and COM, the

GScript research team has been trying to obtain two be-

nefits, cross-platform and event service support.

In this paper, a multi-agent based distributed script-

ing system (MADSS) is proposed to achieve distributed

software integration based on agent cooperation. In addi-

tion, MADSS provides a scripting language to software

engineers so that they can perform an application project

rapidly through the typeless and command-level script-

ing attributes [5,6]. In order to achieve the goal of dis-

tributed scripting, we adopt an agent-oriented scheme

for diverse software integration. An agent in our system

is a special software application, which has mental state

and flexible interactive abilities for other entities such as

human and other agents. Hence, an agent-oriented script-

ing system will bring at lease the following features:

� More intelligent abilities to deal with tasks � An

agent is an intelligent computational entity and has

deterministic autonomy. It can decide whether to

execute or to deny incoming requests according to

the conditions specified by its designers.

� Diverse software tool integration together with de-

signated high-level communications � An agent-

oriented system supports high-level communica-

tions as the gluers between diverse software since

an agent interacts with underlying environment by

using semantic messages. However, it is still nec-

essary to consider the lower level access to soft-

ware. Fortunately, there exist several well-design-

ed products, such as CORBA and Java Remote

Method Invocation (RMI), to support this. These

products are based on RPC-like communication to

build a client-server scheme.

� Load balancing � This is an inherent benefit from

agent properties. Since a multi-agent system em-

phasises cooperative computation, the working

loads can be easily distributed to various agents on

the network and load balance can thus be achie-

ved. For example, a server can deny an incoming

request and suggest other candidates for this re-

quest if this server is aware of its overloading.

Usually, the exception handling and fault toler-

ance processing of agents are the responsibilities

of clients.

To build such an MADSS, we adopt Java as the agent

programming language. Additionally, we use Know-

ledge Query and Manipulation Language (KQML) as

the agent communication language. One important fea-

ture of MADSS is to incorporate mobile agent techno-

logy. A mobile agent is a special software agent, which

can migrate in a distributed system. This added property

makes distributed scripting system higher flexibility, be-

cause a program can be migrated to a remote host and

execute locally [11�13,26,27]. Two advantages are ob-

tained by using mobile agents on software integration:

(a) a mobile agent can be platform-independent and thus

is suitable for integrating software on heterogeneous sys-

tems and (b) the network communication traffic can be

lowered if the size of messages between agents is greater

than a mobile agent and we can move this agent to a re-

mote site for execution.

The rest of this paper are organised as follows. Sec-

352 Jim-Min Lin et al.

tion 2 describes the design of MADSS, which will be

based on design considerations from viewpoints of sys-

tem level and user level. Section 3 will give a case study

as our demonstration and introduce a graphical tool whi-

ch supports software engineers to easily write scripts and

manipulate MADSS. Finally, we will conclude this re-

search and describe our future research in Section 4.

2. Design of MADSS

In this section, we describe the design of MADSS.

The purpose of MADSS is to demonstrate the feasibility

of integrating existing software tools on heterogeneous

platforms (Operating Systems (OSs)) through mobile

agents’cooperation. The experimental OSs can be Micro-

soft Windows and UNIX typed systems such as Linux

and FreeBSD because there exist many useful and popu-

lar software tools on these platforms. Two main works

should be completed in an MADSS: a multi-agent based

distributed software integration system and a scripting

language for a software engineer to write integration sc-

ript code. Hence in this section, we will firstly give an

overview of MADSS and then discuss the design consid-

erations from both the system point of view and the user

point of view. Based on the discussions, we will describe

how to integrate heterogeneous distributed software us-

ing an MADSS scripting language.

A client agent on the front-end platform is responsi-

ble for interacting with user and accepts user’s scripts.

Then, the client agent can generate one or more slave

mobile agents and delegate these slave agents the desig-

nated tasks. The execution scenario is based on the con-

trol-flow specified in a script and is performed through

the cooperation of multiple agents.

To implement MADSS, several design issues should

be considered from the viewpoints of system designers

and software integrators respectively. From the system

designer’s view, this should include two fundamental

tasks:

� Constructing a heterogeneous software inte-

gration system as the MADSS base. The soft-

ware integration support is the basic requirement

in designing MADSS. In MADSS, a wrapper tech-

nique is used to bridge various existing software

components to a common system integration plat-

form. The use of wrapper makes it easy to invoke/

trigger an integrated tool by using these tools’

command streams. By making the use of wrappers,

an off-the-shelf software product can thus be trans-

formed into software components and be easily ac-

cessed by MADSS clients. Consequently, diverse

software components can be integrated into an ap-

plication.

� Having a multi-agent system as the MADSS op-

erational environment. A multi-agent system is

the core of an MADSS. This multi-agent system is

in charge of providing an environment for the in-

teractions among software tools. Typically, we use

RPC-like communications between two software

entities. In MADSS, however, the integration among

software entities is through the software agents’

interactions in a speech-act manner [14,15].

On the other hand, from a software integrator’s view,

MADSS should provide a scripting language to a soft-

ware integrator such that he can easily write integration

code. The software integrator would like to find an effi-

cient way to glue these provided services together rap-

idly when he uses MADSS. Thus MADSS scripting

language supports the constructs to allow integrator to

write an execution scenario to manipulate several soft-

ware agents. These scenarios are to be application logic

of the integration code and each scenario specifies how

to manipulate COTS software products. Consequently, A

script can then be transformed into agent communication

language representations, i.e., KQML messages. Fur-

thermore, this distributed scripting language should also

provide statements for users to arrange their agents’ itin-

erary planning and data transfer scheme for performing

the delegated tasks.

2.1 Integration of Commercial Off-the-Shelf Soft-

ware Products

This subsection describes our solution to an essential

COTS-based software integration problem. We will de-

scribe a wrapper technique and then its applications to

integrating software on various platforms.

2.1.1 The State of the Art

The key solution to dealing with the COTS-based

software integration is to eliminate interface incompati-

bility. Two types of commonly used solutions are adap-

A Multi-Agent Distributed Scripting System for COTS-Based Distributed Software Integration 353

ter [16] and wrapper [16,28]. Adapter is a source-port-

ing technology, where e.g. a software component’s inter-

face can be converted into another interface expected to

a specific system framework. This solution is commonly

employed in middleware frameworks, such as CORBA,

DCOM and Java connector architectures. In this kind of

solutions, we assume that the COTS vendors might open

the APIs of adapter and a software integrator referring to

these APIs for writing the glue. In Java connector archi-

tecture [17], this kind of adapter is called the resource

adapter and a popular example is JDBC [18]. JDBC ma-

kes many database systems easily be integrated into a

Java application server. Therefore, a database system

could be regarded as a traditional COTS software pro-

duct and could be integrated into JDBC architecture.

Nevertheless, the limitation of requiring an open API,

like JDBC, shows that adapter may be not suited to

COTS-based software integration. Unfortunately, the

source code and APIs of almost COTS software products

and legacy software components are unavailable. If we

have to integrate a blackbox-like software building block,

wrapper might be a suitable solution.

In literature, wrappers are software modules that are

responsible for bridging individual information sources

modules to external users. Many wrappers are used to

convert data and queries from one model to another in

the database community. Recently, wrapper is regarded

as a module that can connect two software components.

In another words, we employ a wrapper to enclose COTS

software product and add an isolated and portable inter-

face. This technology makes COTS software product

portable to lots of platforms and could also be regarded

as a software component. In MADSS, we employ wrapper

technology as the essence of COTS-based integration.

Another essential technique on component-based

software integration is the scripting language. As a soft-

ware integrator writes a gluer, he may like to use a script-

ing language. ASP and JSP are two well-known exam-

ples in developing Internet applications. The results of

software industries show that ASP and JSP really have

increased Internet application productivity.

2.1.2 MADSS Wrapper

Wrapping is a common technique used in the re-

search of component-ware. The essence of the technique

is to use a “wrapper” program to cover around a compo-

nent. Then the primary control path between the wrap-

ped component and its “user” is wrapper. By using this

technology, we can wrap programs or software packages

with a standard interface. Then the wrapped software

package forms an object and can be executed under a

specific platform such as CORBA. Figure 2 depicts the

notion of MADSS wrapper.

In Figure 1, the wrapped component is a COTS-

based component, of which its computation unit is a

COTS product. A wrapper is an artificial module, con-

sisting of three sub-units � Middleware connector, Syn-

chronisation and Adapter. Adapter is responsible for

adapting the input/output interfaces of a component.

Adapter accepts the input command strings received us-

ing a COTS-based software component and then invokes

corresponding operations in the wrapped COTS prod-

ucts. Upon completion of the invoked operations, Adap-

ter will receive the results and reassemble them into the

forms appearing on the COTS-based software compo-

nent interface.

Many COTS software products were originally de-

signed for supporting a single-user operating mode. How-

ever, to allow a COTS-based software component to pro-

vide services for users on the Internet, a COTS-based

software component should support a multi-user opera-

tion environment. To deal with this problem, Synchro-

nisation (Figure 1) would be required to maintain data

consistency, fault tolerance and security checks for the

COTS software, so that many users can correctly operate

on an originally single-user application. Middleware

354 Jim-Min Lin et al.

Figure 1. Wrapping.

Connector might contain several component interface

modules, i.e., the connectors and invoke a suitable con-

nector depending on what middleware is installed. A

connector plays the role of a communication port to the

client sites.

2.1.3 Wrapping of Microsoft Windows Application

In the MADSS wrapper, implementing adapter unit

(as shown in Figure 1) is a complicated job. For different

operating systems, the adapters differ greatly. In this sub-

section, we are going to describe the Windows adapter.

An adapter accepts user requests and transforms

them into corresponding operations of the specific soft-

ware. Microsoft Windows products have similar input/

output operations. We adopt the clipboard provided by

Microsoft to intercept the external calls and direct them

into software products. The clipboard can be regarded as

a channel to let a program to access Microsoft Windows

applications. However, making black-box software ac-

cessible is the first step. The second step is to expose the

public functions on an added interface.

JNI technique, an interface written in Java, is used to

cope with the methods written in other programming lan-

guage like C++. Writing an RMI interface is not difficult,

but it is complicated to write an adapter. Fortunately, the

modules of MADSS adapter are reusable. Thus the com-

plexity of writing an adapter would be acceptable. We

have successfully reengineered MS-Windows software

packages into the COTS-based components executing

under various middleware [19�21].

2.1.4 Wrapping of UNIX Applications

The design of an adapter for a UNIX wrapper differs

from that of Windows wrappers. In this scheme, we ado-

pt the concept of a “sandwich adapter”. Figure 4 depicts

the structure of such a sandwich adapter.

The term, “sandwich”, means that there are three

parts in the structure, Front Cover, a Back Cover and a

UNIX Application. A Front Cover program and a Back

Cover program cooperatively wrap an existing UNIX

application. To achieve this, a UNIX pipe is employed to

send data/instruction streams that are needed to trigger

from Front Cover to a UNIX application.

The interaction among these units involves the fol-

lowing steps: the Adapter first accepts input messages

from client and then redirects them to Front Cover pro-

cess through a UNIX message queue. Front Cover pro-

cess will then send them to a UNIX application through a

pipe. After the UNIX application completes the requests

and outputs results, the results will be redirected to Back

Cover process through a pipe again. Finally the Adapter

gets results from Back Cover through the message queue.

By using a sandwich adapter, an off-the-shelf UNIX

component can be wrapped as an accessible software

component. A wrapped component can also be added a

designated object interface and be executed under a spe-

cific middleware such as CORBA, Java RMI and so on.

To form a “sandwich” structure, Back Cover should

firstly fork a child process and then the Back Cover con-

nects this newly created process’s file ‘1’ (i.e., stdout) to

the Back Cover process’s file ‘0’ (i.e., stdin). In the same

way, the child process forks a grandchild process and

then connects the grandchild’s stdout to its own stdin. Fi-

nally, the grandchild executes as Front Cover process and

child process uses exec() to execute a UNIX application.

To summarise our wrapping technique: firstly, in-

stead of putting the focus on the issues of selecting and

identifying a suitable COTS component, we focus on the

software integration; secondly, we have shown the de-

sign of wrappers for two popular operating systems (sim-

ilarly, the concept of wrapper can be applied to other

platforms); and finally, by providing different program-

matic interfaces, the wrapped applications can be exe-

cuted for clients under various middlewares.

2.2 Multi-Agent Support

The core of the proposed MADSS is a multi-agent

system. This multi-agent system is responsible for exe-

cuting scripts and providing an environment for the in-

teractions among diverse software tools in a network. It

consists of four kinds of software agents (see Figure 2).

There are three reasons for the proposal of combining the

concepts of an agent system with software integration.

Firstly, an agent’s mobility facilitates the integration of

distributed tools, because a mobile agent glues a soft-

ware tool with a remote one by bringing requests/results

around distributed tools. Secondly, multiple mobile agents

act like multithreads executing with diverse scenario sty-

les in a distributed system. This means MADSS can have

more kinds of behaviours than traditional distributed sc-

ripting mechanisms in which only few ones are sup-

ported. Thirdly, MADSS possess features of higher reli-

A Multi-Agent Distributed Scripting System for COTS-Based Distributed Software Integration 355

ability and load balancing. Since an agent can have the

ability of knowing environment situation, it can go to an-

other site with the same service as it encounters troubles

in site failure or site/service busy.

Next we focus on how to construct a multi-agent sys-

tem and how to execute scripts through the cooperation

of software agents.

Four kinds of software agents in MADSS are Service

agent, Client Agent, Slave Agent and Facilitator. The

services wrapped by off-the-shelf software tools were

maintained by a service agent. The execution scenario

written in MADSS scripting language is executed by the

Client Agent. Client Agent gets tasks from user script,

translating a script to the corresponding KQML mes-

sages and then delegates the tasks to the mobile Slave

Agent. Then Slave Agent can move to a remote site and

request service agent the desired services. In our design,

agents’ communications are based on the KQML proto-

col. An agent can talk to other agents to query the desired

knowledge including the public services wrapped from

existing software.

To implement a multi-agent platform, after examin-

ing several multi-agent products like IBM Aglet, Jackal,

etc., we adopted IBM’s Aglet as the target multi-agent

platform. We will introduce the agents and address how

to let Slave Agent access remote software.

(1) Service Agent

Service Agent is responsible for maintaining the in-

terfaces of wrapped software applications on a machine.

Whenever a newly wrapped software application is ada-

pted to the host’s service, Service Agent will advertise it

on the Facilitator Agent. The details of the facilitator will

be introduced later. During the execution phase, a mobile

slave agent will migrate to the Service Agent’s site and

communicate with Service Agent using KQML mes-

sages. A KQML message contains Salve Agent’s param-

eters and translates the parameters into corresponding

data type of the Service Agent. Service Agent has to ex-

tract the parameters/input streams from KQML message.

This is a document-based message passing process. When

the input streams were extracted, the Service Agent uses

typical method invocation technique to redirect these st-

reams and triggers the wrapped software application.

(2) Client Agent and Slave Agent

For an agent system design, Lange invented a useful

scheme to decompose a big task into several subtasks

performed by software agents. This scheme is a master-

slave pattern [22]. In this pattern, a stationary agent, mas-

ter, can delegate tasks to several mobile slave agents in

parallel. System performance will be the main advantage

as we apply this pattern. While slave agents migrate to re-

mote sites, the master agent can continue its operation.

In MADSS, Client Agent plays the role of the master

agent. It interacts directly with human users. Client agent

accepts user script and displays execution results by pro-

viding a user interface, for which users can input the sc-

ripts to arrange the controls of remote services. Client

agent is also designed as an interpreter. The scripts writ-

ten can be interpreted into a KQML message and the sla-

ve agent can carry this message to destination.

Slave Agent is used to request service agent. It inter-

acts with Service Agent by using KQML messages. To

migrate to a network environment, Client Agent provi-

des knowledge about itinerary to Slave Agent. More-

over, if Slave Agent has to carry any file, the file’s infor-

mation such as file’s name has to be included.

(3) Facilitator

To gain high scalability in a distributed system, it is

necessary to reduce the proliferating interconnections

among distributed components. To achieve this feature, the

agents in a multi-agent system must freely collaborate

without the direct knowledge of agent existence. To cope

with this design issue, a Facilitator program can be applied.

356 Jim-Min Lin et al.

Figure 2. Structure of MADSS.

In our work, Facilitator has the following basic

functions.

� Preserve the registered agent names.

� Assist an agent in looking for an appropriate help-

er agent.

� Assist an agent in delivering the message to the

correct destination.

In MADSS, a facilitator is assigned jobs to store and

maintain the services exposed from service agents. A

slave agent asks the facilitator for the public services ad-

vertised by a remote host. If this action is successful, a

slave agent can obtain necessary information, such as the

I/O type and the location of the remote host, for remote

execution. A slave agent can then move to the destina-

tion and does its jobs.

2.3 MADSS Scripting Language

The proposed MADSS scripting language is designed

by referring to KQML. Most of the constructs in MADSS

scripting language are used to describe agent’s opera-

tions. To write an MADSS script, a programmer should

give two kinds of contents: the type of agent execution

and the details of task delegation. The first part is regard-

ing to how to initiate a software agent and what the agent

should perform. Then the construct “execute” will initi-

ate an agent’s execution. Furthermore, if a job consists of

more than one agent and these agents should be executed

in parallel, the construct “pexecute” can be used. We will

introduce aforementioned constructs as follows:

� astart [agent_name] {task1, task2, …}

“astart” denotes the start of an agent. It specifies

which software agent will be initiated and what tasks this

agent will perform. “agent_name” indicates the agent’s

name and task indicates a software service that is made

by wrapping of-the-shelf software packages. After dele-

gating tasks, a mobile software agent can migrate to a re-

mote host and invoke desired services. A task stays in a

remote host and goes to a next one after the completion

of the invoked service. “astart” does not actually specify

the content of tasks. Another construct “delegate” was

given to specify the contents of a task. As the delegated

task has completed, “dispose” is given to kill a process-

ing agent. The two constructs will be introduced later.

� execute [agent_name] -parameter

An agent will start its execution by initiating con-

struct, “execute”. Agent-name denotes the executing

agent’s name.

� pexecute [agent1_name, agent2_name, …] -pa-

rameter

Like “execute”, “pexecute” indicates the execution

of an agent and it can be used to execute several mobile

agents in parallel. A big task can be subdivided into se-

veral sub-tasks and executed in parallel. Hence in MADSS,

a task can delegate several mobile agents by using “pe-

xecute”.

“execute” and “pexecute” have two parameters,

“now” and “schedule”. Two parameters specify the time

to execute.

� -now

Option now notifies a mobile agent to start its

task immediately.

� -schedule [time]

If we hope to schedule the execution of an agent,

this option is used to set the delay time. The de-

fault unit of the time is second.

In addition to above constructs, two constructs “dis-

pose” and “delegate” are adopted to specify the content of

a task. “dispose” is used to stop an agent’s execution. This

construct can be regarded as a specific task an agent has to

perform. Another construct, “delegate”, is used to define

the content of a task. This construct specifies which host

an agent should go and what services it should invoke.

“Delegate” provides several operational parameters de-

scribed as follows. The syntax structure of “delegate” is:

� delegate [-[option] value] …

the parameters may include:

� -d destination

Option d specifies the remote host’s address

where the delegated mobile agent migrates. “De-

legation” can be in form of either an IP address

or an Internet domain name.

� -n service agent name

Option n specifies the remote host’s name. Be-

cause of open environment, MADSS adopts name

register strategy. Moreover, we use KQML to be

ACL, each remote host maintain a service agent.

Service agent manages services and waits for

mobile agent’s requests. Whenever the mobile

agent arrives at the remote host, it has to interact

with a service agent by using KQML. KQML

A Multi-Agent Distributed Scripting System for COTS-Based Distributed Software Integration 357

encapsulates input data and service agent directs

data to invoke services.

� -s target services

Option s specifies the content of a task that the

mobile agent should perform. The service is

provided by a remote host and the integrator

does not need to know how this service was cre-

ated. This service exposed its interface on the

multi-agent environment. Thus the mobile agent

carries correct input data and interacts with this

service. Finally, mobile agent must carry the re-

sults back to the home host.

� -c message content

Option -c specifies the contents in KQML mes-

sages to a remote agent. It is actually the input’s

content. For example, if we would like to initi-

ate a mathematical function, “-c” might specify

a mathematic equation.

� -f file name

Option f specifies a file name that will be sent to

remote agent. For some occasions, the remote

service needs a large amount of data to be pro-

cessed. A mobile agent can carry a file with these

data to the remote host. The file’s name will be

translated into a parameter that is filled into a

field of KQML message.

� -r file name

Option r specifies a file name that delivers the

processing results to another agent.

� -t time to timeout

Option t specifies the time an agent will expire.

This option will enforce an agent to dispose if it

cannot finish the designated task in expire time.

We can easily show an instance to describe how to

use these constructs to form a script:

astart agentA {

delegate -d atp://stewart.iecs.fcu.edu.tw -n

Unix_agent -s UnixCommand -c who > result

-r $result1 -f null -t 240

delegate -d atp://home.iecs.fcu.edu.tw -n

clientAgent -s home

dispose

}

execute agentA -schedule 120

In this example, a mobile agent named agentA is ini-

tiated. The purpose of agentA is to gather the data of

logon-users in a remote UNIX machine by initiating a

service “UnixCommand” in a service agent “Unix_

agent”. To achieve this goal, a UNIX command, “who >

result”, is used. This command redirects the logon-user

list into a file “result”. After the completion of the desig-

nated task, agentA returns to its original site and invokes

“home” function to save result file in the client site.

This example shows an agent is delegated a simple

task with a linear and straightforward scenario. To com-

plete complicated tasks with agents, diverse execution

scenarios for mobile agents are desired.

Parallel execution is a basic and important execution

style in a distributed system. In this case, an MADSS

construct “pexecute” asks more than one mobile agents

to execute the corresponding tasks simultaneously on

different sites. As mobile agents complete their execu-

tion, they can return to home site and merge their execu-

tion results.

To write this type of script, the software engineer has

to delegate two or more slave agents. Each agent will get

its own job and move to its own destination. Thus the

structure of this type is similar to the following form:

astart SlaveAgentA {

delegate -d Target_Remote_SiteA -n Service-

AgentA -s ServiceA -c InputContent -f Input-

File -r ResultA

dispose

}

astart SlaveAgentB {

delegate -d Target_Remote_SiteB -n Service-

AgentB -s ServiceB -c InputContent -f Input-

File -r ResultB

dispose

}

… /* other slave agents’delegation */

pexecute SlaveAgentA, SlaveAgentB

3. Implementation

In this section, we are going to give an experimental

MADSS system, a distributed CPU-utilisation data col-

lection system, to demonstrate the feasibility of the pro-

posed concept. The example system is to gather CPU-

utilisation charts of several remote hosts by delegating a

mobile agent to remote sites and integrating a Microsoft

358 Jim-Min Lin et al.

Windows COTS software application, Hardware Man-

ager, on each host.

3.1 Experiment Environment

The experimental system is configured with 3 per-

sonal computers (equipped with Pentium 4 2.8G, 768MB

RAM and MS-Windows 2000 Professional Edition oper-

ating system) connected with an 100Mbps LAN.

3.2 An Example

In this experiment, a facilitator and a client agent re-

sided in the same machine and two service agents in-

stalled on the other two machines. Each service agent

maintained its own service that can capture the CPU-uti-

lisation data. In addition, one of the service agents main-

tains image processing service. In order to display the fi-

nal result, home agent (i.e., client agent) is responsible

for supporting displaying service.

At first, a script in the proposed script language con-

structs is developed as follows:

astart AgentA {

delegate -d atp://stewart.fcu.edu.tw -n Server-

Agent 1 -s CPU_Utility -c CPU_Utility1.jpg -t

120

delegate -d atp://galex.fcu.edu.tw -n Server-

Agent2 -s CPU_Utility -c CPU_Utility2.jpg -r

CPU_Utility2.jpg

delegate -d atp://stewart.fcu.edu.tw -n Server-

Agent1 -s PictureMerge -c CPU_Utility1,

CPU_Utility2,Result -r Result.jpg

delegate -d atp://home.fcu.edu.tw -n Client-

Agent -s ShowPic -c Result.jpg

dispose

}

execute AgentA -now

In this example, a slave agent firstly moves to a re-

mote site and inquires the information of CPU utility

rate. The results will be saved as “CPU_Utility1.jpg”.

Due to this service needs more time to execute, slave

agent keeps moving to a next site to request service. Af-

ter the execution of the second site completes and gener-

ates a file named “CPU_Utility2.jpg”, slave agent car-

ries this file back to the first site and requests service

“PictureMerge”. This service is to merge two charts into

a single image. Finally, slave agent carries this image file

back to the home site and displays it for users.

By executing this script, a client agent will firstly

translate a script into the corresponding task list, includ-

ing dispatch and KQML message. ‘Dispatch’ task type

includes information about itinerary and destination.

‘KQML message’s task type is carried by a slave agent

and is used to interact with service agents. A service

agent will invoke the corresponding COTS-based compo-

nent according to parameters.

In MADSS, we also implemented a graphical tool

using Java. This tool is invoked by a client agent. There

are two purposes for this tool: for providing a user graph-

ical interface for MADSS users and for debugging a

script.

The result of our experimental script shows a picture

for CPU-utilisation of two remote sites (Figure 3).

MADSS might have more useful applications for

system managers. For example, a system manager might

do routine system administration works, like system

A Multi-Agent Distributed Scripting System for COTS-Based Distributed Software Integration 359

Figure 3. MADSS result display � normal mode.

shutdown procedure, disk data backing up, user account

management and so on, for a cluster computer on a single

site through writing an MADSS script.

In the example, the execution of the multi-agent sc-

ripting system involves the delivery of the slave agent,

the communication among agents, and the operations of

several COTS software. The overall execution time in

the test environment was about 77.062 seconds. Most of

the time is taken to deliver the slave agent and operate

COTS software. The slave agent migrates among several

computers. During the execution, the slave agent bring-

ing the codes and pictures are delivered among the Aglet

mobile platforms through network. It took about 0.984

seconds. The CPU_Utility and PictureMerge services

involve the operations of the Task Manager and MS

Paint software. A service may consist of several opera-

tions. Some extra time delays may also be required to

support the synchronization and scheduling between the

operations. Therefore, the operations of COTS software

take larger proportion delay in the overall execution

time. It took about 76 seconds. The remaining time is

taken on the communication between the slave and

server agents.

4. Conclusion

In this paper, we proposed a new approach to design-

ing a COTS-based software system by using a multi-

agent based distributed scripting mechanism. The multi-

agent system is used as an operational platform for incor-

porating distributed COTS software components within

a software system. We proposed an MADSS script lan-

guage for software designers to guide mobile agents’ op-

erations and workflow. The results of an experimental

system show that the proposed idea would be useful

when a user wants to quickly build up a software system

by reusing COTS software tool. From our experience in

the given experimental system, a well-trained pro-

grammer could rapidly complete a simple CPU-Utilisa-

tion Gathering System in just three or less weeks.

In summary, four academic merits of this research

are concluded as follows:

� We firstly propose the idea to achieve the goal of

COTS software integration through the combina-

tion of a mobile agent system and a scripting

mechanism.

� In MADSS, the integration of COTS software

products is based on the relation among COTS

software function services. Such a high-level in-

tegration mechanism would be easier to use for

users.

� The software components in MADSS are loosely

coupled and highly reusable because MADSS sup-

ports software reuse for heterogeneous systems.

� The behaviours of agents are controlled by a sc-

ripting language.

In the next stage of perfecting MADSS, it is plan-

ned to enhance a mechanism for discovering the cor-

rect services advertised on the network, to handle the

problem of service’s ontology, to present the multi-

agent architecture through a formal design methodol-

ogy, such as UML and to enhance the proposed MADSS

script language with more diverse and useful control

flow styles.

Acknowledgement

This research was supported by National Science

Council under Grant NSC91-2213-E-035-024 and NSC

95-2221-E-035-076.

References

[1] Baker, Thomas G., “Lessons Learned Integrating COTS

into Systems,” Proceedings of 1st International Con-

ference on COTS-Based Software System (ICCBSS

2002), Orlando, FL, USA, pp. 21�30 (2002).

[2] Davis, L. and Rose Gamble, “Identifying Evolvability

for Integration,” Proceedings of 1st International Con-

ference on COTS-Based Software System (ICCBSS

2002), Orlando, FL, USA, pp. 65�75 (2002).

[3] Thomas Pfarr and Reis, James E., “The Integration of

COTS/GOTS within NASA’s HST Command and

Control System,” Proceedings of 1st International

Conference on COTS-Based Software System (ICCBSS

2002), Orlando, FL, USA, pp. 209�221 (2002).

[4] Egyed, A. and Balzer, R., “Unfriendly COTS integra-

tion – instrumentation and interfaces for improved

plugability,” Proceedings of 16th International Confer-

ence on Automated Software Engineering (ASE 2001),

360 Jim-Min Lin et al.

Nov., pp. 223�231 (2001).

[5] Ousterhout, John K., “Scripting: Higher Level Pro-

gramming for the 21st Century,” IEEE Computer, Vol.

31, pp. 23�30 (1998).

[6] Ousterhout, J., Additional Information for Scripting

White Paper, Sun Micro Systems, http://www.sunlabs.

com/people/john.ousterhout/scriptextra.html.

[7] Brent Welch, Ken Jones and Jeffery Hobbs, Practical

Programming in Tcl and Tk 4th Edition, Prentice Hall

PTR, ISBN 0-130-38560-3 (2003).

[8] CORBA Home Page, http://www.corba.org/.

[9] Java Home Page, http://java.sun.com/products/jdk/rmi/.

[10] Fu Yan, “GSCRIPT: A Script Language that Supports

both COM and CORBA,” Proceedings of the 4th In-

ternational Conference on High Performance Com-

puting in the Asia-Pacific Region, Vol. 1, pp. 558�

562 (2000).

[11] Stavros Papastavrou, George Samaras and Evaggelia

Pitoura, “Mobile Agents for World Wide Web Distrib-

uted Database Access,” IEEE Transactions on Know-

ledge and Data Engineering, Vol. 12, pp. 802�820

(2000).

[12] Paolo Bellavista, Antonio Corradi and Cesare Stefanelli,

“Mobile Agent Middleware for Mobile Computing,”

Computer, Vol. 34, pp. 73�81 (2001).

[13] Sabrina De Capitani di Vimercati, Alessandro Ferrero

and Massimo Lazzaroni, “Mobile Agents Technology

for Remote Measurements,” IEEE Transactions on In-

strumentation and Measurement, Vol. 55, pp. 1159�

1565 (2006).

[14] Jennings, Nicholas R. and Michael Wooldridge, “Agent-

Oriented Software Engineering,” Proceedings of the

9th European Workshop on MAAMAW (2000).

[15] Lin, J.-M., Hong, Z.-W. and Fang, G.-M., “MADSS: A

Multi-Agent Based Distributed Scripting System,” Pro-

ceedings of the 26th International Conference on Com-

puter Software and Applications (COMPSAC 2002),

pp. 578�583 (2002).

[16] Klaus Bergner Andreas Rausch, Mare Sihling and Al-

exander Vilbig, “Adaptation Strategies in Component-

ware,” Proceedings of Software Engineering Confer-

ence, Australian, pp. 87�95 (2000).

[17] Java Home Page, http://java.sun.com/j2ee/connector/.

[18] Java Home Page, http://java.sun.com/products/jdbc/.

[19] Lin, J.-M., Hong, Z.-W., Fang, G.-M., Jiau, Christine

H.-J. and Chu, Wiliam C., “Reengineering Windows

Software into Reusable CORBA Objects,” Journal of

Information and Software Technology, Vol. 46, pp.

403�413 (2004).

[20] Hong, Z.-W., Lin, J.-M., Jiau, Hewijin C., Fang, G.-M.

and Chiou, C. W., “Reengineering Windows-Based

Software Application into Reusable Components Us-

ing Pattern Language,” Journal of Information and

Software Technology, Vol. 48, pp. 619�629 (2006)

[21] Lin, J.-M., Hong, Z.-W., Fang, G.-M. and Lee, C.-T.,

“A Style for Integrating MS-Windows Software Ap-

plication to Client-Server Systems Using Java Tech-

nology,” Software Practice and Experience, Vol. 37

(2007) (To appear).

[22] Aridor, Y. and Lange, D., “Agent Design Patterns: Ele-

ments of Agent Application Design,” Proceedings of

2nd International Conference on Autonomous Agents

(Agent’98), ACM press, pp. 110�115 (1998).

[23] Jin, Dean and Cordy, James R., “A Service-Sharing

Methodology for Integrating COTS-Based Software

Systems,” Fifth International Conference on COTS-

Based Software Systems (ICCBSS), (2006).

[24] Sihem Ben Sassi, Lamia Labed Jilani and Henda Haj-

jami Ben Ghezala, “Towards a COTS-Based Develop-

ment Environment,” Fifth International Conference on

COTS-Based Software Systems (ICCBSS), (2006).

[25] Dionissis Vassilopoulos, Thomi Pilioura and Aphro-

dite Tsalgatidou, “Distributed Technologies CORBA,

Enterprise JavaBeans, Web Services: A Comparative

Presentation,” 14th Euromicro International Confer-

ence on Parallel, Distributed, and Network-Based

Processing (PDP’06), (2006).

[26] Wang, Z., Chen, Q., Gao, Chuanshan, “Implementing

Grid Computing Over Mobile Ad-Hoc Networks Ba-

sed on Mobile Agent,” Fifth International Conference

on Grid and Cooperative Computing Workshops

(GCCW’06), pp. 321�326 (2006).

[27] Ibrahim, Mohammed A. M., “Distributed Network

Management with Secured Mobile Agent Support,”

A Multi-Agent Distributed Scripting System for COTS-Based Distributed Software Integration 361

International Conference on Hybrid Information Tech-

nology (ICHIT’06), Vol. 1, pp. 244�251 (2006).

[28] Shin, Michael E. and Fernando Paniagua, “Self-Man-

agement of COTS Component-Based Systems Using

Wrappers,” 30th Annual International Computer Soft-

ware and Applications Conference (COMPSAC’06),

Vol. 2, pp. 33�36 (2006).

Manuscript Received: Nov. 29, 2006

Accepted: Feb. 5, 2007

362 Jim-Min Lin et al.

