
An Efficient VLSI Architecture for

Rivest-Shamir-Adleman Public-key Cryptosystem

Jen-Shiun Chiang*, Cheng-Chih Chien, Jian-Kao Chen and Hsin-Guo Chou

Department of Electrical Engineering

Tamkang University

Tamsui, Taiwan 251, R.O.C.

E-mail: chiang@ee.tku.edu.tw

Abstract

In this paper, a new efficient VLSI architecture to compute modular

exponentiation and modular multiplication for Rivest-Shamir-Adleman

(RSA) public-key cryptosystem is proposed. We modify the conventional

H-algorithm to find the modular exponentiation. By this modified H-algorithm,

the modular multiplication steps for n-bit numbers are reduced by 5n/18 times.

For the modular multiplication a modified L-algorithm (LSB first) is used. In

the architecture of the modified modular multiplication the iteration times

are only half of Montgomery’s algorithm and the H-algorithm. The proposed

architecture for the RSA public-key crypto-system has a data rate of 146 kb/s

for 512-b words with a 200-MHz clock rate.

Key Words: Data Security, H-algorithm, L-algorithm, Modular Exponen-

tiation, Modular Multiplication, Montgomery’s Algorithm, Pub-

lic-key Cryptosystem, RSA, VLSI

1. Introduction

In open network and communication systems, the se-

curity problems of electronic communication are severe.

Traditionally, the common algorithm (common key) is

used to improve the security problems. In the common

algorithm approach, the transmitter encrypts codes by a

secret key; the receiver uses the same (common) key to

decrypt the received data. However, a problem is con-

cerned: how to send the secret key between transmitter

and receiver. In 1978, Rivest, Shamir, and Adleman

(RSA) [1] proposed a public key cryptosystem to im-

prove the communication security problem. In the public

key cryptosystem, people use a public key to encrypt the

code and transmit the data to the receiver. The receiver

uses the private key to decrypt the received data. The

public key can be retrieved by anybody, but the private

key is held by the receiver only. By this arrangement,

people do not need to worry about the key transmission

problem, and thus can improve the communication secu-

rity significantly. The public key cryptosystem uses a

mathematical theory to map data in one way direction,

f(X): X � Y, and makes the inverse transform f �1(Y); Y

� X to be very difficult. The RSA cryptosystem [1] uses

Euler and Fermat theorem [15]; its security is based on

the decomposition of a number, N, that is the multiplica-

tion product of two distinct prime numbers. It is known

that a large number is very difficult to decompose. For

applications, the RSA cryptosystem cannot only be ap-

plied to electronic data communication, but also for elec-

tronic signature [1].

The safety of the RSA cryptosystem depends on the

length of the key, usually the longer the key the more

safety the data. Generally we need at least a 512-bit key.

The processing of the key is composed of many modulo

multiplication, modulo addition, and modulo exponentiation

Tamkang Journal of Science and Engineering, Vol. 7, No 4, pp. 241�250 (2004) 241

*Corresponding author

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225196942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


operations. The RSA cryptosystem is briefly described

as follows:

Let p and q be two distinct large random primes and a

number N; denote

N = p × q

Let us choose a large random number d > 1 such that

gcd[(p � 1)(q � 1), d] = 1,

and compute the number e, 1 < e < (p � 1)(q � 1),

e × d � 1 (mod(p � 1)(q � 1),

The numbers N, e, and d are called modulus, encryp-

tion, and decryption exponent respectively. The num-

bers N and e constitute the public encryption key, and p,

q, (p � 1)(q � 1) and d form the secret trapdoor. To en-

crypt and decrypt, the input text is first encoded to a

number and is divided into blocks of suitable size. The

blocks are then processed separately as follows:

C = Me (mod N) (1)

M = Cd (mod N) (2)

C and M are referred to as ciphertext and plaintext

blocks, respectively.

Equations (1) and (2) are in modular exponentiation

operation and are the most critical operation in RSA.

Therefore, how to increase the speed of the modular ex-

ponentiation is the main task for the RSA public-key

cryptosystem. Basically the modular exponentiation

needs modular multiplication. The modular multiplica-

tion is accomplished by addition and shift operations.

Since the numbers that we deal with are large numbers (�

512 bits), it is much different from the traditional number

multiplication. In RSA we need modular multiplication

and modular exponentiation, therefore, after the multi-

plication the modulus adjustment has to be operated, and

that makes the calculation even more difficult than the

calculation of normal numbers. The modulus adjustment

is usually accomplished by range comparison. For real

time operation, we have to use special methods to calcu-

late the modular multiplication and exponentiation [16].

To reduce the time complexity for comparison, a modu-

lar multiplication algorithm based on Montgomery’s

modular arithmetic [17] was proposed by Eldridge [7].

The Montgomery’s algorithm is very suitable for systolic

array architecture [4,5,8,18]. Although the systolic array

has the characteristic of regularity in the VLSI layout, the

hardware cost is high [11,12,13]. Another approaches

are H-algorithm (MSB first) [2,5,10] and L-algorithm

(LSB first) [10]. These two algorithms are the basic algo-

rithms for modular multiplication. Although the speed is

slower than Montgomery’s algorithm, the hardware cost

is lower than the Montgomery’s algorithm. In this paper,

we modify the L-algorithm to calculate the modular mul-

tiplication [19]. The modified L-algorithm can increase

the calculation speed twice faster than the conventional

L-algorithm, and the hardware cost is almost the same.

Montgomery’s algorithm, H-algorithm, and L-algorithm

are usually applied to calculate the modular exponentia-

tion. Like the modular multiplication, Montgomery’s

algorithm for calculating modular exponentiation takes

more hardware. Here we use a modified H-algorithm

[19] to calculate the modular exponentiation. For an

n-bit number, this approach can reduce 5n/18 iteration

times.

In the hardware design of this RSA cryptosystem,

adders are massively used. To avoid unnecessary carry

propagation, addition can be accomplished by the re-

dundant binary adders [2] or carry save adders [3�6].

However, the adder cell of the redundant binary adder is

very complicated, and we use carry save adder for this

design. In the shift operation, there are two approaches,

left shift (multiply by 2) [2,5,6] and right shift (divide

by 2) [3,4]. In this paper, we use the left shift approach.

The modular operation can be finished by comparators

or by checking the overflow of the adder [5,6]. The for-

mer approach needs more hardware and the speed is

slower. The latter approach needs less hardware and the

speed is faster. Therefore, we use the latter approach to

implement the modular operations. In order to reduce

the hardware cost, the calculating data (message) of our

design are divided into four segments, and each time

only one segment is operated. The time to calculate a

modular exponentiation is 2.65n2 clock cycles. By the

proposed approaches we designed a RSA processor; the

data rate is about 146 kb/s for 512-b words with 200-

MHz clock frequency.

This paper is organized as follows. In Section 2, the

modified modular exponentiation algorithm is described.

The modified modular multiplication algorithm is de-

scribed in Section 3. The modular operation is shown in

Section 4. The hardware design of the RSA cryptosystem

and the simulation results are explained in Section 5.

Finally we give the conclusion in Section 6.

242 Jen-Shiun Chiang et al.



2. Modified Modular Exponentiation

Algorithm

Repeating squaring and multiplying are the basic

arithmetic operations for computing modular exponen-

tiation. To compute C = Me (mod N), the conventional

H-algorithm operates as follows [10]:

// The H-algorithm (MSB first)

// Me (mod N);

P0 = 1;

for (i = n � 1; i > = 0; i � -){

Mn�i = P2
n�i�1 (mod N)

if (ei == 1)

Pn�i = Mn�i × M (mod N);

else Pn�i = Mn�i }

where e = [en�1, en�2, …e1, e0]2 is the encryption key, and Pi

is the partial product. In the modular operation, ‘1’ needs

two iteration steps in e[]. In the worst case, we need 2n

steps to compute the exponentiation. In order to reduce

the iteration times, we partition the encryption key e[]

into several segments, and each segment consists of four

bits; e[i] denotes the ith segment of e[]. Observing the bit

patterns of the 4-bit segment, we find some rule to reduce

the iteration times. For example, when e[i] = 0000, the

computation of M e (mod N) in the H-algorithm needs

squaring four times of M, and e[i] = 0001, the computa-

tion of M e (mod N) in the H-algorithm needs squaring

three times and the 1 may be combined with next seg-

ment. Generally there need five iteration times at most in

each segment. Whereas e[i] = 0111, the operation needs

seven iteration times with the traditional H-algorithm.

By bit patterns of this 4-bit segment, the computation se-

quences of C = M e (mod N) within this 4-bit segment can

be summarized in Table 1.

Let us describe the notation and operation of Table

1. Suppose X denotes the partial exponentiation of M e

(mod N) in the H-algorithm of the modular ex-

ponentiation. In Table 1, 010 means X 2 (mod N); 001

means X × M (mod N); 011 means X × M 3 (mod N); 101

means X × M 5 (mod N); 111 means X × M 7 (mod N). In

the hardware implementation, we can pre-calculate M1

= M (mod N), M3 = M3 (mod N), M5 = M 5 (mod N), and

M7 = M 7 (mod N), and store these three n-bit numbers

to tables.

Let us take an example to describe the rules. Suppose

three 24-bit numbers N, M, and e are given as follows:

N = 6012707 = 5bbf2316 = (0101 1011 1011 1111

0010 00112);

M = 5234673 = 4fdff116 = (0110 1111 1101 1111 1111

00012);

e = 3674911 = 38131f16 = (0011 1000 0001 0011 0001

11112).

By our modified H-algorithm, e is partitioned into six

4-bit segments, and they are e[5] = 0011, e[4] = 1000,

e[3] = 0001, e[2] = 0011, e[1] = 0001, and e[0] = 1111

respectively. e[5] = 0011, therefore initially P5 = M 3

(mod N). Then we proceed to next segment, e[4]. Since

e[4] = 1000, from Table 1, we can find the sequences of

operation are square, multiply by M, square, square, and

square, i.e.,

P4 = [[[[P5
2 (mod N)]� M (mod N)]2 (mod N)]2 (mod

N)]2 (mod N).

Next the procedure proceeds to e[3]. Since e[3] = 0001.

Table 1 shows that the sequences are square, square,

and square respectively. The LSB of e[3] is combined

with next segment. Here we find the partial exponen-

tiation as follows:

P3 = [[P4
2 (mod N)]2 (mod N)]2 (mod N).

Since the LSB of e[3] is combined with e[2]; the se-

quences of e[2] are square, multiply by M, square,

square, square, square, and multiply by M3 respectively.

The partial exponentiation is as follows:

P2 = [[[[P3
2 (mod N)]2 (mod N)]2 (mod N)]2 (mod N)

�M 3 (mod N).

An Efficient VLSI Architecture for Rivest-Shamir-Adleman Public-key Cryptosystem 243

Table 1. The encryption key table

0000 010 010 010 010

0001 010 010 010

0010 010 010

0011 010 010 010 010 011

0100 010 010 001 010 010

0101 010 010 010 010 101

0110 010 010 010 011 010

0111 010 010 010 010 111

1000 010 001 010 010 010

1001 010 001 010 010

1010 010 010 010 101 010

1011 010 010 010 101

1100 010 010 011 010 010

1101 010 010 011 010

1110 010 010 010 111 010

1111 010 010 010 111



The next procedure proceeds to e[1]. The LSB of e[1]

will be combined with e[0], and the rest of the se-

quences of e[1] are square, square, and square respec-

tively. The partial exponentiation is as follows:

P1 = [[P2
2 (mod N) ]2 (mod N)]2 (mod N).

Then the next procedure is e[0]. The first two MSB’s of

e[0] are combined with the LSB of e[1], and the se-

quences are square, square, square, and multiply by M7.

The partial exponentiation is as follows:

P0 = [[P1
2 (mod N)]2 (mod N) ]2 (mod N) �M7 (mod N)

The sequences of the final procedural are square,

square, and multiply by M3. The final exponentiation is:

Pf = [P0
2 (mod N)]2 (mod N) �M3 (mod N)

By the above description, the sequences of the exponen-

tiation are:

3 2 1 2 2 2 2 2 2 2 1 2 2 2 2 3 2 2 2 2 2 2 7 2 2 37.

Where ‘1’ means multiplying M1 to the partial exponen-

tiation; ‘2’ means square of partial exponentiation; ‘3’

means multiplying M3 to the partial exponentiation; ‘7’

means multiplying M7 to the partial exponentiation. The

sequences are shown in Table 2, and the results are

shown in Table 3.

By the above arrangement, [111] can reduce 2 itera-

tion times, and [011] and [101] can reduce 1 iteration

time. In the worst case, the iteration times of the modu-

lar multiplication of this approach are 4n/3, and the

multiplication average times are 11n/9. Compared to

the conventional H-algorithm (worst case = 2n, average

= 3n/2), our approach reduces the multiplication times

significantly.

3. Modified Modular Multiplication

Algorithm

In the modular multiplication, the Montgomery’s al-

gorithm [3,4] or the H-algorithm [2,5] is applied widely.

However, they have their drawbacks in the proposed ar-

chitectures [11,12,13]. Here we would like to use a modi-

fied L-algorithm (LSB first) to find the modular multipli-

cation. The conventional L-algorithm [10] is described

as follows.

// L�algorithm (LSB first)

// A × B (mod N);

P0 = 0, M0 = A;

for (i = 0; i < = n � 1; i + +){

if (bi == 1)

Pi+1 = Pi + Mi (mod N);

else

Pi+1 = Pi;

Mi+1 = Mi << 1 (mod N); }

Where Pi is the partial product, and B = [bn�1,bn-2,….,

b1,b0]2. The L-algorithm calculates the modular multi-

plication by checking the multiplier, B, from the LSB

bit by bit toward the MSB. By this approach, an n�bit

number needs n iteration times. We modify the L-algo-

rithm by scanning two bits a time instead of one bit from

LSB toward MSB of the multiplier B. Therefore; the it-

eration times can be reduced to only half of the tradi-

tional L-algorithm (the upper bound is �n/2�). The modi-

fied L-algorithm is described as follows.

// Modified L-algorithm

// A × B (mod N);

P0 = 0, M0 = A, s = 0, c = 0;

for (i = 0; i < = � n/2 � ; i + +){

s = b2i+1× 2 + b2i + c, c = � s/4 �;
switch(s[1:0]){

case 3:

c = c + 1;

Pi+1 = (Pi + (�Mi)) (mod N);

Mi+1 = (Mi × 4)(mod N);

case 2:

Mi+1 = (Mi × 2) (mod N);

244 Jen-Shiun Chiang et al.

Table 2. Sequences of the partial exponentiation

e[5] e[4] e[3] e[2] e[1] e[0]

P5 0011 1000 0001 0011 0001 11112 3

P4 0011 1000 0001 0011 0001 11112 2 1 2 2 2

P3 0011 1000 0001 0011 0001 11112 2 2 2

P2 0011 1000 0001 0011 0001 11112 2 1 2 2 2 2 3

P1 0011 1000 0001 0011 0001 11112 2 2 2

P0 0011 1000 0001 0011 0001 11112 2 2 2 7

Pf 0011 1000 0001 0011 0001 11112 2 2 3

Table 3. Results of C = Me (mod N), with N = 5bbf2316, M = 4fdff116,

and e = 38131f16

M1 17ccd216

M3 37660c16

M5 5d68216

M7 2a1d8c 16



Pi+1 = (Pi + Mi+1) (mod N);

Mi+1 = (Mi+1 × 2) (mod N);

case 1:

Pi+1 = (Pi + Mi) (mod N);

Mi+1 = (Mi × 4) (mod N);

case 0:

Pi+1 = Pi;

Mi+1 = (Mi × 4) (mod N);

} }

Table 4 lists the clock cycles that are needed to per-

form the modular multiplication of n-bit numbers with

different algorithms.

4. Modular Operation

In order to increase the speed of the modular opera-

tion, carry save adders are used in this RSA processor. In

the hardware point of view, if the sum of the addition over-

flows, the modulus adjustment has to be proceeded. Oth-

erwise, no modulus adjustment needs to be done. There

are four cases of sums may cause overflow, and they are

2n, 2 × 2n, 3 × 2n and 4 × 2n respectively. These four num-

bers can be precalculated and let us denote these four

numbers as k1, k2, k3 and k4 respectively, and they are:

k1 � 2n(mod N),

k2 � 2n+1(mod N),

k3 � 3 × 2n(mod N),

k4 � 2n+2(mod N).

The overflow can be determined by checking C(S)n+1,

Cn, and Sn of the carry save adder and the values are

shown in Table 5. If overflow occurs, k1, k2, k3 or k4 has

to be added to the sum to finish the modulus compensa-

tion.

By the overflow checking method, it is very easy to im-

plement modulo operations, and the speed can be in-

creased.

In the modular exponentiation and multiplication,

(–Mi) (mod N) is needed in our modified L-algorithm.

For simplicity we do not deal with negative numbers in

the modular operation. Mathematically the value of

(–Mi) (mod N) can be calculated by adding a number of

multiples of N to –Mi and make it to be positive. The

range of Mi is as follows:

0 < Mi = CMi + SMi < 2 × 2n + 2n = 3 × 2n

When there is an overflow, i.e. c = 1, we have to add a

number k6 in the range of 3 × 2n < k6 < 4 × 2n, that is mul-

tiple of N. Therefore, the range of (k6 � Mi) can be found

as follows:

2n
� Mi < 3 × 2n

�3 × 2n < �Mi � �2n (3)

0 < k6 � Mi < 3 × 2n

On the other hand, if there is no overflow, i.e. c = 0, we

can add number k5 in the range of 2 × 2n < k5 < 3 × 2n,

which is multiple of N to the sum, and the range of (k5 �

Mi�1) can be found as follows:

0 < Mi < 2 × 2n

�2n+1 < �Mi < 0 (4)

0 < k5 � Mi < 3 × 2n

Equations (3) and (4) are within the range of the carry

save adder, and therefore these two numbers, (k6 � Mi)

and (k5 � Mi), can be used in next step and no modular

adjustment is needed. Since N is known, the values of

k5 and k6 can be precalculated.

5. Hardware Design

The main operation of the modular multiplier is addi-

tion, and carry save adders are commonly used to avoid

unnecessary carry propagation delays [3�6]. In this mod-

ular multiplier, there are five units. The first unit is “Par-

tial Product Adder” to find the partial product; the second

unit is “Summand Generator” to generate the summand

An Efficient VLSI Architecture for Rivest-Shamir-Adleman Public-Key Cryptosystem 245

Table 4. Clock cycles needed for modular multiplication

Algorithm Each addition Each multiplication

Montgomery 2 3n *

H-algorithm 3 4n *

L-algorithm 3 3n

Ours 4 2n

*Include the addition for next multiplication.

Table 5. Overflow vs. k value

C(S)n+1 Cn Sn k

0 0 0 0

0 0 1 k1�2n(mod N)

0 1 0 k1�2n(mod N)

0 1 1 k2�2n+1(mod N)

1 0 0 k2�2n+1(mod N)

1 0 1 k3�3�2n(mod N)

1 1 0 k3�3�2n(mod N)

1 1 1 k4�2n+2(mod N)



for the partial product; the third unit is “Shift Register”;

the fourth unit is “Table”, and the last unit is “Control-

ler”. In order to reduce the hardware cost, the message is

partitioned into four segments in the RSA processor. For

an n-bit message there are n/4 bits in each stage, and we

need four clocks to finish each iteration of the modular

multiplication. In the modified L-algorithm as men-

tioned above, two bits are scanned each time, and this

2-bit number can decide 0, A, 2A or �A that will be added

to the partial product. These four cases are summarized

in Table 6. The details of the hardware units are illus-

trated in the following subsections.

5.1. Summand Generator (SG)

The block diagram of the Summand Generator (SG)

is shown in Figure 1. The inputs are k1 ~ k6, Carryin,

Sumin, and the control signal flag; the outputs are

A(Carry), A(Sum), �A(Carry), �A(Sum), 2A(Carry), and

2A (Sum). These outputs are applied to find the partial

product. There are three carry save adders in the SG, and

they are pipelined in four stages. According to Figure 1,

CSA2 tries to finish Carry2 + Sum2 = � (Carry1 +

Sum1)/2 � (mod N);

CSA4 tries to finish Carry4 + Sum4 = � (Carry3 +

Sum3)/2 � (mod N);

CSAB tries to finish Carryb + Sumb = � (�Carry1 +

�Sum1)/2 � (mod N).

By this arrangement, the cycle time of the SG is only

one delay of the FA.

5.2. Partial Product Adder (PPA)

The block diagram of the Partial Product Adder (PPA)

is shown in Figure 2. There are three steps to find the par-

tial product, and they are pipelined in four stages. We use

three n/4 - bit carry save adders in this unit. Carry save ad-

der CSAP1 finishes Pi+1 = Pi + SCarry; carry save adder

CSAP2 finishes Pi+1 = Pi + SCarry + SSum; carry save ad-

der CSAP3 finishes Pi+1 = Pi+1 (mod N).

246 Jen-Shiun Chiang et al.

Table 6. Summand factor

S Summand

00 0

01 A

10 2A

11 �A

Carry4

Carry3

Carry1

Carry2

CSA4 4A mod N CSA2 2A mod N

MUX

Carryin Sumin

CSAB -A mod N

add1add2 addb

A (Carry)

-A (Carry)

2A (Carry)

A (Sum)

-A (Sum)

2A (Sum)

flag

Sum4 Sum1

Sum2Sum3

Figure 1. Summand generator.



An Efficient VLSI Architecture for Rivest-Shamir-Adleman Public-Key Cryptosystem 247

Carryp4

Carryp3

Carryp1

Carryp2

CSAP3 P
i+1

mod N CSAP1 P
i
+ SCarry

MUX

0 0

CSAP2 P
i
+ SSum

flag

M
U

X

S
S

u
m

0

A(C)

2A(C)

-A(C)

0

A(S)

2A(S)

-A(S)

add3

S
C

arry

S
S

u
m

r

s

Sump4 Sump1

Sump3 Sump2

Figure 2. Partial product adder.

k6k5k4k3k2k1

M7M5M3M1

shc2shc3

shc1

MUX

Carrp4 Sump4 datain control

>> 2

shc4

shs3

shs1

shs2

shs4

Figure 3. Tables and shift register.



To compute the partial product in the correct range,

the summands of the final modular multiplication are set

to zero.

5.3. Table and Shift Register

Figure 3 shows the block diagram of Table and Shift

Register. The Table block stores precalculated values of

M1, M3, M5, M7, and k1 ~ k6. While Shift Register is

used to store B and put M1, M3, M5, M7, and k1 ~ k6 to

the Table. Where B is the initial output of the partial

product in each modular multiplication.

248 Jen-Shiun Chiang et al.

dataout(s)

datain

Table and Shift Register Controller

Partial Product Adder

Summand Generator

Figure 4. RSA processor.

Table 7. Features of our RSA chip

Design Tool Verilog-XL

Synthesis Tool Synopsys

Technology Cell Library Compass Standard Cell Library

Process Technology TSMC 0.6 �m 1P3M Process

Power Supply 5 V

Gate Counts (2 input NAND) 80550

Die Size 5304.0 �m � 5356.8 �m

I/O 20-bit parallel, synchronous

Baud Rate (512-bit) 146 kbits/s with 200 MHz (worst case)

Voltage 5 V

Power consumption N/A
Figure 5. VLSI Layout of the 512-bit RSA chip.

Table 8. Features of four RSA chips

Victor [20] NTT [21] Chen [22] This Chip

Clock Speed 25 MHz 40 MHz 50 MHz 200 MHz

Baud rate Per 512 bits 100 K 20 K 24.3 K 146 K

Clock Cycles Per512Bits Encryption 0.125 M 1 M 1.05 M 0.7 M

Technology 1 �m 0.5 �m 0.8 �m 0.6 �m

Bits Per Chip 512 1024 512 512

Gate Counts 75 K 105 K 78 K 80 K



5.4. RSA Processor

Figure 4 shows the architecture of the RSA processor.

We use Compass standard cell library (TSMC 0.6um

process) to design a 512-bit RSA processor. The design

is simulated by Compass ISM (input slope model) delay

model. The simulation results show that the critical path

delay is only 5ns, and the chip can operate up to 200-

MHz clock. The processor delivers a baud rate of 146

kbits/s in the worst case. The features of our RSA proces-

sor are shown in Table 7, and the features of four RSA

chips are shown in Table 8. Otherwise, Figure 5 shows

the layout of the RSA chip.

The comparisons of hardware requirement and time

complexity of the mentioned algorithms are listed in Ta-

bles 9 and 10 respectively. From the comparisons, the

hardware of our architecture is small; the speed is reason-

able, and the area�time product is very good.

6. Conclusion

We propose two methods to speed up the operation

for modular exponentiations and modular multiplica-

tion respectively. The modified H-algorithm for mod-

ular exponentiation reduces the number of modular

multiplication to 4n/3. The modified L-algorithm for

the modular multiplication reduces the operation times

to half of the original L-algorithm and Montgomery’s

algorithm. In order to reduce the hardware require-

ment, only n/4 bits are executed in each stage of the

proposed RSA processor. For the reduction of modular

operation, we use the idea of replacing the overflow

sum with the equivalent values that are precomputed,

and thus no comparison with the modulus (N) is

needed. Based on the algorithm, this RSA processor

can achieve high performance. The simulation results

show that the critical path delay is only 5ns. In the

worst case, the architecture takes 0.7 M clock cycles to

finish the modular exponentiation (512-bit modulus

and 512-bit exponent). The processor delivers a baud

rate of 146 kbits/s with 200-MHz clock frequency in

the worst case.

References

[1] Rivest, R. L., Shamir, A. and Adleman, L., “A Method

for Obtaining Digital Signatures and Public-key Crypto-

systems,” Com. of ACM, Vol. 21, pp. 120�126 (1978).

[2] Takagi, N. and Yajima, S., “Modular Multiplication

Hardware Algorithms with a Redundant Representa-

tion and Their Application to Rsa Cryptosystem”,

IEEE Trans. on Computers, Vol. 41, pp. 887�891 (1992).

[3] Wang, P. A., Tsai, W.-C. and Shung, C. B., “New VLSI

Architecture of RSA Public-key Cryptosystem,” IEEE

Int. Symp. on Circuits and Systems, Hong Kong, Vol. 3,

pp. 2040�2043 (1997).

[4] Chen, P.-S., Hwang, S.-A. and Wu, C.-W., “A Systolic

RSA Public Key Cryptosystem,” IEEE Int. Symp. on

Circuits and Systems, Atlanta, GA, U.S.A., Vol. 4, pp.

408�411 (1996).

[5] Jeong, Y.-J. and Burleson, W. P., “VLSI Array Algo-

rithm and Architectures for Rsa Modular Multiplica-

tion,” IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, Vol. 5, pp. 211�217 (1997).

[6] Sheu, J.-L., Shieh, M.-D., Wu, C.-H. and Sheu, M.-H.,

“A Pipelined Architecture of Fast Modular Multiplica-

tion for Rsa Cryptography,” IEEE Int. Symp. on Cir-

cuits and Systems, Monterey, CA, U.S.A., Vol. 2, pp.

121�124 (1998).

[7] Eldridge, S. E., “A Faster Modular Multiplication Al-

gorithm,” Int. J. Computer Math, Vol. 40, pp. 63�68

An Efficient VLSI Architecture for Rivest-Shamir-Adleman Public-Key Cryptosystem 249

Table 9. Hardware requirement for various architectures

Hardware Requirement

Authors Fas REGs MUXs RAM

[3] Wang I 2n 13n 10n 0

[3] Wang II 4n 26n 20n 0

[6] Sheu I 3.18n 10.24n 9n 0

[6] Sheu II 3.38n 13.88n 19.1n 0

[7] Eldridge 3n + A1* 16n 9n 0

[8] Wu 2n + A2* 12n 6n 512 � 512

[9] Juang 2n 14n 10n 10 � 512

Ours 1.5n 6.75n 4n 10 � 512

*A1 = n and A2 = log2(n + 1) represent the number of used half

adders.

Table 10. Time complexity for various architectures

Time Complexity

Authors Addition Comparison Cycle time

[3] Wang I 1.5n2 No FA

[3] Wang II n2 No FA

[6] Sheu I 2.4n2 Simple 2FA

[6] Sheu II 2.5n2 Simple FA

[7] Eldridge 4n2 Simple 2FA

[8] Wu 2n2 No FA

[9] Juang 6n2 Simple FA

Ours 2.67n2 Simple FA



(1991).

[8] Su, C.-Y. and Wu, C.-W., “A Practical VLSI Architec-

ture for Rsa Public-key Cryptosystem,” Proc. Sixth

VLSI Design/CAD Symp., Nan�Tou, Taiwan, pp.

273�276, (1995).

[9] Juang, Y.-J., Lee, E.-H. and Chen, C.-H., “A New Ar-

chitecture for Fast Modular Multiplication,” Int. Symp.

on VLSI Technology, System, and Application, pp.

357�360 (1989).

[10] Knuth, D. E., Seminumerical Algorithms, the Art of

Computer Programming, Vol. 2, 2nd Ed. Reading,

MA: Addison-Wesley, (1981).

[11] Yang, C., “IC Design of a High Speed RSA Processor,”

Master Thesis, Institute of Electronic, National Chiao

Tung University, Hsin-Chu, Taiwan, June (1996).

[12] Takagi, N., “A Radix-4 Modular Multiplication Hard-

ware Algorithm Efficient for Iterative Modular Multi-

plcations,” 10th IEEE Symp. on Computer Arithmetic,

Grenobal, France, pp. 35�42, (1991).

[13] Shand, M. and Vuillemin, J., “Fast Implementation of

RAS Cryptograph,” 11th IEEE Symp. on Computer

Arithmetic, Windsor, Ont., Canada, pp. 252�259, (1993).

[14] Kahn, D., The Codebreakers. NY, U.S.A., Macmillan,

(1967).

[15] Niven, I., Zuckerman, H. S. and Montgomery, H. L.,

An Introduction to the Theory of Numbers, Wiley, NY,

U.S.A., (1991).

[16] Orup, H., “Exponentiation, Modular Multiplication

and VLSI implementation of High-Speed RSA Crypto-

system,” PhD dissertation, Dept. Comput. Sci., Univ.

Aarhus, Arahus, Denmark (1995).

[17] Montgomery, P. L., “Modular Multiplication without

trial Division,” Math. Comput., Vol. 44, pp. 519�521

(1985).

[18] Su, C.-Y., Hwang, S.-A., Chen, P.-S. and Wu, C.-W.,

“An improved Montgomery’s Algorithm for High-

Speed RSA Public-Key Cryptosystem,” IEEE Trans.

on Very Large Scale Integration (VLSI) System, Vol. 7,

pp. 280�284 (1999).

[19] Chiang, J.-S. and Chen, J.-K., “An Efficient VLSI Ar-

chitecture for RSA Public-Key Cryptosystem,” IEEE

Int. Symp. on Circuits and Systems, Orlando, FL, U.S.A.,

Vol. 2, pp. 121�124 (1999).

[20] Ishii, S., Ohyama, K. and Yamanaka, K., “A Sig-

nal-chip RSA Processor Implemented in a 0.5 �m Rule

Gate Array” IEEE International ASIC conference and

Exhibit, pp. 433�436 (1994).

[21] Holger, Orup “A 100 K bits/s Signal Chip Modular

Exponentation Processor,” In HOT Chips VI, Sympo-

sium Record, pp. 53�59 (1994).

[22] Chen, P.-S., Hwang S.-A. and Wu, C.-W., “A Systolic

RSA Public Key Cryptosystem,” IEEE International

Symposium Circuits and Systems, Vol. 4, pp. 408�411

(1996).

Manuscript Received: Mar. 19, 2004

Accepted: Jun. 30, 2004

250 Jen-Shiun Chiang et al.


