

Tamkang Journal of Science and Engineering, Vol. 5, No. 1, pp. 35-48 (2002) 35

Improving the Self-Organizing Feature Map Algorithm Using an
Efficient Initialization Scheme

Mu-Chun Su1, Ta-Kang Liu2 and Hsiao-Te Chang2

1Department of Computer Science and Information Engineering

National Central University
Chung Li, Taiwan 320, R.O.C.

E-mail: muchun@csie.ncu.edu.tw
2Department of Electrical Engineering

Tamkang University
Tamsui, Taipei, Taiwan 251, R.O.C.

Abstract

It is often reported in the technique literature that the success of
the self-organizing feature map formation is critically dependent on
the initial weights and the selection of main parameters (i.e. the
learning-rate parameter and the neighborhood set) of the algorithm.
They usually have to be counteracted by the trial-and-error method;
therefore, often time consuming retraining procedures have to precede
before a neighborhood preserving feature amp is obtained. In this
paper, we propose an efficient initialization scheme to construct an
initial map. We then use the self-organizing feature map algorithm to
make small subsequent adjustments so as to improve the accuracy of
the initial map. Several data sets are tested to illustrate the
performance of the proposed method.

Key Words: Neural Networks, Self-organizing Feature Map,

Unsupervised Learning, Kohonen Algorithm

1. Introduction
Recently, numerous technical reports have

been written about successful applications of the
self-organizing feature map algorithm developed
by Kohonen [8]. These applications widely range
from simulations used for the purpose of
understanding and modeling of computational
maps in the brain to subsystems for engineering
applications such as cluster analysis, motor control,
speech recognition, vector quantization, and
adaptive equalization. Kohonen et al [12] provided
partial reviews of these applications. Despite its
successes in practical applications, SOMs suffer
from some major deficiencies [1,9]. For example,
the success of map formation is critically
dependent on the initial weights and the selection
of the main parameters of the algorithm, namely,
the learning-rate parameter and the neighborhood
set [20]. Unfortunately, a process of trial and error

usually determines them. Often one realizes only at
the end of a simulation that usually requires a huge
amount of iterations that different selections of the
parameters or initial weights would have been
more appropriate. In addition, another problem
associated with Kohonen self-organizing feature
map (SOM) algorithm is that it tends to
overrepresent regions of low input density and
underrepresent regions of high input density [20].
The accuracy of the map also depends on the
number of iterations of the SOM algorithm. A rule
of thumb is that, for good statistical accuracy, the
number of iterations should be at least 500 times
large than the number of neurons [11]. A more
serious problem with the SOM algorithm is that
topology preserving mapping is not guaranteed
even if a huge amount of iterations are used [14].

Several different approaches have been
proposed to improve the conventional SOM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225196941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

36 Mu-Chun Su et al.

algorithm. Some researchers used genetic
algorithms to form feature maps [3,4,15,18]. Lo
and Bavarian addressed the effect of
neighborhood function selection on the rate of
convergence of the SOM algorithm [13]. Kiang et
al developed a “circular” training algorithm that
tries to overcome some of the ineffective
topological representations caused by the
“boundary” effect [6]. Fritzke proposed a new
self-organizing neural network model that can
determine shape as well as size of the network
during the simulation in an incremental fashion
[2]. Jun et al proposed a self-organizing feature
map learning algorithm based on incremental
ordering [5]. A multilayer self-organizing feature
map was proposed in [7]. Samad and Harp
showed that how the Kohonen self-organizing
feature map model can be extended so that partial
training data can be utilized [17]. Hulle and
Leuven introduced the Maximum Entropy
learning rule (MER) to achieve a globally ordered
map by performing local weight updates only.
Hence, contrary to Kohonen’s SOM algorithm, no
neighborhood function is needed [21]. Extensive
and good overview of some improvements can be
found in the literature [10].

In this paper, we propose an efficient
initialization scheme for the SOM algorithm to
accelerate the learning phase of forming a
topologically ordered feature map. This paper is
organized into 4 sections. In the following section
the initialization scheme is discussed. In Section 3
several data sets are utilized to demonstrate the
effectiveness of the scheme. Finally, Section 4
concludes the paper.

2. Initialization Scheme

2.1 Backgrounds

The SOM algorithm proposed by Kohonen
can be summarized as follows:
Step 1: Initialization: Choose random values for
the initial weights w j ()0 .
Step 2: Winner Finding: Find the winning neuron
j* at time k, using the minimum-distance

Euclidean criterion:
.,,1,)(minarg* NMjwkxj jj

×=−= L (1)

where T
n kxkxkx)](,),([)(1 L= represents the thk

input pattern, NM × is the total number of
neurons, and ⋅ indicates the Euclidean norm.

Step 3: Weights Updating: Adjust the weights of
the winner and its neighbors, using the following
rule.

))()()(()()()1(* kwkxkNkkwkw jjjj −+=+ η (2)

where)(kη is a positive constant and)(* kN
j

is the topological neighborhood function of the
winner neuron *j at time k. It should be
emphasized that the success of the map formation
is critically dependent on how the values of the
main parameters (i.e.)(kη and)(* kN

j
), initial

values of weight vectors, and the number of
iterations are prespecified.

As we know that the initialization strongly
affects the ultimate map, however, the weights of
the neural array to be trained are typically
initialized at small random values. To counteract
the initialization problem, a conventional approach
is to restart the training procedure with other
random weights. Then another run of the SOM
algorithm has to be completed. The price paid for
this simple trial-and-error method is we have to
waste substantial computational resources since a
large number of iterations are usually needed for
the SOM algorithm to solve the problem. In
addition to the random initialization method, there
are other initialization methods. One simple
method is to pick the initial weight vectors,

)0(jw , from the available input patterns ix . A
more effective means to accelerate the learning
phase is to define the initial weight vectors
properly. In [10], the so-called “linear
initialization” method was presented. The method
first determines the two eigenvectors of the
autocorrelation matrix of input vectors that have
the largest eigenvalues, and then to let these
eigenvectors span a two-dimensional linear
subspace. A rectangular array is then defined along
this subspace, its center coinciding with that of the
mean of the input vectors, and the same
dimensions being the same as the two largest
eigenvalues. The initial values of)0(jw are then
identified with the array points. Since the initial
weight vectors,)0(jw , are now already ordered
and their density distribution roughly approximates
the density distribution of the input vectors, it will
be possible to directly start the learning with the
convergence phase. One critical problem
associated with the linear initialization method is
that it requires a lot of computations to compute
the eigenvectors of an autocorrelation matrix.

Improving the Self-Organizing Feature Map Algorithm Using an Efficient Initialization Scheme 37

In our previous work [19], we proposed an
efficient approach to forming feature maps. The
method involves three stages. In the first stage we
use the K-means algorithm to select NM × (i.e.
the size of the feature map to be formed) cluster
centers from a data set. Then a heuristic
assignment strategy is employed to organize the

NM × selected data points into an NM ×
neural array so as to form an initial feature map. If
the initial map is not good enough then it will be
fine-tuned by the traditional Kohonen
self-organizing feature map (SOM) algorithm
under a fast cooling regime in the third stage. By
our three-stage method a topologically ordered
feature map would be formed very quickly instead
of requiring a huge amount of iterations to
fine-tune the weights toward the density
distribution of the data points which usually
happened in the conventional SOM algorithm. If
the size of the array is not much greater than the
number of input vectors then the complexity of the
method is less than the conventional SOM
algorithm.

2.2 Our Initialization Method

Here we propose a simple straightforward
initialization scheme to solve the initialization
problem. Consider Figure 1, which depicts a
two-dimensional neural array of size NM × . The
basic ideal is to find a large enough hyperbox to
cover all the training patterns and then to squeeze
the hyperbox into a plane. The scheme is described
as follows:
Step 1: Initialization of the neurons on the four

corners:
We first select a pair of patterns whose

interpattern distance is the largest one among the
training set. The coordinates of the two patterns are
used to initialize the weights of the neurons on the
lower left corner and the upper right corner (i.e.
wM,1 and w1,N), respectively. From the remaining
training patterns, the coordinates of the pattern
which is farthest to the two selected patterns is
then used to initialize the weight vector of the
neuron on the upper left corner (i.e. w1,1). The
initial weight vector of the neuron on the lower
right corner (i.e. wM,N) is set to be the coordinates
of the pattern which is farthest to the previously
selected three patterns (i.e. w1,1, wM,1, and w1,N).
Figure 2 illustrates an example for a2-dimensional
case. Note that the computational complexity will
increase as the number of input patterns increase
since this step involves the computation of 2

)1(+II

distances (here we suppose there are total I input
patterns). Besides, what if there are outliers in the
input patterns? To overcome these two problems, a
possible solution is first to use some vector
quantization methods (e.g. the K-means algorithm)
to sample the input data set and then precede this
step.

Figure 1. The arrangement of an NM × neural array

Figure 2. An example of the process occurred in step 1

Step 2: Initialization of the neurons on the four

edges:
We initialize the weights of the neurons on the

four edges according to the following equations:

1,1,1

1,1
1,1,1

,1

11
1

1,,2for)1(
1

w
N

jNw
N
j

Njwj
N

ww
w

N

N
j

−
−

+
−
−

=

−=+−
−

−
= L

 (3)

1,,

1,
1,,

,

11
1

1,,2for)1(
1

MNM

M
MNM

jM

w
N

jNw
N
j

Njwj
N

ww
w

−
−

+
−
−

=

−=+−
−

−
= L

(4)

38 Mu-Chun Su et al.

1,11,

1,1
1,11,

1,

11
1

1,,2for)1(
1

w
M

iMw
M
i

Miwi
M

ww
w

M

M
i

−
−

+
−
−

=

−=+−
−

−
= L

 (5)

NNM

N
NNM

Ni

w
M

iMw
M
i

Miwi
M

ww
w

,1,

,1
,1,

,

11
1

1,,2for)1(
1

−
−

+
−
−

=

−=+−
−

−
= L

(6)

The basic idea is very simple. Any two points

can form a line in the input space. We then
uniformly partition the line into N-1 or M-1
segments and use the coordinates of the ending
points of the segments to initialize the weights of
the neurons.
Step 3: Initialization of the remaining neurons:

We initialize the remaining neurons from top
to bottom, and from left to right. If we change the
order to be from left to right and from top to
bottom, the initialization effect will be the same. It
is very easy to prove this. The pseudo-code
description of the initialization scheme for the
remaining neurons is given as follows:
Begin
 For i from 2 to M-1
 Begin
 For j from 2 to N-1
 Begin

w

w w
N

j w

j
N

w N j
N

w

i j
i N i

i

i N i

,
, ,

,

, ,

()=
−
−

− +

=
−
−

+
−
−

1
1

1

1
1

1
1 1

 (7)

 End;
 End;
End;

One may ask why we do not directly partition
the input space into hypercubes and then use the
coordinates of the centers of the hypercubes to
initialize the weights of the network. A direct
result is that an initial map constructed by the
direct method will tend to undersample high
probability regions and oversample low probability
ones. It is probable that we will need more
iterations to refine the map if we start out from
such an initial map instead of an initial map
constructed by our proposed method. This can be
illustrated by Figure 3. Moreover, this method will
suffer from the curse of the dimensionality.

Suppose we partition the ith input variable into Si
segments, the total number of the centers of the
hypercubes will be S S Sn1 2× ×L . The number
increases exponentially as n increases. That is, the
numbers of neurons will be very large for
applications where the dimensionality of the input
data is large. Another one important thing we want
to point out is that compared to the “linear
initialization” method presented in [10], our
method is much simpler and requires mush less
computations since our method does not compute
the eigenvectors of the autocorrelation matrix of
the input patterns.

Combining Eq. (3)-(7), one may easily find

1,1)1)(1(
))((

1,)1)(1(
)1)((

,1)1)(1(
))(1(

,)1)(1(
)1)(1(

,

ww

www

MN
iMjN

MMN
ijN

NMN
iMj

NMMN
ij

ji

−−
−−

−−
−−

−−
−−

−−
−−

++

+=

 (8)

Therefore the three-step method can be

downsized into a two-step method. The first
step is the same. Then we use Eq.(8) to
initialize the weights of the remaining neurons.

(a) (b)

Figure 3. The difference between the grid initialization
 scheme and our initialization scheme: (a) the

grid initialization scheme, (b) our
initialization scheme

3. Simulation Results
Three data sets are used to illustrate the

performance of our method. The first data set
consists of 579 2D data points shown in Figure
4(a). The second data set is the well-known iris
data set that consists of 150 4D data points. The
third data set is a 10-D artificial data set consisting
of 200 data points. The 2D configurations for the
iris data set and the 10-D data set using Sammon’s
projection method are shown in Figure 4(b)-4(c).
The patterns in Figure 4(b)-4(c) have been labeled
by category to highlight the separation of the three
categories. To illustrate the effectiveness of our
method we use three different approaches to

Improving the Self-Organizing Feature Map Algorithm Using an Efficient Initialization Scheme 39

forming feature maps. The first method is to use
the random initialization scheme. Method 2 adopts
the scheme proposed in [19]. The proposed method
is the third method. To further demonstrate the
performance of our method two different cooling
regimes were utilized. The values of the
parameters were kept the same irrespective of the
data used.

Regime 1:)exp()(
)(2 2

2
,*

* k

d

j
ijkN

σ
−= and

)01.0,)(max()(2

00
τ

η
ηηη

k
fk =

where)exp()(
10 τσσ kk −= and

)01.0,)(max()(2

00
τ

η
ηηη

k
fk = , 0σ =

1/3 of the edge length of the lattice
(i.e. N), 1τ = 30, 2τ = 30, 0η =0.9,
and fη =0.01.

Regime 2:))1(exp()(** , jj
k

j
dkN τ+−= and

kk += 1
1

0)(ηη where 0η =1.0, and
τ = 100. In addition, we update only
the winners’ weight vectors for the
last one-third epochs. The intention
of this cooling regime is to quickly
cool down the training procedure.

Note that the parameter k represents the number of
epochs in our simulations.

3.1 Example 1: 2-D data set

 A 15x15 network is trained by the artificial data
set shown in Figure 4(a). Figure 5-6 show the
resultant maps constructed by the three different
methods under regimes 1 and 2, respectively. The
left column, the center column, and the right column
of these two figures show the maps constructed by
method 1, method 2, and method 3, respectively. By
viewing Figure 5 we find the conventional SOM
algorithm under a convenient cooling regime is
insensible to initial weights. All three methods
constructed topologically ordered maps. Note that
although topologically ordered maps can be formed
in the 10th epoch more updates were still required to
fine-tune the weights toward the density distribution
of the data points. On the contrary, Figure 6 tells us
that the conventional SOM algorithm under a fast
cooling regime is very sensible to initial weights and
only method 2 and our method can form a good
topologically ordered map. In the cases of method 2
and our method, the meshes remain untangled and
quickly adapt in detail within 10 epochs. On the
other hand, the mesh on the left columns of Figure 8

first tangled and then tried to unfold themselves.
Unfortunately, even if we used 90 more epochs to
continue the training process the incorrect
topological ordering was not eliminated. In fact the
mesh still tangled even we continued the training
process for another 900 epochs.

(a)

(b)

(c)

Figure 4. The three data sets used in the simulations: (a)
 the 2-D data set consisting of 579 data points,
 (b) the iris data set consisting of 150 4-D data

 points, (c) the animal data set consisting of 16
13-D data points

40 Mu-Chun Su et al.

 (a) the initial map (e) the initial map (i) the initial map

 (b) after 10 epochs (f) after 10 epochs (j) after 10 epochs

 (c) after 50 epochs (g) after 50 epochs (k) after 50 epochs

 (d) after 100 epochs (h) after 100 epochs (l) after 100 epochs

Figure 5. The reultant feature maps constructed by the three methods under the first cooling regime for the 579 data set:

the left column is method 1; the center column is method 2; the right column is method 3.

Improving the Self-Organizing Feature Map Algorithm Using an Efficient Initialization Scheme 41

 (a) the initial map (e) the initial map (i) the initial map

 (b) after 10 epochs (f) after 1 epoch (j) after 1 epoch

 (c) after 50 epochs (g) after 5 epochs (k) after 5 epochs

 (d) after 100 epochs (h) after 10 epochs (l) after 10 epochs

Figure 6. The resultant feature maps constructed by the three methods under the second cooling regime for the 579 data

set: the left column is method 1; the center column is method 2; the right column is method 3.

42 Mu-Chun Su et al.

3.2 Example 2: Iris Data Set

The iris data set has three subsets (i.e. iris setosa,
iris versicolor, and iris virginical), two of that are
overlapping. The iris data are in a four-dimensional
space and there are total 150 patterns in the data set.
Each class has 50 patterns. A network with 15×15
neurons was trained by the iris data set. Since it is not
possible to visualize a 4-D mesh we decide to provide
“calibrated maps” so that one may easily validate
whether the resultant maps are topologically ordered
or not. A map is calibrated if the neurons of the
network are labeled according to their responses to
specific known input vectors. Throughout our
simulations such labeling was achieved by so-called
“minimum distance method” (i.e. a neuron is labeled
to class m if its nearest neighbor belonging to class m.)
The resultant calibrated maps are shown in Figure 7-8
for regimes 1 and 2, respectively. We have manually
drawn boundaries (black thin curves) between
different classes on some calibrated maps in order to
ease the comparisons of the three methods. Again
Figure 7 confirms that the conventional SOM
algorithm under a convenient cooling regime is
insensible to initial weights. Although the three maps
shown in Figure 7(b), 7(f), and 7(j) have no small
fragment regions they have not yet matched the
density distribution of the data set. As the learning
procedure progressed they more matched the data
distribution. From Figure 8 (d), we find that the
number of neurons most responding to class 1 (i.e. iris
setosa) is much less than the other two kinds of
neurons, indicating the feature map is not well formed.
On the contrary, classes 1, 2, and 3 shown in Figure
8(h) and 8(l) are almost separable from each other

except two or three small isolated regions. Since
classes 2 and 3 do overlap each other in the original
4D space it indicates this feature map matches the data
structure of the iris data. Again, a good
topologically-ordered map can be constructed more
quickly and correctly by method 2 and our method
than the SOM algorithm.

3.3 Example 3: Animal Data Set

The animal data set was originally introduced by
Ritter and Kohonen [16] to illustrate the SOM for
high-dimensional data set. It consists of the description
of 16 animals by binary property lists tabulated in
Table 1. We then group these 16 animals into three
classes (1 represents bird, 2 represents carnivore, and 3
represents herbivore). Note that we find the 2D
projection of the animal data set is linearly separable
from each other by viewing Figure 4(c). The thirteen
properties consist of the input vector to the network of
11×11 neurons. The calibrated feature maps are shown
in Figures 9-10 for the regimes 1 and 2, respectively.
From Figure 9, we observe that all three methods can
construct topologically ordered maps. However,
Figure 10 demonstrates totally different results. In
Figure 10(d), classes 1, 2, and 3 span 2, 3, and 2
clusters respectively; indicating the feature map is not
correctly formed because it is too fragment. On the
contrary, from Figure 10(h) and 10(l) we find that the
three classes are entirely enclosed by their population
clusters; indicating the feature maps are well formed.
Once again, method 2 and our method can construct a
topologically ordered map quickly and correctly.

Table 1. Animal names and binary attributes (adapted from Ritter & Kohonen, 1989): If an attribute applies for an
animal the corresponding table entry is1, otherwise 0

 small medium big Two
legs

Four
legs Hair Hooves Mane Feathers Hunt Run Fly Swim Class

Dove 1 0 0 1 0 0 0 0 1 0 0 1 0 1
Hen 1 0 0 1 0 0 0 0 1 0 0 0 0 1
Duck 1 0 0 1 0 0 0 0 1 0 0 0 1 1
Goose 1 0 0 1 0 0 0 0 1 0 0 1 1 1
Owe 1 0 0 1 0 0 0 0 1 1 0 1 0 1
Hawk 1 0 0 1 0 0 0 0 1 1 0 1 0 1
Eagle 0 1 0 1 0 0 0 0 1 1 0 1 0 1
Fox 0 1 0 0 1 1 0 0 0 1 0 0 0 2
Dog 0 1 0 0 1 1 0 0 0 0 1 0 0 2
Wolf 0 1 0 0 1 1 0 1 0 1 1 0 0 2
Cat 1 0 0 0 1 1 0 0 0 1 0 0 0 2
Tiger 0 0 1 0 1 1 0 0 0 1 1 0 0 2
Lion 0 0 1 0 1 1 0 1 0 1 1 0 0 2
Horse 0 0 1 0 1 1 1 1 0 0 1 0 0 3
Zebra 0 0 1 0 1 1 1 1 0 0 1 0 0 3
Cow 0 0 1 0 1 1 1 0 0 0 0 0 0 3

Improving the Self-Organizing Feature Map Algorithm Using an Efficient Initialization Scheme 43

 (a) the initial map (e) the initial map (i) the initial map

(b) after 10 epochs (f) after 10 epochs (j) after 10 epochs

 (c) after 50 epochs (g) after 50 epochs (k) after 50 epochs

 (d) after 100 epochs (h) after 100 epochs (l) after 100 epochs

Figure 7. The resultant calibrated maps constructed by the three methods under the first cooling regime for the iris data

set: the left column is method 1; the center column is method 2; the right column is method 3.

44 Mu-Chun Su et al.

 (a) the initial map (e) the initial map (i) the initial map

(b) after 10 epochs (f) after 1 epoch (j) after 1 epoch

(c) after 50 epochs (g) after 5 epochs (k) after 5 epochs

 (d) after 100 epochs (h) after 10 epochs (l) after 10 epochs

Figure 8. The resultant calibrated maps constructed by the three methods under the second cooling regime for the iris

data set: the left column is method 1; the center column is method 2; the right column is method 3.

Improving the Self-Organizing Feature Map Algorithm Using an Efficient Initialization Scheme 45

 (a) the initial map (e) the initial map (i) the initial map

 (b) after 10 epochs (f) after 10 epochs (j) after 10 epochs

 (c)after 50 epochs (g) after 50 epochs (k) after 50 epochs

 (d) after 100 epochs (h) after 100 epochs (l) after 100 epochs

Figure 9. The resultant calibrated maps constructed by the three methods under the first cooling regime for the animal

data set: the left column is method 1; the center column is method 2; the right column is method 3.

46 Mu-Chun Su et al.

 (a) the initial map (e) the initial map (i) the initial map

(b) after 10 epochs (f) after 1 epoch (j) after 1 epoch

(c) after 50 epochs (g) after 5 epochs (k) after 5 epochs

(d) after 100 epochs (h) after 10 epochs (l) after 10 epochs

Figure 10. The resultant calibrated maps constructed by the three methods under the second cooling regime for the

animal data set: the left column is method 1; the center column is method 2; the right column is method 3.

Improving the Self-Organizing Feature Map Algorithm Using an Efficient Initialization Scheme 47

4. Conclusions
In this paper, an efficient initialization scheme

for the SOM algorithm is proposed. From the
simulation results, we find that it may be better to
construct a good initial map and then to use the
unsupervised learning to make small subsequent
adjustments. Observing the simulation results we
can make the following several observations:
1. The initialization scheme can greatly

accelerate the training phase since we start out
from a good initial map.

2. The initialization scheme is very simple and
straightforward.

3. The topological relations of data can be more
preserved if we incorporate the SOM
algorithm with the initialization scheme.

4. Method 2 and our method both can quickly
form topologically ordered maps. However,
our method is simpler than method 2 because
our method requires less computational
resources than method 2.

5. With a proper cooling regime, the random
initialization may also form topologically
ordered feature maps after a lot of training
epochs. However, with a wrong cooling
regime, there may exist defects (e.g. a twist or
a kink) in the formed map even after a large
number of training epochs.
In fact, our method can be regarded as another

kind of linear initialization method. However,
compared to the “linear initialization” method
presented in [18], our method outperforms the
former one based on the comparison of
computations since we do not need to compute the
eigenvectors of an autocorrelation matrix of the
input patterns.

References
[1] Baraldi, A., Blonda, P., Parmiggiani, F.,

Pasquariello, G. and Satalino, G., “Model
Transitions in Descending FLVQ,＂ IEEE
Trans. on Neural Networks, Vol. 9, pp.
724-738 (1998).

[2] Fritzke, B., “Growing Cell Structures-a
Self-Organizing Network for Unsupervised
and Supervised Learning,” Neural Networks,
Vol. 7, pp. 1441-1460 (1994).

[3] Harp, S. A. and Samad, T., “Genetic
Optimization of Self-Organizing Feature
Maps,” Proc. Int. Conf. on Neural Networks,
pp. 341-346, (1991).

[4] Huang, S. J. and Hung, C. C., “Genetic
Algorithms Enhanced Kohonen’s Neural

Networks,” IEEE Int. Conf. on Neural
Networks, pp. 708-712 (1995).

[5] Jun, Y. P., Yoon, H. and Cho, J. W., “L
Learning: a Fast Self-Organizing Feature
Map Learning Algorithm Based on
Incremental Ordering,” IEICE Trans. on
Information & Systems, Vol. E76, pp.
698-706 (1993).

[6] Kiang, M. Y., Kulkarni, U. R., Goul, M.,
Philippakis, A., Chi, R. T. and Turban, E.,
“Improving the Effectiveness of
Self-Organizing Map Networks Using a
Circular Kohonen Layer,” Proc. of the 30th
Hawaii Int. Conf. on System Sciences, pp.
521-529 (1997).

[7] Koh, J., Suk, M. and Bhandarkar, S. M., “A
Multilayer Self-Organizing Feature Map for
Range Image Segmentation,” Neural
Networks, Vol. 8, pp. 67-86 (1995).

[8] Kohonen, T., Self-Organization and
Associative Memory, 3rd ed.,
Springer-Verlag, Berlin, Germany (1989).

[9] Kohonen, T., Self-Organizing Maps,
Springer-Verlag, Berlin, Germany (1995).

[10] Kohonen, T., Self-Organizing Maps,
Springer-Verlag, New York, U.S.A. (1995).

[11] Kohonen, T., “The Self-Organizing Feature
Map,” Pro. of the IEEE, Vol. 78, pp.
1464-1480 (1990).

[12] Kohonen, T., Oja, E., Simula, O., Visa, A.
and Kangas, J.,” Engineering Application of
the Self-Organizing Map,” Pro. of the IEEE,
Vol. 84, pp. 1358-1383 (1996).

[13] Lo, Z. P. and Bavarian, B., “On the Rate of
Convergence in Topology Preserving Neural
Networks,” Biological Cybernetics, Vol. 65,
pp. 55-63 (1991).

[14] Martinetz, T. M. and Schulten, K. J.,
“Topology Representing Networks,” Neural
Networks, Vol. 7, pp. 507-522 (1994).

[15] McInerney, M. and Dhawan, A., “Training
the Self-Organizing Feature Map Using
Hybrids of Genetic and Kohonen Methods,”
IEEE Int. Conf. on Neural Networks, pp.
641-644 (1994).

[16] Ritter, H. J. and Kohonen, T.,
“Self-Organizing Semantic Maps,”
Biological Cybernetics, Vol. 61, pp.241-254
(1989).

[17] Samad, T. and Harp, S. A.,
“Self-Organization with Partial Data,”
Network: Computation in Neural Systems,
Vol. 3, pp. 205-212 (1992).

[18] Su, M. C. and Chang, H. T.

48 Mu-Chun Su et al.

“Genetic-Algorithm-Based Approach to
Self-Organizing Feature Map and its
Application in Cluster Analysis,” IEEE Int.
Joint Conf. on Neural Networks, pp.
2116-2121 (1995).

[19] Su, M. C. and Chang, H. T., “Fast
Self-Organizing Feature Map,” IEEE Trans.
on Neural Networks, Vol. 13, pp. 721-733
(2000).

[20] Tsao, E. C., Bezdek, J. C. and Pal, N. R.,
“Fuzzy Kohonen Clustering Network,”
Pattern Recognition, Vol. 27, pp. 757-764
(1994).

[21] Van Hulle, M. M. and Leuven, K. U.,
“Globally-Ordered Topology-Preserving
Maps Achieved with a Learning Rule
Performing Local Weight Updates Only,”
IEEE Workshop of Neural Networks for
Signal Processing, pp. 95-104 (1995).

Manuscript Received: Dec. 19, 2001
 and Accepted: Feb. 18, 2002

