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Abstract 
 

It is often reported in the technique literature that the success of 
the self-organizing feature map formation is critically dependent on 
the initial weights and the selection of main parameters (i.e. the 
learning-rate parameter and the neighborhood set) of the algorithm. 
They usually have to be counteracted by the trial-and-error method; 
therefore, often time consuming retraining procedures have to precede 
before a neighborhood preserving feature amp is obtained. In this 
paper, we propose an efficient initialization scheme to construct an 
initial map. We then use the self-organizing feature map algorithm to 
make small subsequent adjustments so as to improve the accuracy of 
the initial map. Several data sets are tested to illustrate the 
performance of the proposed method. 
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1. Introduction 
Recently, numerous technical reports have 

been written about successful applications of the 
self-organizing feature map algorithm developed 
by Kohonen [8]. These applications widely range 
from simulations used for the purpose of 
understanding and modeling of computational 
maps in the brain to subsystems for engineering 
applications such as cluster analysis, motor control, 
speech recognition, vector quantization, and 
adaptive equalization. Kohonen et al [12] provided 
partial reviews of these applications. Despite its 
successes in practical applications, SOMs suffer 
from some major deficiencies [1,9]. For example, 
the success of map formation is critically 
dependent on the initial weights and the selection 
of the main parameters of the algorithm, namely, 
the learning-rate parameter and the neighborhood 
set [20]. Unfortunately, a process of trial and error 

usually determines them. Often one realizes only at 
the end of a simulation that usually requires a huge 
amount of iterations that different selections of the 
parameters or initial weights would have been 
more appropriate. In addition, another problem 
associated with Kohonen self-organizing feature 
map (SOM) algorithm is that it tends to 
overrepresent regions of low input density and 
underrepresent regions of high input density [20]. 
The accuracy of the map also depends on the 
number of iterations of the SOM algorithm. A rule 
of thumb is that, for good statistical accuracy, the 
number of iterations should be at least 500 times 
large than the number of neurons [11]. A more 
serious problem with the SOM algorithm is that 
topology preserving mapping is not guaranteed 
even if a huge amount of iterations are used [14]. 

Several different approaches have been 
proposed to improve the conventional SOM 
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algorithm. Some researchers used genetic 
algorithms to form feature maps [3,4,15,18]. Lo 
and Bavarian addressed the effect of 
neighborhood function selection on the rate of 
convergence of the SOM algorithm [13]. Kiang et 
al developed a “circular” training algorithm that 
tries to overcome some of the ineffective 
topological representations caused by the 
“boundary” effect [6]. Fritzke proposed a new 
self-organizing neural network model that can 
determine shape as well as size of the network 
during the simulation in an incremental fashion 
[2]. Jun et al proposed a self-organizing feature 
map learning algorithm based on incremental 
ordering [5]. A multilayer self-organizing feature 
map was proposed in [7]. Samad and Harp 
showed that how the Kohonen self-organizing 
feature map model can be extended so that partial 
training data can be utilized [17]. Hulle and 
Leuven introduced the Maximum Entropy 
learning rule (MER) to achieve a globally ordered 
map by performing local weight updates only. 
Hence, contrary to Kohonen’s SOM algorithm, no 
neighborhood function is needed [21]. Extensive 
and good overview of some improvements can be 
found in the literature [10]. 

In this paper, we propose an efficient 
initialization scheme for the SOM algorithm to 
accelerate the learning phase of forming a 
topologically ordered feature map. This paper is 
organized into 4 sections. In the following section 
the initialization scheme is discussed. In Section 3 
several data sets are utilized to demonstrate the 
effectiveness of the scheme. Finally, Section 4 
concludes the paper. 

2. Initialization Scheme 

2.1 Backgrounds 

The SOM algorithm proposed by Kohonen 
can be summarized as follows: 
Step 1: Initialization: Choose random values for 
the initial weights w j ( )0 . 
Step 2: Winner Finding: Find the winning neuron 
j*  at time k, using the minimum-distance 

Euclidean criterion: 
.,,1,)(minarg* NMjwkxj jj

×=−= L   (1) 

where T
n kxkxkx )](,),([)( 1 L=  represents the thk  

input pattern, NM × is the total number of 
neurons, and ⋅  indicates the Euclidean norm. 
 

Step 3: Weights Updating: Adjust the weights of 
the winner and its neighbors, using the following 
rule.         

))()()(()()()1( * kwkxkNkkwkw jjjj −+=+ η (2) 

where )(kη  is a positive constant and )(* kN
j

 

is the topological neighborhood function of the 
winner neuron *j  at time k. It should be 
emphasized that the success of the map formation 
is critically dependent on how the values of the 
main parameters (i.e. )(kη  and )(* kN

j
), initial 

values of weight vectors, and the number of 
iterations are prespecified. 

As we know that the initialization strongly 
affects the ultimate map, however, the weights of 
the neural array to be trained are typically 
initialized at small random values. To counteract 
the initialization problem, a conventional approach 
is to restart the training procedure with other 
random weights. Then another run of the SOM 
algorithm has to be completed. The price paid for 
this simple trial-and-error method is we have to 
waste substantial computational resources since a 
large number of iterations are usually needed for 
the SOM algorithm to solve the problem. In 
addition to the random initialization method, there 
are other initialization methods. One simple 
method is to pick the initial weight vectors, 

)0(jw , from the available input patterns ix . A 
more effective means to accelerate the learning 
phase is to define the initial weight vectors 
properly. In [10], the so-called “linear 
initialization” method was presented. The method 
first determines the two eigenvectors of the 
autocorrelation matrix of input vectors that have 
the largest eigenvalues, and then to let these 
eigenvectors span a two-dimensional linear 
subspace. A rectangular array is then defined along 
this subspace, its center coinciding with that of the 
mean of the input vectors, and the same 
dimensions being the same as the two largest 
eigenvalues. The initial values of )0(jw are then 
identified with the array points. Since the initial 
weight vectors, )0(jw , are now already ordered 
and their density distribution roughly approximates 
the density distribution of the input vectors, it will 
be possible to directly start the learning with the 
convergence phase. One critical problem 
associated with the linear initialization method is 
that it requires a lot of computations to compute 
the eigenvectors of an autocorrelation matrix.  
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In our previous work [19], we proposed an 
efficient approach to forming feature maps. The 
method involves three stages. In the first stage we 
use the K-means algorithm to select NM ×  (i.e. 
the size of the feature map to be formed) cluster 
centers from a data set. Then a heuristic 
assignment strategy is employed to organize the 

NM ×  selected data points into an NM ×  
neural array so as to form an initial feature map. If 
the initial map is not good enough then it will be 
fine-tuned by the traditional Kohonen 
self-organizing feature map (SOM) algorithm 
under a fast cooling regime in the third stage. By 
our three-stage method a topologically ordered 
feature map would be formed very quickly instead 
of requiring a huge amount of iterations to 
fine-tune the weights toward the density 
distribution of the data points which usually 
happened in the conventional SOM algorithm. If 
the size of the array is not much greater than the 
number of input vectors then the complexity of the 
method is less than the conventional SOM 
algorithm. 

2.2 Our Initialization Method 

Here we propose a simple straightforward 
initialization scheme to solve the initialization 
problem. Consider Figure 1, which depicts a 
two-dimensional neural array of size NM × . The 
basic ideal is to find a large enough hyperbox to 
cover all the training patterns and then to squeeze 
the hyperbox into a plane. The scheme is described 
as follows: 
Step 1: Initialization of the neurons on the four 

corners: 
We first select a pair of patterns whose 

interpattern distance is the largest one among the 
training set. The coordinates of the two patterns are 
used to initialize the weights of the neurons on the 
lower left corner and the upper right corner (i.e. 
wM,1 and w1,N), respectively. From the remaining 
training patterns, the coordinates of the pattern 
which is farthest to the two selected patterns is 
then used to initialize the weight vector of the 
neuron on the upper left corner (i.e. w1,1). The 
initial weight vector of the neuron on the lower 
right corner (i.e. wM,N) is set to be the coordinates 
of the pattern which is farthest to the previously 
selected three patterns (i.e. w1,1, wM,1, and w1,N). 
Figure 2 illustrates an example for a2-dimensional 
case. Note that the computational complexity will 
increase as the number of input patterns increase 
since this step involves the computation of 2

)1( +II  

distances (here we suppose there are total I input 
patterns). Besides, what if there are outliers in the 
input patterns? To overcome these two problems, a 
possible solution is first to use some vector 
quantization methods (e.g. the K-means algorithm) 
to sample the input data set and then precede this 
step.              

 
Figure 1. The arrangement of an NM ×  neural array 

 
 

 
Figure 2. An example of the process occurred in step 1 

 
Step 2: Initialization of the neurons on the four 

edges: 
We initialize the weights of the neurons on the 

four edges according to the following equations: 
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The basic idea is very simple. Any two points 

can form a line in the input space. We then 
uniformly partition the line into N-1 or M-1 
segments and use the coordinates of the ending 
points of the segments to initialize the weights of 
the neurons. 
Step 3: Initialization of the remaining neurons: 

We initialize the remaining neurons from top 
to bottom, and from left to right. If we change the 
order to be from left to right and from top to 
bottom, the initialization effect will be the same. It 
is very easy to prove this. The pseudo-code 
description of the initialization scheme for the 
remaining neurons is given as follows: 
Begin 
 For i from 2 to M-1 
 Begin 
  For j from 2 to N-1 
  Begin 
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  End; 
 End; 
End; 

One may ask why we do not directly partition 
the input space into hypercubes and then use the 
coordinates of the centers of the hypercubes to 
initialize the weights of the network. A direct 
result is that an initial map constructed by the 
direct method will tend to undersample high 
probability regions and oversample low probability 
ones. It is probable that we will need more 
iterations to refine the map if we start out from 
such an initial map instead of an initial map 
constructed by our proposed method. This can be 
illustrated by Figure 3. Moreover, this method will 
suffer from the curse of the dimensionality. 

Suppose we partition the ith input variable into Si  
segments, the total number of the centers of the 
hypercubes will be S S Sn1 2× ×L . The number 
increases exponentially as n increases. That is, the 
numbers of neurons will be very large for 
applications where the dimensionality of the input 
data is large. Another one important thing we want 
to point out is that compared to the “linear 
initialization” method presented in [10], our 
method is much simpler and requires mush less 
computations since our method does not compute 
the eigenvectors of the autocorrelation matrix of 
the input patterns.  

Combining Eq. (3)-(7), one may easily find 
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Therefore the three-step method can be 

downsized into a two-step method. The first 
step is the same. Then we use Eq.(8) to 
initialize the weights of the remaining neurons.  
 

        
(a)                   (b) 

 
Figure 3. The difference between the grid initialization 
        scheme and our initialization scheme: (a) the 

grid initialization scheme, (b) our 
initialization scheme 

3. Simulation Results 
Three data sets are used to illustrate the 

performance of our method. The first data set 
consists of 579 2D data points shown in Figure 
4(a). The second data set is the well-known iris 
data set that consists of 150 4D data points. The 
third data set is a 10-D artificial data set consisting 
of 200 data points. The 2D configurations for the 
iris data set and the 10-D data set using Sammon’s 
projection method are shown in Figure 4(b)-4(c). 
The patterns in Figure 4(b)-4(c) have been labeled 
by category to highlight the separation of the three 
categories. To illustrate the effectiveness of our 
method we use three different approaches to 
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forming feature maps. The first method is to use 
the random initialization scheme. Method 2 adopts 
the scheme proposed in [19]. The proposed method 
is the third method. To further demonstrate the 
performance of our method two different cooling 
regimes were utilized. The values of the 
parameters were kept the same irrespective of the 
data used. 

Regime 1: )exp()(
)(2 2

2
,*

* k

d

j
ijkN

σ
−=     and   

)01.0,)(max()( 2
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ηηη
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10 τσσ kk −=  and 

)01.0,)(max()( 2

00
τ

η
ηηη

k
fk = , 0σ = 

1/3 of the edge length of the lattice 
(i.e. N), 1τ = 30, 2τ = 30, 0η =0.9, 
and fη =0.01. 

Regime 2: ))1(exp()( ** , jj
k

j
dkN τ+−=  and 

kk += 1
1

0)( ηη  where 0η =1.0, and 
τ = 100. In addition, we update only 
the winners’ weight vectors for the 
last one-third epochs. The intention 
of this cooling regime is to quickly 
cool down the training procedure. 

Note that the parameter k represents the number of 
epochs in our simulations.  

3.1 Example 1: 2-D data set 

  A 15x15 network is trained by the artificial data 
set shown in Figure 4(a). Figure 5-6 show the 
resultant maps constructed by the three different 
methods under regimes 1 and 2, respectively. The 
left column, the center column, and the right column 
of these two figures show the maps constructed by 
method 1, method 2, and method 3, respectively. By 
viewing Figure 5 we find the conventional SOM 
algorithm under a convenient cooling regime is 
insensible to initial weights. All three methods 
constructed topologically ordered maps. Note that 
although topologically ordered maps can be formed 
in the 10th epoch more updates were still required to 
fine-tune the weights toward the density distribution 
of the data points. On the contrary, Figure 6 tells us 
that the conventional SOM algorithm under a fast 
cooling regime is very sensible to initial weights and 
only method 2 and our method can form a good 
topologically ordered map. In the cases of method 2 
and our method, the meshes remain untangled and 
quickly adapt in detail within 10 epochs. On the 
other hand, the mesh on the left columns of Figure 8 

first tangled and then tried to unfold themselves. 
Unfortunately, even if we used 90 more epochs to 
continue the training process the incorrect 
topological ordering was not eliminated. In fact the 
mesh still tangled even we continued the training 
process for another 900 epochs. 

 
 

 
 

(a) 

 
(b) 

 
(c) 

 
Figure 4. The three data sets used in the simulations: (a)       
        the 2-D data set consisting of 579 data points,  
       (b) the iris data set consisting of 150 4-D data  

        points, (c) the animal data set consisting of 16  
13-D data points 
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   (a) the initial map        (e) the initial map         (i) the initial map 
 

   

 
         

   (b) after 10 epochs       (f) after 10 epochs        (j) after 10 epochs 
 

   

 
         

  (c) after 50 epochs        (g) after 50 epochs       (k) after 50 epochs 
 

   

 
         

        (d) after 100 epochs      (h) after 100 epochs       (l) after 100 epochs 
 
Figure 5. The reultant feature maps constructed by the three methods under the first cooling regime for the 579 data set:  

the left column is method 1; the center column is method 2; the right column is method 3. 
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         (a) the initial map          (e) the initial map          (i) the initial map 

 
   

 
       
         (b) after 10 epochs          (f) after 1 epoch          (j) after 1 epoch 

 
   

 
       
         (c) after 50 epochs         (g) after 5 epochs          (k) after 5 epochs 

 
   

 
       
        (d) after 100 epochs         (h) after 10 epochs        (l) after 10 epochs 
 
Figure 6. The resultant feature maps constructed by the three methods under the second cooling regime for the 579 data  

set: the left column is method 1; the center column is method 2; the right column is method 3.
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3.2 Example 2: Iris Data Set 

The iris data set has three subsets (i.e. iris setosa, 
iris versicolor, and iris virginical), two of that are 
overlapping. The iris data are in a four-dimensional 
space and there are total 150 patterns in the data set. 
Each class has 50 patterns. A network with 15×15 
neurons was trained by the iris data set. Since it is not 
possible to visualize a 4-D mesh we decide to provide 
“calibrated maps” so that one may easily validate 
whether the resultant maps are topologically ordered 
or not. A map is calibrated if the neurons of the 
network are labeled according to their responses to 
specific known input vectors. Throughout our 
simulations such labeling was achieved by so-called 
“minimum distance method” (i.e. a neuron is labeled 
to class m if its nearest neighbor belonging to class m.) 
The resultant calibrated maps are shown in Figure 7-8 
for regimes 1 and 2, respectively. We have manually 
drawn boundaries (black thin curves) between 
different classes on some calibrated maps in order to 
ease the comparisons of the three methods. Again 
Figure 7 confirms that the conventional SOM 
algorithm under a convenient cooling regime is 
insensible to initial weights. Although the three maps 
shown in Figure 7(b), 7(f), and 7(j) have no small 
fragment regions they have not yet matched the 
density distribution of the data set. As the learning 
procedure progressed they more matched the data 
distribution. From Figure 8 (d), we find that the 
number of neurons most responding to class 1 (i.e. iris 
setosa) is much less than the other two kinds of 
neurons, indicating the feature map is not well formed. 
On the contrary, classes 1, 2, and 3 shown in Figure  
8(h) and 8(l) are almost separable from each other 

except two or three small isolated regions. Since 
classes 2 and 3 do overlap each other in the original 
4D space it indicates this feature map matches the data 
structure of the iris data. Again, a good 
topologically-ordered map can be constructed more 
quickly and correctly by method 2 and our method 
than the SOM algorithm.  

3.3 Example 3: Animal Data Set 

The animal data set was originally introduced by 
Ritter and Kohonen [16] to illustrate the SOM for 
high-dimensional data set. It consists of the description 
of 16 animals by binary property lists tabulated in 
Table 1. We then group these 16 animals into three 
classes (1 represents bird, 2 represents carnivore, and 3 
represents herbivore). Note that we find the 2D 
projection of the animal data set is linearly separable 
from each other by viewing Figure 4(c). The thirteen 
properties consist of the input vector to the network of 
11×11 neurons. The calibrated feature maps are shown 
in Figures 9-10 for the regimes 1 and 2, respectively. 
From Figure 9, we observe that all three methods can 
construct topologically ordered maps. However, 
Figure 10 demonstrates totally different results. In 
Figure 10(d), classes 1, 2, and 3 span 2, 3, and 2 
clusters respectively; indicating the feature map is not 
correctly formed because it is too fragment. On the 
contrary, from Figure 10(h) and 10(l) we find that the 
three classes are entirely enclosed by their population 
clusters; indicating the feature maps are well formed. 
Once again, method 2 and our method can construct a 
topologically ordered map quickly and correctly. 

Table 1. Animal names and binary attributes (adapted from Ritter & Kohonen, 1989): If an attribute applies for an  
animal the corresponding table entry is1, otherwise 0 

 small medium big Two
legs

Four 
legs Hair Hooves Mane Feathers Hunt Run Fly Swim Class

Dove 1 0 0 1 0 0 0 0 1 0 0 1 0 1 
Hen 1 0 0 1 0 0 0 0 1 0 0 0 0 1 
Duck 1 0 0 1 0 0 0 0 1 0 0 0 1 1 
Goose 1 0 0 1 0 0 0 0 1 0 0 1 1 1 
Owe 1 0 0 1 0 0 0 0 1 1 0 1 0 1 
Hawk 1 0 0 1 0 0 0 0 1 1 0 1 0 1 
Eagle 0 1 0 1 0 0 0 0 1 1 0 1 0 1 
Fox 0 1 0 0 1 1 0 0 0 1 0 0 0 2 
Dog 0 1 0 0 1 1 0 0 0 0 1 0 0 2 
Wolf 0 1 0 0 1 1 0 1 0 1 1 0 0 2 
Cat 1 0 0 0 1 1 0 0 0 1 0 0 0 2 
Tiger 0 0 1 0 1 1 0 0 0 1 1 0 0 2 
Lion 0 0 1 0 1 1 0 1 0 1 1 0 0 2 
Horse 0 0 1 0 1 1 1 1 0 0 1 0 0 3 
Zebra 0 0 1 0 1 1 1 1 0 0 1 0 0 3 
Cow 0 0 1 0 1 1 1 0 0 0 0 0 0 3 
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           (a) the initial map          (e) the initial map         (i) the initial map 

 

        
          

(b) after 10 epochs         (f) after 10 epochs         (j) after 10 epochs 
 

        
 
           (c) after 50 epochs         (g) after 50 epochs         (k) after 50 epochs 

 

        
 
           (d) after 100 epochs        (h) after 100 epochs       (l) after 100 epochs 
 
Figure 7. The resultant calibrated maps constructed by the three methods under the first cooling regime for the iris data 

set: the left column is method 1; the center column is method 2; the right column is method 3. 
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        (a) the initial map           (e) the initial map         (i) the initial map 

 

        
       

(b) after 10 epochs          (f) after 1 epoch          (j) after 1 epoch 
 

        
       

(c) after 50 epochs          (g) after 5 epochs         (k) after 5 epochs 
 

        
 
        (d) after 100 epochs         (h) after 10 epochs        (l) after 10 epochs 
 
Figure 8. The resultant calibrated maps constructed by the three methods under the second cooling regime for the iris 

data set: the left column is method 1; the center column is method 2; the right column is method 3. 
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 (a) the initial map       (e) the initial map        (i) the initial map 

 

    
   
 (b) after 10 epochs       (f) after 10 epochs       (j) after 10 epochs 
 

    
         
 (c)after 50 epochs      (g) after 50 epochs       (k) after 50 epochs         
 

    
 

       (d) after 100 epochs    (h) after 100 epochs      (l) after 100 epochs 
 
Figure 9. The resultant calibrated maps constructed by the three methods under the first cooling regime for the animal 

data set: the left column is method 1; the center column is method 2; the right column is method 3. 
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 (a) the initial map         (e) the initial map       (i) the initial map 
 

    
       

(b) after 10 epochs        (f) after 1 epoch         (j) after 1 epoch 
 

    
   

(c) after 50 epochs         (g) after 5 epochs       (k) after 5 epochs 
 

    
   

(d) after 100 epochs       (h) after 10 epochs       (l) after 10 epochs 
 
Figure 10. The resultant calibrated maps constructed by the three methods under the second cooling regime for the   

animal data set: the left column is method 1; the center column is method 2; the right column is method 3. 
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4. Conclusions 
In this paper, an efficient initialization scheme 

for the SOM algorithm is proposed. From the 
simulation results, we find that it may be better to 
construct a good initial map and then to use the 
unsupervised learning to make small subsequent 
adjustments. Observing the simulation results we 
can make the following several observations: 
1. The initialization scheme can greatly 

accelerate the training phase since we start out 
from a good initial map. 

2. The initialization scheme is very simple and 
straightforward. 

3. The topological relations of data can be more 
preserved if we incorporate the SOM 
algorithm with the initialization scheme. 

4. Method 2 and our method both can quickly 
form topologically ordered maps. However, 
our method is simpler than method 2 because 
our method requires less computational 
resources than method 2. 

5. With a proper cooling regime, the random 
initialization may also form topologically 
ordered feature maps after a lot of training 
epochs. However, with a wrong cooling 
regime, there may exist defects (e.g. a twist or 
a kink) in the formed map even after a large 
number of training epochs. 
In fact, our method can be regarded as another 

kind of linear initialization method. However, 
compared to the “linear initialization” method 
presented in [18], our method outperforms the 
former one based on the comparison of 
computations since we do not need to compute the 
eigenvectors of an autocorrelation matrix of the 
input patterns. 
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