
Tamkang Journal of Science and Engineering, Vol. 3, No. 4, pp. 249-255 (2000) 249

Carry-Free Radix-2 Subtractive Division Algorithm and
Implementation of the Divider

Jen-Shiun Chiang, Hung-Da Chung and Min-Show Tsai

Department of Electrical Engineering

Tamkang University
Tamsui, Taipei, Taiwan

E-mail: chiang@ee.tku.edu.tw

Abstract

A carry-free subtractive division algorithm is proposed in this
paper. In the conventional subtractive divider, adders are used to find
both quotient bit and partial remainder. Carries are usually generated
in the addition operation, and it may take time to finish the operation,
therefore, the carry propagation delay usually is a bottleneck of the
conventional subtractive divider. In this paper, a carry-free scheme is
proposed by using signed bit representation to represent both quotient
and partial remainder. During the arithmetic operation, a special
technique is used to decide the quotient bit, and the new partial
remainder can be found further by a table lookup-like method. The
signed bit format of the quotient can be converted by on-the-fly
conversion to the binary representation. Based on this algorithm a
32-b/32-b divider is designed and implemented, and the simulation
shows that the divider works well.

Key Words : Divider, radix-2, quotient bit, partial remainder, carry

propagation delay, high speed, Svobota-Tung division
algorithm, signed digit, prescaling, table look-up,
on-the-fly conversion

1. Introduction

Due to the progress of high-speed
computation and multimedia application, the
hardware implementation of all basic arithmetic
operations becomes important in the design of
microprocessors or DSP processors. Whereas the
designs of fast and efficient adders and multipliers
are well understood, the divider still remains a
serious design challenge [8]. Generally, there are
two techniques for performing division, the
digit-recurrence approach and the Newton-
Raphson method [12]. The digit-recurrence
technique uses addition/subtraction and shift in a
manner similar to the traditional paper-and-pencil
approach. The Newton-Raphson method uses
multiplication (multiplicative inverse) and addition
to develop increasingly accurate approximations to
the desired quotient [12]. This paper is

concentrated on the first approach.
The digit-recurrence algorithm obtains the

quotient digit-wisely. In the very well known SRT
division [1, 5] the quotient digit is selected by
inspecting a few of the most significant digits of
both remainder and divisor. In 1963, Svoboda [11]
published a division algorithm where the quotient
digit is estimated without considering the divisor.
In Svobota’s approach, if the estimate is not
accurate, an overflow occurs and the compensation
is carried out. Later Tung [13, 14] investigated the
implementation of the Svoboda division, and
proposed a signed digit-set approach. However, the
Svoboda-Tung algorithm has two drawbacks that
prevent the VLSI implementation. (1) It is valid
only for radixes greater than 4. (2) Because of the
possible compensation owing to overflow on the
iteration, the quotient digit is actually selected
from an over-redundant digit-set (i.e. the quotient

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225196939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Jen-Shiun Chiang et al.

250

digit may be greater than the radix) [10]. Therefore,
the generation of some of the multiples of the
divisor is not straightforward.

The algorithm proposed in this paper to
describe the development of a new division
approach is based on the Svoboda-Tung technique
but overcomes the drawbacks mentioned in the
previous paragraph. The possible compensation
due to overflow on the iteration is avoided by
"rewrite" the two most significant digits, such that
the quotient digit is selected from the same
digit-set as of the remainder. These approaches
simplify the selection of the generation of
multiples of the divisor and quotient digit.

This paper is structured as follows. Section II
reviews very briefly the principles of the
digit-recurrence and Svoboda-Tung divisions.
Section III discusses the development of the new
division algorithm. In section IV, we describe this
division algorithm in the VLSI implementation and
the simulation results. Finally, we make a
conclusion in section V.

2. Basic Properties of the Division
Division instructions are executed in most of

today’s digital computers via a recursive procedure.
The time required for digital division is spent
primarily in the repeated execution of this
recursive procedure [2, 10, 14]. Various division
methods can be described by the following
recursive formula [9].

R(j+1)=r×R(j) –qj+1×D (2.1)
where
j=0, 1,…. , n –1, is the recursion index;
D is the divisor;
qj+1 is the (j+1)th quotient digit to the right of
the radix point;
n is the word length of the quotient;
q0 is the sign;
r is the radix;
R(j+1) is the partial remainder after the
determination of the (j+1)th quotient digit;
R(0) is the dividend (initial partial remainder).
Without loss of generality, it is assumed that

both the dividend R(0) and the divisor D are
fractions, so is the generated quotient Q,

Q=q0q1q2q3q4…..qn-1qn . (2.2)
In Eq. (2.2) q0 is the sign of the quotient

determined by the following operation,
q0=r0

(0)♁d0 . (2.3)
In Eq. (2.3) r0

(0) and d0 are signs of the
dividend and divisor, respectively. The radix point
is located between the sign, q0, and the most
significant digit, q1. The final remainder could be

either positive or negative depending on the
method used. For the conventional restoring
division, the sign of the remainder is identical to
that of the dividend.

The division procedure can be verified by
applying the recursive Eq. (2.1) repeatedly.

For j=0
R(1)=r×R(0) –q1×D (2.4)
For j=1
R(2)=r×R(1) –q2×D
 = r2×R(0) –(r×q1+ q2)D (2.5)
………….
For j=n –1
R(n)=rn×R(0)–(rn-1×q1+…+r×q n-1+ qn)D (2.6)
The above iterative derivation shows that the

division procedure consists of a sequence of
additions, subtractions, or shifts corresponding to
the negative, positive, or zero value of the
successively generated quotient qj+1, for j=0,1,2,...,
n-1. Eq. (2.6) can be rewritten as follows:

D

Rrqr
D

R n

1j

(n)-n

j
j-

(0)

∑
=

×
+×= (2.7)

where qrQ j

n

1j

j- ×= ∑
=

 (2.8)

and R=r-n×R(n) (2.9)
represent the quotient and final remainder
respectively.

The SRT division [12] uses a redundant
signed digit-set to represent the quotient Q and
selects the quotient digit qj+1 by inspecting a few of
the most significant digits of both the remainder R(j)
and divisor D. In 1963, Svoboda [9] published a
division algorithm where qj+1 is estimated
independent of the divisor D. The estimate of qj+1
is the most significant digit r1

(j) of the jth remainder.
If the estimate is not accurate, an overflow occurs
and the compensation is carried out. The Svoboda
algorithm is valid for a divisor in the range 1≦

D<1+1/r and uses the conventional digit-set
S={0,1,…, r-1}. Tung [13, 14] investigated the
implementation of the Svoboda division and
proposed a signed digit-set
S<r,x>={ x,, 1 , 0, 1, ..., x } (r is the radix, x

stands for –x, and 1-rx1
2
r

≤≤+⎥⎥
⎤

⎢⎢
⎡) for the

computation.

3. The New Division Algorithm
This radix-2 division algorithm to obtain the

digit-wise is based on the recurrence of

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider

251

R(j+1) = 2×R(j) – r1
(j)×D (3.1)

Where
R(j) is the remainder after the jth iteration;
r1

(j) is the quotient digit selected at the
(j+1)th step;
D is the divisor.
The dividend and divisor are in the IEEE 754

normalized format in this division algorithm. In
order to avoid the possible overflow on the
iteration, prescaling is proceeded first [6, 7]. If the
divisor, D, is greater than 1.12, prescaling is
proceeded and the dividend, R(0), and divisor, D,
are multiplied by 0.7510 (or 0.112) respectively. By
the prescaling procedure, the iteration of the
operation will not generate any overflow, and the
division operation can undergo smoothly [8]. In
order to have carry-free subtraction, signed bit
representation is applied to the quotient and partial
remainder. In the signed bit representation, the
signed bit is selected from set {1, 0, 1}, where
1 1= − . Since − = −1 0 1 (or 1 0 1= −),
1 1 0= − , and 0 0 0= − , therefore, we can use
two sets of data, positive part and negative part, to
represent a signed bit number. For example

 1 1 0 1 1 0 1 0 10000010= − 01011000 ,
We call 10000010 the positive part, and 01011000
the negative part. In the arithmetic operation, these
two parts work concurrently, and the speed of the
operation can be increased.

During the addition or subtraction operation,
the digit may become +2 or –2 and thus may cause
carry propagation. In order to prevent the carry
propagation, we use two bits to represent each digit
of the positive part and negative part of the signed
bit number. For example

20102021 = 10020000 – 02000102
 = 01 00 00 10 00 00 00 00

– 00 10 00 00 00 01 00 10.
By the above arrangement, the carry propagation in
the addition or subtraction operation can be
avoided.

After the addition or subtraction mentioned in
the previous paragraph, the digit may be 2 or –2. If
we do not make adjustment, the digit may diverge
(overflow) in the future addition or subtraction.
Therefore, the adjustment is made after the
addition or subtraction, and we call this step as the
"digit adjustment". In the digit adjustment, the
positive part and negative part are independent and
can work concurrently. Without loss of generality,
let us discuss the positive part, and the negative
part is in the same manner. In order to increase the
efficiency, we partition the positive part and

negative part of the number into several segments.
Actually, the number of the segments can be
decided by the designer, and for simplicity here we
set each segment to four digits. In order to avoid
the divergence of the digit, the digit can not be
greater than 1, i.e., if the digit is 2, then it has to be
adjusted. For example, 1002 has to be adjusted to a
five-bit number, 01010, and the MSB of this
five-bit number is the carry bit. This adjustment
can be finished by two approaches. One is to
precalculate the results and store them in a table,
and we can look it up from the table later. The
other approach is to use a 4-bit adder to finish it.
For example, 1002 can be adjusted as

All the higher bits are shifted left one position and
are added to the lower bits. The divider that we
will design uses the table lookup approach.

In the digit adjustment, there may be a carry
generated, for example
 2010 = 1 0 0 1 0 .
Therefore, we have to adjust it again. If there is a
carry from the lower segment, a "1" has to be
added to the current segment. If the current
segment is 01111, a carry is generated to the higher
segment. However, the largest number is 2222 in a
segment, and the digit adjustment is 11110, thus we
do not need to worry about the case of 11111 that
may cause another carry.

Let us briefly summarize the digit adjustment.
From the above discussion, the digit adjustment
needs two passes. The first pass is to adjust each
segment with digit 2 or 2 . If a carry is generated
in the first pass, the second pass is needed. In the
second pass, the carry from the lower segment is
added to its higher adjacent segment. Since the
largest adjusted segment is 1110, the carry from the
lower segment makes the current segment to be
1111 and no further carry is generated, therefore, it
is carry free in the second pass. The
implementation of the digit adjustment can be
accomplished by Fig. 1. In Fig. 1, the top table of
segment i is used to finish the digitadjustment of
the first pass, and the carry is added to the bottom
adder of segment i+1 to finish the second pass.
Actually, the bottom adder can be replaced by a
counter or some combinational circuit.

1002 → 0 1 0 0 0 0 1 0

 1 0 0 0

 + 0 0 0 1

 0 0 0 1 0 0 0 1 0 0

Jen-Shiun Chiang et al.

252

Figure 1. Digit Adjustment for the ith Segment

After the digit adjustment, we have to

combine the positive and negative part of the
number to a signed bit representation. We call this
step as "refresh" step. In the refresh step, the digit
in the positive and negative part may be +1 and -1
simultaneously, and these +1 and -1 can be
canceled. For example

Positive part 1010 1 1 01
Negative part 0001 1 1 00

Signed bit number 1011 0001

In the procedure of quotient searching, '0' means
shift, therefore the speed of the divison can be
increased. The refresh step can thus increase the
speed of the operation.

Now let us discuss the iteration steps. Since it
is an operation of signed bit numbers, the dividend
and divisor have to be converted to the signed bit
number representation. Here we simply set the
negative part to all zeroes and add them to the
dividend and divisor, and convert the dividend and
divisor to 2-bit representation for the positive part.
The first iteration of the division is to subtract the
divisor from the dividend to find the first partial
remainder and set the first quotient bit to 1. After
the subtraction, the partial remainder has to do
"digit adjustment" and "refresh" to find the correct
partial remainder. Then we have to decide the next
quotient bit and next step operation. There are
three cases for the next quotient bit.

(1) If the MSB of the partial remainder is 1, the
next quotient bit is set to 1 and the next
operation is subtraction (Ri–D).

(2) If the MSB of the partial remainder is 1 (–1),
the next quotient bit is set to 1 and the next
operation is addition (Ri+D).

(3) If the MSB of the partial remainder is 0, the
next quotient bit is 0 and the next operation is
shift.

From case (3) we find when the MSB of the partial
remainder is 0, the next operation is simply shift.
By this characteristic, we can simplify the
operation further. By inspecting the most
significant two digits, if the two digits are 1 1
or 11 , they can be rewritten to be 01 or 0 1
respectively but keep their values unchanged. We
call this step as "rewrite". The rewrite step can
simplify the iteration operation. After the quotient
bit and next step operation is decided; the iteration
will proceed until find the expected quotient.

Since the quotient is represented in the
signed-bit format, we need to convert it to the
binary number format. The well-known on-the-fly
conversion is applied [8]. The formula of the
on-the-fly conversion is listed as follows [5].

Q[K+1]=
Q[K]+2 q
Q[K], q

T[K]+2 q

-K
K+1

K+1
-K

K+1

,

,

=
=
= −

⎧
⎨
⎪

⎩⎪

1
0

1

T[K+1]=

Q[K], q

T[K]+2 q
T[K], q

K+1
-K

K+1

K+1

=
=
= −

⎧
⎨
⎪

⎩⎪

1

0
1

,

Since on-the-fly conversion and the division

iteration can operate concurrently, we can find the
quotient in binary format after the division
iteration.

We have described the iteration operation of
the division procedure and the procedure can be
summarized as follows.

Step1 Prescaling
Step2 Convert the dividend and divisor to signed

bit representation.
Step3 Subtract the divisor from the dividend to

find the partial remainder and set quotient
bit to 1.

Step4 Digit adjustment of the partial remainder.
Step5 Refresh the partial remainder.
Step6 Rewrite the partial remainder.
Step7 Decide the quotient bit and the operation

of next iteration. On-the-fly conversion is
used to convert the signed bit format of the
quotient bit to the binary format.

Step8 Repeat Step 4 to Step 7 till finish the
iteration times.

he flow chart of the division algorithm is shown in
Fig. 2.

4

Carry i

Table

Adder

0

Carry i-1

4

4

4

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider

253

4. The Design and Simulation of the
32-b/32-b Divider

By the division algorithm mentioned in the
previous section, a 32-b/32-b divider is designed in
Verilog HDL. The architecture of the proposed
divider is shown in Fig. 3. From the Verilog HDL

Fig. 2. The Algorithm of the Division

Fig. 3. The Architecture of the Divider

Fig. 4. Functional Simulation of the Division

start

D>=1.1

prescale

counter<=32

end

digit
adjustment

divisible

refresh

rewrite

qutient evaluation
(on the fly)

count=count+1

noyes

yes no

yes

first iteration

no

prescale

signed bit
conversion

mux

carry_free adder

digit adjustment

evaluate qutient

control

rewrite

refresh

mux

counter

A D

Jen-Shiun Chiang et al.

254

Fig. 5. Gate-level Simulation of the Division

Fig. 6. VLSI Layout of the 32-b/32-b Divider

Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider

255

simulation, we find the speed and efficiency is
very good. The Verilog HDL code is synthesized
by the SYNOPSYS further, and the VLSI Layout
(TSMC’S 0.6μm process) is also finished. The
core area is 3250µ m× 3250µ m. The functional
simulation of the 32-b/32-b divider is shown in Fig.
2. The gate level simulation of the divider is shown
in Fig. 5. From Fig. 5, we find that each iteration
takes 7ns. The corresponding VLSI layout is
shown in Fig. 6.

5. Conclusion
A new digit-recurrence division algorithm based on
the Svoboda-Tung technique has been described.
The new algorithm overcomes the drawbacks of
the Svoboda-Tung division. In this division
algorithm, we use "digit adjustment" and "refresh"
technique to avoid the carry propagation generated
by the addition or subtraction of the partial
remainder and divisor. The "rewrite" technique can
make the iteration operation more efficient and
faster. Based on the division algorithm a 32-b/32-b
divider is designed in Verilog HDL. The simulation
shows that this divider works very well.

References
[1] Atkins, D. E., “Higher-Radix Division Using

Estimates of the Divisor and Partial
Remainders”, IEEE Trans. on Comp., vol.
C-17, no. 10, Oct., pp. 925-934 (1968).

[2] Bashagha, A. E. and Ibrahim, M. K., “A New
Digit-Serial Divider Architecture”, Int. J. of
Electronics, vol.75, no. 7, July, pp. 133-140
(1993).

[3] Burgess, N., “A Fast Division Algorithm for
VLSI”, IEEE Int. Conf. On Computer Design,
pp. 560-563 (1991).

[4] Cortadella, J. and Lang, T., “High-Radix
Division and Square-Root with Speculation”,
IEEE Trans. on Comp., vol. 43, no. 8, pp.
919-931, Aug. (1994).

[5] Ercegovac, M. D., Lang, T., “ON-the-Fly
Conversion of Redundant into Conversion
Representations”, IEEE Trans. on Comp., vol.
C-36, no. 7, July, pp. 895-897 (1987).

[6] Ercegovac, D. and Lang, T., “Simple
Raduix-4 with Scaling”, IEEE Trans. on
Comp., vol. 39, no. 9, Aug., pp. 1204-1208
(1990).

[7] Ercegovac, M. D. and Lang, T., “Simple
Radix-4 Division Unit with Operands
Scaling”, IEEE Trans. on Comp., vol. 49, no.
9, Sept., pp. 1204-1208 (1990).

[8] Ercegovac, M. D. and Lang, T., Division and
Square Root: Digit-recurrence Algorithms
and Implementations, The Netherlands:
Kluwer Academic Publishers (1994).

[9] Hwang, K., Computer Arithmetic Principles,
Architecture, and Design, John Wiley and
Sons (1979).

[10] Montuschj, P. and Cimiera, L.,
“Over-Redundant Digit Sets and the Design
of Digit-by-Digit Division Units,” IEEE
Trans. on Comp., vol. 43, no. 3, pp. 269-279,
March (1994).

[11] Svoboda, A., “An Algorithm for Division”,
Information Processing Machines, no. 9, pp.
25-32, Sept. (1963).

[12] Swartzlander, E. E., Computer Arithmetic, vol.
1, Los Alamitos-California, IEEE Computer
Society Press, pp. 156-157 (1990)

[13] Tung, C., “A Division Algorithm for
Signed-Digit Arithmetic”, IEEE Trans. on
Comp., vol. C-17, no. 9, pp. 887-889, Sept.
(1968).

[14] Tung, C., “Signed-Digit Division Using
Combinational Arithmetic”, IEEE Trans. on
Comp., vol. C-19, no. 8, pp. 746-748, Aug.
(1970).

[15] Williams, T. E. and Horowitz, M. A., “A
160ns 54-bit CMOS Division Implementation
Using Self-Timing and Symmetrically
Overlapped SRT Stages”, 10th IEEE Symp.
Computer Arithmetic, Grenoble, France, pp.
210-217, June (1991).

Manuscript Recceived: Nov. 18, 1999
 Revision Received: Oct. 20, 2000

 And Accepted: Nov. 4, 2000

