
Tamkang Journal of Science and Engineering, Vol. 3, No. 4, pp. 249-255  (2000) 249

Carry-Free Radix-2 Subtractive Division Algorithm and 
Implementation of the Divider 

 
Jen-Shiun Chiang, Hung-Da Chung and Min-Show Tsai 

 
Department of Electrical Engineering 

Tamkang University 
Tamsui, Taipei, Taiwan 

E-mail: chiang@ee.tku.edu.tw 
 
 
 

Abstract 
 

A carry-free subtractive division algorithm is proposed in this 
paper. In the conventional subtractive divider, adders are used to find 
both quotient bit and partial remainder. Carries are usually generated 
in the addition operation, and it may take time to finish the operation, 
therefore, the carry propagation delay usually is a bottleneck of the 
conventional subtractive divider. In this paper, a carry-free scheme is 
proposed by using signed bit representation to represent both quotient 
and partial remainder. During the arithmetic operation, a special 
technique is used to decide the quotient bit, and the new partial 
remainder can be found further by a table lookup-like method. The 
signed bit format of the quotient can be converted by on-the-fly 
conversion to the binary representation. Based on this algorithm a 
32-b/32-b divider is designed and implemented, and the simulation 
shows that the divider works well. 
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1. Introduction 

Due to the progress of high-speed 
computation and multimedia application, the 
hardware implementation of all basic arithmetic 
operations becomes important in the design of 
microprocessors or DSP processors. Whereas the 
designs of fast and efficient adders and multipliers 
are well understood, the divider still remains a 
serious design challenge [8]. Generally, there are 
two techniques for performing division, the 
digit-recurrence approach and the Newton- 
Raphson method [12]. The digit-recurrence 
technique uses addition/subtraction and shift in a 
manner similar to the traditional paper-and-pencil 
approach. The Newton-Raphson method uses 
multiplication (multiplicative inverse) and addition 
to develop increasingly accurate approximations to 
the desired quotient [12]. This paper is 

concentrated on the first approach. 
The digit-recurrence algorithm obtains the 

quotient digit-wisely. In the very well known SRT 
division [1, 5] the quotient digit is selected by 
inspecting a few of the most significant digits of 
both remainder and divisor. In 1963, Svoboda [11] 
published a division algorithm where the quotient 
digit is estimated without considering the divisor. 
In Svobota’s approach, if the estimate is not 
accurate, an overflow occurs and the compensation 
is carried out. Later Tung [13, 14] investigated the 
implementation of the Svoboda division, and 
proposed a signed digit-set approach. However, the 
Svoboda-Tung algorithm has two drawbacks that 
prevent the VLSI implementation. (1) It is valid 
only for radixes greater than 4. (2) Because of the 
possible compensation owing to overflow on the 
iteration, the quotient digit is actually selected 
from an over-redundant digit-set (i.e. the quotient 
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digit may be greater than the radix) [10]. Therefore, 
the generation of some of the multiples of the 
divisor is not straightforward. 

The algorithm proposed in this paper to 
describe the development of a new division 
approach is based on the Svoboda-Tung technique 
but overcomes the drawbacks mentioned in the 
previous paragraph. The possible compensation 
due to overflow on the iteration is avoided by 
"rewrite" the two most significant digits, such that 
the quotient digit is selected from the same 
digit-set as of the remainder. These approaches 
simplify the selection of the generation of 
multiples of the divisor and quotient digit. 

This paper is structured as follows. Section II 
reviews very briefly the principles of the 
digit-recurrence and Svoboda-Tung divisions. 
Section III discusses the development of the new 
division algorithm. In section IV, we describe this 
division algorithm in the VLSI implementation and 
the simulation results. Finally, we make a 
conclusion in section V. 

2. Basic Properties of the Division 
Division instructions are executed in most of 

today’s digital computers via a recursive procedure. 
The time required for digital division is spent 
primarily in the repeated execution of this 
recursive procedure [2, 10, 14]. Various division 
methods can be described by the following 
recursive formula [9]. 

R(j+1)=r×R(j) –qj+1×D             (2.1) 
where  
j=0, 1,…. , n –1, is the recursion index; 
D is the divisor; 
qj+1 is the (j+1)th quotient digit to the right of 
the radix point; 
n is the word length of the quotient; 
q0 is the sign; 
r is the radix; 
R(j+1) is the partial remainder after the 
determination of the (j+1)th quotient digit; 
R(0) is the dividend (initial partial remainder). 
Without loss of generality, it is assumed that 

both the dividend R(0) and the divisor D are 
fractions, so is the generated quotient Q, 

Q=q0q1q2q3q4…..qn-1qn .            (2.2) 
In Eq. (2.2) q0 is the sign of the quotient 

determined by the following operation,  
q0=r0

(0)♁d0 .                     (2.3) 
In Eq. (2.3) r0

(0) and d0 are signs of the 
dividend and divisor, respectively. The radix point 
is located between the sign, q0, and the most 
significant digit, q1. The final remainder could be 

either positive or negative depending on the 
method used. For the conventional restoring 
division, the sign of the remainder is identical to 
that of the dividend. 

The division procedure can be verified by 
applying the recursive Eq. (2.1) repeatedly. 

For j=0 
R(1)=r×R(0) –q1×D                   (2.4) 
For j=1 
R(2)=r×R(1) –q2×D 
   = r2×R(0) –(r×q1+ q2)D            (2.5) 
…………. 
For j=n –1 
R(n)=rn×R(0)–(rn-1×q1+…+r×q n-1+ qn)D  (2.6) 
The above iterative derivation shows that the 

division procedure consists of a sequence of 
additions, subtractions, or shifts corresponding to 
the negative, positive, or zero value of the 
successively generated quotient qj+1, for j=0,1,2,..., 
n-1. Eq. (2.6) can be rewritten as follows: 

      
D

Rrqr
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=
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            (2.8) 

and   R=r-n×R(n)                    (2.9) 
represent the quotient and final remainder 
respectively. 

The SRT division [12] uses a redundant 
signed digit-set to represent the quotient Q and 
selects the quotient digit qj+1 by inspecting a few of 
the most significant digits of both the remainder R(j) 
and divisor D. In 1963, Svoboda [9] published a 
division algorithm where qj+1 is estimated 
independent of the divisor D. The estimate of qj+1 
is the most significant digit r1

(j) of the jth remainder. 
If the estimate is not accurate, an overflow occurs 
and the compensation is carried out. The Svoboda 
algorithm is valid for a divisor in the range 1≦

D<1+1/r and uses the conventional digit-set 
S={0,1,…, r-1}. Tung [13, 14] investigated the 
implementation of the Svoboda division and 
proposed a signed digit-set 
S<r,x>={ x, ...., 1 , 0, 1, ..., x } (r is the radix, x  

stands for –x, and 1-rx1
2
r

≤≤+⎥⎥
⎤

⎢⎢
⎡ ) for the 

computation. 

3. The New Division Algorithm 
This radix-2 division algorithm to obtain the 

digit-wise is based on the recurrence of  
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R(j+1)  = 2×R(j) – r1
(j)×D              (3.1) 

Where 
R(j)  is the remainder after the jth iteration; 
r1

(j)  is the quotient digit selected at the 
(j+1)th step; 
D  is the divisor. 
The dividend and divisor are in the IEEE 754 

normalized format in this division algorithm. In 
order to avoid the possible overflow on the 
iteration, prescaling is proceeded first [6, 7]. If the 
divisor, D, is greater than 1.12, prescaling is 
proceeded and the dividend, R(0), and divisor, D, 
are multiplied by 0.7510 (or 0.112) respectively. By 
the prescaling procedure, the iteration of the 
operation will not generate any overflow, and the 
division operation can undergo smoothly [8]. In 
order to have carry-free subtraction, signed bit 
representation is applied to the quotient and partial 
remainder. In the signed bit representation, the 
signed bit is selected from set {1, 0, 1}, where 
1 1= − . Since − = −1 0 1  (or 1 0 1= − ), 
1 1 0= − , and 0 0 0= − , therefore, we can use 
two sets of data, positive part and negative part, to 
represent a signed bit number. For example 

   1 1 0 1 1 0 1 0 10000010= − 01011000 , 
We call 10000010 the positive part, and 01011000 
the negative part. In the arithmetic operation, these 
two parts work concurrently, and the speed of the 
operation can be increased. 

During the addition or subtraction operation, 
the digit may become +2 or –2 and thus may cause 
carry propagation. In order to prevent the carry 
propagation, we use two bits to represent each digit 
of the positive part and negative part of the signed 
bit number. For example 

20102021  = 10020000 – 02000102 
          = 01 00 00 10 00 00 00 00  

– 00 10 00 00 00 01 00 10. 
By the above arrangement, the carry propagation in 
the addition or subtraction operation can be 
avoided. 

After the addition or subtraction mentioned in 
the previous paragraph, the digit may be 2 or –2. If 
we do not make adjustment, the digit may diverge 
(overflow) in the future addition or subtraction. 
Therefore, the adjustment is made after the 
addition or subtraction, and we call this step as the 
"digit adjustment". In the digit adjustment, the 
positive part and negative part are independent and 
can work concurrently. Without loss of generality, 
let us discuss the positive part, and the negative 
part is in the same manner. In order to increase the 
efficiency, we partition the positive part and 

negative part of the number into several segments. 
Actually, the number of the segments can be 
decided by the designer, and for simplicity here we 
set each segment to four digits. In order to avoid 
the divergence of the digit, the digit can not be 
greater than 1, i.e., if the digit is 2, then it has to be 
adjusted. For example, 1002 has to be adjusted to a 
five-bit number, 01010, and the MSB of this 
five-bit number is the carry bit. This adjustment 
can be finished by two approaches. One is to 
precalculate the results and store them in a table, 
and we can look it up from the table later. The 
other approach is to use a 4-bit adder to finish it. 
For example, 1002 can be adjusted as 

All the higher bits are shifted left one position and 
are added to the lower bits. The divider that we 
will design uses the table lookup approach. 

In the digit adjustment, there may be a carry 
generated, for example 
         2010 = 1 0 0 1 0 . 
Therefore, we have to adjust it again. If there is a 
carry from the lower segment, a "1" has to be 
added to the current segment. If the current 
segment is 01111, a carry is generated to the higher 
segment. However, the largest number is 2222 in a 
segment, and the digit adjustment is 11110, thus we 
do not need to worry about the case of 11111 that 
may cause another carry.  

Let us briefly summarize the digit adjustment. 
From the above discussion, the digit adjustment 
needs two passes. The first pass is to adjust each 
segment with digit 2 or 2 . If a carry is generated 
in the first pass, the second pass is needed. In the 
second pass, the carry from the lower segment is 
added to its higher adjacent segment. Since the 
largest adjusted segment is 1110, the carry from the 
lower segment makes the current segment to be 
1111 and no further carry is generated, therefore, it 
is carry free in the second pass. The 
implementation of the digit adjustment can be 
accomplished by Fig. 1. In Fig. 1, the top table of 
segment i is used to finish the digitadjustment of 
the first pass, and the carry is added to the bottom 
adder of segment i+1 to finish the second pass. 
Actually, the bottom adder can be replaced by a 
counter or some combinational circuit. 
 

1002 → 0 1 0 0 0 0 1 0 

         1  0  0  0 

   +  0  0  0  1    

    0 0 0 1 0 0 0 1 0 0 
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Figure 1. Digit Adjustment for the ith Segment 

 
After the digit adjustment, we have to 

combine the positive and negative part of the 
number to a signed bit representation. We call this 
step as "refresh" step. In the refresh step, the digit 
in the positive and negative part may be +1 and -1 
simultaneously, and these +1 and -1 can be 
canceled. For example 

Positive part      1010  1 1 01  
Negative part     0001  1 1 00  

Signed bit number  1011  0001  
 

In the procedure of quotient searching, '0' means 
shift, therefore the speed of the divison can be 
increased. The refresh step can thus increase the 
speed of the operation. 

Now let us discuss the iteration steps. Since it 
is an operation of signed bit numbers, the dividend 
and divisor have to be converted to the signed bit 
number representation. Here we simply set the 
negative part to all zeroes and add them to the 
dividend and divisor, and convert the dividend and 
divisor to 2-bit representation for the positive part. 
The first iteration of the division is to subtract the 
divisor from the dividend to find the first partial 
remainder and set the first quotient bit to 1. After 
the subtraction, the partial remainder has to do 
"digit adjustment" and "refresh" to find the correct 
partial remainder. Then we have to decide the next 
quotient bit and next step operation. There are 
three cases for the next quotient bit. 

(1) If the MSB of the partial remainder is 1, the 
next quotient bit is set to 1 and the next 
operation is subtraction (Ri–D).   

(2) If the MSB of the partial remainder is 1  (–1), 
the next quotient bit is set to 1  and the next 
operation is addition (Ri+D). 

(3) If the MSB of the partial remainder is 0, the 
next quotient bit is 0 and the next operation is 
shift. 

From case (3) we find when the MSB of the partial 
remainder is 0, the next operation is simply shift. 
By this characteristic, we can simplify the 
operation further. By inspecting the most 
significant two digits, if the two digits are 1 1  
or   11 , they can be rewritten to be 01  or 0 1  
respectively but keep their values unchanged. We 
call this step as "rewrite". The rewrite step can 
simplify the iteration operation. After the quotient 
bit and next step operation is decided; the iteration 
will proceed until find the expected quotient. 

Since the quotient is represented in the 
signed-bit format, we need to convert it to the 
binary number format. The well-known on-the-fly 
conversion is applied [8]. The formula of the 
on-the-fly conversion is listed as follows [5]. 

Q[K+1]=
Q[K]+2     q
Q[K],          q

T[K]+2   q

-K
K+1

K+1
-K

K+1

,

,

=
=
= −

⎧
⎨
⎪

⎩⎪

1
0

1

 

T[K+1]=

Q[K],        q

T[K]+2  q
T[K],       q

K+1
-K

K+1

K+1

=
=
= −

⎧
⎨
⎪

⎩⎪

1

0
1

,  

 
Since on-the-fly conversion and the division 

iteration can operate concurrently, we can find the 
quotient in binary format after the division 
iteration. 

We have described the iteration operation of 
the division procedure and the procedure can be 
summarized as follows. 

 
Step1 Prescaling 
Step2 Convert the dividend and divisor to signed 

bit representation. 
Step3 Subtract the divisor from the dividend to 

find the partial remainder and set quotient 
bit to 1. 

Step4 Digit adjustment of the partial remainder. 
Step5 Refresh the partial remainder. 
Step6 Rewrite the partial remainder. 
Step7 Decide the quotient bit and the operation 

of next iteration. On-the-fly conversion is 
used to convert the signed bit format of the 
quotient bit to the binary format. 

Step8 Repeat Step 4 to Step 7 till finish the 
iteration times. 

 
he flow chart of the division algorithm is shown in 
Fig. 2. 
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4. The Design and Simulation of the 
32-b/32-b Divider 

By the division algorithm mentioned in the 
previous section, a 32-b/32-b divider is designed in 
Verilog HDL. The architecture of the proposed 
divider is shown in Fig. 3. From the Verilog HDL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The Algorithm of the Division 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 3. The Architecture of the Divider 
 

 
 

 
 

Fig. 4. Functional Simulation of the Division 
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Fig. 5. Gate-level Simulation of the Division 
 
 
 

 
 
 

Fig. 6. VLSI Layout of the 32-b/32-b Divider 
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simulation, we find the speed and efficiency is 
very good. The Verilog HDL code is synthesized 
by the SYNOPSYS further, and the VLSI Layout 
(TSMC’S 0.6μm process) is also finished. The 
core area is 3250µ m× 3250µ m. The functional 
simulation of the 32-b/32-b divider is shown in Fig. 
2. The gate level simulation of the divider is shown 
in Fig. 5. From Fig. 5, we find that each iteration 
takes 7ns. The corresponding VLSI layout is 
shown in Fig. 6. 

5. Conclusion 
A new digit-recurrence division algorithm based on 
the Svoboda-Tung technique has been described. 
The new algorithm overcomes the drawbacks of 
the Svoboda-Tung division. In this division 
algorithm, we use "digit adjustment" and "refresh" 
technique to avoid the carry propagation generated 
by the addition or subtraction of the partial 
remainder and divisor. The "rewrite" technique can 
make the iteration operation more efficient and 
faster. Based on the division algorithm a 32-b/32-b 
divider is designed in Verilog HDL. The simulation 
shows that this divider works very well. 

References 
[1] Atkins, D. E., “Higher-Radix Division Using 

Estimates of the Divisor and Partial 
Remainders”, IEEE Trans. on Comp., vol. 
C-17, no. 10, Oct., pp. 925-934 (1968). 

[2] Bashagha, A. E. and Ibrahim, M. K., “A New 
Digit-Serial Divider Architecture”, Int. J. of 
Electronics, vol.75, no. 7, July, pp. 133-140 
(1993). 

[3] Burgess, N., “A Fast Division Algorithm for 
VLSI”, IEEE Int. Conf. On Computer Design, 
pp. 560-563 (1991). 

[4] Cortadella, J. and Lang, T., “High-Radix 
Division and Square-Root with Speculation”, 
IEEE Trans. on Comp., vol. 43, no. 8, pp. 
919-931, Aug. (1994). 

[5] Ercegovac, M. D., Lang, T., “ON-the-Fly 
Conversion of Redundant into Conversion 
Representations”, IEEE Trans. on Comp., vol. 
C-36, no. 7, July, pp. 895-897 (1987). 

[6] Ercegovac, D. and Lang, T., “Simple 
Raduix-4 with Scaling”, IEEE Trans. on 
Comp., vol. 39, no. 9, Aug., pp. 1204-1208 
(1990). 

[7] Ercegovac, M. D. and Lang, T., “Simple 
Radix-4 Division Unit with Operands 
Scaling”, IEEE Trans. on Comp., vol. 49, no. 
9, Sept., pp. 1204-1208 (1990). 

[8] Ercegovac, M. D. and Lang, T., Division and 
Square Root: Digit-recurrence Algorithms 
and Implementations, The Netherlands: 
Kluwer Academic Publishers (1994). 

[9] Hwang, K., Computer Arithmetic Principles, 
Architecture, and Design, John Wiley and 
Sons (1979). 

[10] Montuschj, P. and Cimiera, L., 
“Over-Redundant Digit Sets and the Design 
of Digit-by-Digit Division Units,” IEEE 
Trans. on Comp., vol. 43, no. 3, pp. 269-279, 
March (1994). 

[11] Svoboda, A., “An Algorithm for Division”, 
Information Processing Machines, no. 9, pp. 
25-32, Sept. (1963). 

[12] Swartzlander, E. E., Computer Arithmetic, vol. 
1, Los Alamitos-California, IEEE Computer 
Society Press, pp. 156-157 (1990) 

[13] Tung, C., “A Division Algorithm for 
Signed-Digit Arithmetic”, IEEE Trans. on 
Comp., vol. C-17, no. 9, pp. 887-889, Sept. 
(1968). 

[14] Tung, C., “Signed-Digit Division Using 
Combinational Arithmetic”, IEEE Trans. on 
Comp., vol. C-19, no. 8, pp. 746-748, Aug. 
(1970). 

[15] Williams, T. E. and Horowitz, M. A., “A 
160ns 54-bit CMOS Division Implementation 
Using Self-Timing and Symmetrically 
Overlapped SRT Stages”, 10th IEEE Symp. 
Computer Arithmetic, Grenoble, France, pp. 
210-217, June (1991). 

 
 

Manuscript Recceived: Nov. 18, 1999 
     Revision Received: Oct. 20, 2000 

    And Accepted: Nov. 4, 2000 


