
Optimal Test Access Mechanism (TAM) for Reducing

Test Application Time of Core-Based SOCs

Jiann-Chyi Rau*, Po-Han Wu, Wnag-Tiao Huang, Chih-Lung Chien and Chien-Shiun Chen

Department of Electrical Engineering, Tamkang University,

Tamsui, Taiwan 251, R.O.C.

Abstract

In this paper, we propose an algorithm based on a framework of reconfigurable multiple scan

chains for system-on-chip to minimize test application time. The control signal combination causes the

computing time increasing exponentially, and the algorithm we proposed introduces a heuristic control

signal selecting method to solve this serious problem. We also minimize the test application time by

using the balancing method to assign registers into multiple scan chains. The results show that it could

significantly reduces both the test application time and the computation time.

Key Words: Test Access Mechanism (TAM), Test Application Time, Core-Based SOCs

1. Introduction

1.1 Test Challenge in SOC Designs

The more and more widening design productivity

gap between VLSI system capabilities and design engi-

neering capability, in a limited time to market scenario,

has prompted many design houses to adopt a policy of

design reuse at the core level [1]. The Semiconductor

Industry Association’s Technology Roadmap [2] pre-

dicts the percentage of reusable cores in SOC to be rising

to 80% in 2006. However, with the increasing complex-

ity and reduction of design cycle, the test application

time of SOC is becoming a major bottleneck for time-

to-market. It is more and more important for reusability

of design to reduce the design time, but it is not enough

when the verification and testing for reusable cores take

up the most of design time.

1.2 TAM Architecture

There are three main kinds of test access architectures

[3]: (a) Multiplexing Architecture; (b) Daisy-chain Archi-

tecture; (c) Distribution Architecture. Varma and Ahatia

[4] proposed the Test Bus Architecture which combines

the Multiplexing and Distribution Architectures. The

modules connected to a common test bus are tested in an

arbitrary but sequential order. (note: the order of test for

each core may be different in practice). We call this sched-

ule as “serial testing mode”. We also show the parallel

testing mode on the TestRail Architecture which pre-

sented by Marinissen et al. [5] is a combination of the

Daisychain and Distribution Architectures. The advan-

tage of the TestRail Architecture over the Test Bus Archi-

tecture is that it allows access to multiple or all wrappers

simultaneously, which facilitates module-external testing.

1.3 Wrapper Architecture

A standardized, but scalable test wrapper is an inte-

gral part of the IEEE 1500 working group proposal [2].

Apart from these mandatory modes, a core test wrapper

might have several optional modes, e.g., a detach mode

to disconnect the core from its system chip environment

and the test access mechanism, or a bypass mode for the

Universal BIST Scheduler [6] and the TestRail [7] test

access mechanism.

1.4 Test Wrapper Design

A scan test for a core consists of three phases: (1)

scan in of the test patterns to the scan registers and ready

for normal execution, (2) normal execution, and (3) cap-

ture and scan out of the responses by scan registers. We

Tamkang Journal of Science and Engineering, Vol. 13, No. 3, pp. 305�314 (2010) 305

*Corresponding author. E-mail: jcrau@ee.tku.edu.tw



define for each core i the number of test pattern pi. Let si

be the length of the longest wrapper scan-in chain to fill

all flip flops for a core i, and so is the time of the longest

wrapper scan-out to scan out all flip flops.

We suppose that in each pattern exactly one time slot

is used for the normal execution step; this means that the

right input data has to be available at the core inputs at the

moment of the normal execution step. This can be accom-

plished by adding scannable flip flops around the core [8].

The test time ti of core i becomes the sum of the scan-in

time, the time for normal execution, and the scan-out time:

ti = si � pi + pi + so � pi. In the scan test process it is common

practice to use pipelining; when one pattern is scanned

out, the next pattern is scanned in. This reduces the test

time of a core to: ti = (1 + max{si, so}) � pi + min{si, so}.

When the term ‘+1’ indicates that pipelining cannot be

used for the scanning out the last pattern.

E. J. Marinissen presented a Rectangle Packing Mo-

del in [9]. The total TAM width was partitioned among a

number of fixed-width test buses and each core was as-

signed to one of these TAMs. In Figure 1.1, each test of

cores could be modeled as a rectangle by a fixed TAM

width and the testing time. This is defined as a wrap-

per/TAM design problem in [10]. For different TAM

widths, the same test could be modeled in different rectan-

gles by width and the testing time. Therefore, the schedule

problem would be treated as a 2D Bin-packing problem.

Test schedule is the schedule for testing a SOC. Basi-

cally, a test schedule for a SOC should maintain all pro-

cesses on testing. It includes the order of the cores for

testing, the width for each core, and most important is

that the test schedule would show the total test time. The

test schedule is based on what TAM architecture the test-

ing process used. The total test time is one of the main

factors to evaluate the testing cost. For designing a test

schedule, there are three categories: (1) Serial Test Sche-

dules, (2) Parallel Test Schedules, (3) Mixed test sched-

ules. It was shown in [11] that for a given core, the test-

ing time varies with TAM width as a “staircase” function.

1.5 Motivation

The use of cores shortens the design flow and test

time for a new system and raises the competitive ability

of new products through design reuse However, this de-

sign scenario in practical implementation is faced with

unresolved issues: design methods for building single-

chip systems, challenges in test and sign-off for these

systems, and intellectual property licensing, protection,

and liability. Designers need new tools and methodolo-

gies to help them to overcome these difficulties.

2. The Proposed TAM Architecture for

Optimal Testing Scheduling

2.1 Optimal TestRail Scheduling Algorithm

Problem description: Given a set of cores C and total

available SOC TAM width Wmax, determine the TestRail

Architecture R for an optimal test schedule of each core

Ci (1 � i � K) under the constraint of Wmax, such that the

SOC total testing time T is minimum and no test resource

conflict happen.

The total testing time T for TestRail Architecture is

determined by the maximum of testing time of the indi-

vidual TestRails. The algorithm OTR that we proposed

in this paper focuses on the sequential testing of TestRail

Architecture. In the case of sequential testing, all other

cores connected to the same TestRail are set in bypass

mode when a core is being tested.

We can simply determine the testing time T(r) for a

TestRail r with width w by the help of the procedure

TestTime(r, w). The procedure TestTime(r, w) uses a pro-

cedure Wrapper_design(c, w) which can calculate the

test time for each core on the TestRail r, such that we

only accumulate the individual test time to obtain the to-

tal test result for a TestRail r. The algorithm OTR that we

proposed is composed of four main steps as shown in

Figure 2.1.

2.2 Initial Solution

We use a factor Win to set the size of the TAM widths

in advance. Our initial solution would start with a spe-

306 Jiann-Chyi Rau et al.

Figure 1.1. The example of test schedule.



cific number of TAMs in the first place, so that we can

assign a particular arrange of the Win value.

In step 1, we assign a parameter Win to limit the max-

imum width. We select the largest core to be our candi-

date before we placed it into the TAM every time. ‘The

largest” means that the core has the maximum testing

time on the constraint of width Win. Every time when we

place the core into a new TAM, the value of Win will be

updated to the width of this TAM if the remaining un-

used width is larger than the width of this TAM.

On the other word, if the remaining width is smaller

than the width of this TAM, the value of Win will be up-

dated to the remaining width. The step will execute re-

peatedly until the remaining width is equal to zero. In

Figure 2.2(a), after the Core1 placed into the Core 1, the

value of Win would be updated to min(W_avail, P1) and

we find the large candidate core which would be placed

in next time by the constraint of Win. In Figure 2.2(b), we

chose Core2 to place the Core 2.

In step 2, if we still have unassigned cores left. We

still select the largest core from the remaining cores, but

the value of Win will be updated to the width of the TAM

which has the minimum testing time. Then we place it

into the TAM which the testing time of TAM is minimum

after the core was placed. We executed the step 2 iter-

atively until each core had got assigned.

2.3 Compress and Increase

We will try to optimize the total testing time of a

given TestRail Architecture. It is an iterative procedure

which consists of two steps. In step 1, we find the TAM

which has the minimum testing time and compress its

width to increase its testing time until the TAM does not

have the minimum testing time any more.

In step 2, we take these widths to add the width of TAM

which has the maximum testing time to decrease its testing

time until it is not the maximum TAM any more or it al-

ready have get no benefit for reduction of total testing time.

In Figure 2.3, the widths which are free up from TAM4

would be used for adding the width of TAM1 to decrease

the overall testing times. The procedure ends if the TAM

with the shortest testing time can not decrease its widths.

2.4 Combine

The procedure iteratively tries to combine two TAMs

to free up the TAM width, such that the width can be used

for the reduction of the total testing time. In step 1, the

procedure tries to free up the TAM width by combining

Optimal Test Access Mechanism (TAM) for Reducing Test Application Time of Core-Based SOCs 307

Figure 2.1. The algorithm OTR.

Figure 2.2. An example for Initial_Solution.

Figure 2.3. An example for procedure Compress_Increase.



two non-bottleneck TAMs. The two TAMs would be

merged are determined to which the time is the shortest

after they merged each other. The width of new merged

TAM is which width is larger between them. In step 2, the

freed up widths are distributed over all TAMs. We add the

width of TAM with the longest testing time until it is not

the longest one or it can not decrease the testing time any

more. The procedure ends if all TAMs have been merged

into one single TAM, or when no TAM can be found such

that the testing time does not exceed the current overall

testing time. For Figure 2.4, if we can merge TAM 3 into

TAM 2, we will get the freed-up TAM width w3.

2.5 Remove

Moving the core from the TAM with the longest test-

ing time to another TAM to reduce the total testing time.

We select the core with the smallest testing time in the

TAM with the longest testing time, and try to move the

core to the other TAM without exceeding the overall test-

ing time. If there are over than one TAM which the mo-

dule can be moved in, we select the TAM which the test-

ing time is minimum after the core was moved in. We

don’t directly move the core into the TAM with the short-

est time because we also think about the idle time for our

test schedule result. We would not only try to minimize

the total testing time but also reduce the idle time in our re-

sult. In Figure 2.5, the core 4 with the shortest time which

is removed to another TAM to reduce the total testing

time. The procedure is repeated until the TAM with the

longest testing time contains only one module, or the

module with the shortest testing time can not be moved

in any TAM to get the reduction of total testing time.

2.6 Experimental Results

We used four SOCs from the new set of ITC’02 SOC

Test Benchmarks [12]. The number in each SOC name is

a reflection of its test complexity. The first letter d means

that the SOC comes from Duke University and p means

industrial Philips Company. Table 1 present results of

testing time in clock cycles achieved by the four optimi-

zation methods for a range of W values from 16 to 64. We

considered our possible values of the parameters B in the

range of 3 � B � 5. The value of B means that the num-

ber of TAMs in our initial solution at least so that we can

decide the value of Win in the range of

(1)

308 Jiann-Chyi Rau et al.

Figure 2.4. The operation of procedure combine.

Figure 2.5. The operation of procedure remove.



and tabulated our best results. Although our testing time

for p93791 are higher than the testing times obtained

using the method in [13], but we only need the less com-

puting time to calculate the result.

3. Reconfigurable Multiple Scan-Chains for

Reducing Test Application Time of SOCs

3.1 The Outline of Our Method

In this section, we propose another novel method to

solve SOC scheduling problem. This method based on the

Reconfigurable Multiple Scan Chains (RMSC) architec-

ture [16]. Basically, our method could be divided into two

parts, Control Signal Selection and Registers Assignment,

in Figure 3.1 shows the basic flow of our method.

3.2 Module of Reconfigurable Multiple Scan Chain

The cores are prepared with internal scan chains and

test vectors for each core. Reconfigurable Multiple Scan

Chains (RMSC) [16] is one kind of architectures to con-

struct the scan chains for TAM. Our algorithm is based

on this architecture. We determine the order of registers

in the scan-chains by the types of registers in the Regis-

ters Assignment. The definations are as fellowing:

n: the number of cores in the SOC

C: denotes the set of cores. C = (C1, C2, …, Cn). Notice

that the cores were ordered in terms of strictly increas-

ing test lengths. In Parallel Test Schedule, both two

cores have the same start_time and end_time, we treat

the two cores into a big single core for processing.

L: denotes the set of test lengths of set C. L = (L1, L2, …,

Ln). The order is the same as set C. In overlapped test

application scheme, the test for a SOC consists of a se-

Optimal Test Access Mechanism (TAM) for Reducing Test Application Time of Core-Based SOCs 309

Table 1. Experimental result for SOC benchmarks

SOC Wmax ILP. [13] GRP [14] Cluster [15] OTR (Our)

16 042,568 044,545 044,330 042,694
24 028,292 031,569 030,021 030,018
32 021,566 023,306 023,488 022,357
40 017,901 018,837 019,034 017,681
48 016,975 016,984 016,194 016,145
56 013,207 014,974 013,479 012,941

d695

64 012,941 011,984 011,033 011,035

16 462,210 489,192 -- 443,813
24 361,571 330,016 -- 303,064
32 312,569 245,718 259,975 232,049
40 278,359 199,558 206,205 194,193
48 268,472 173,705 173,705 164,680
56 266,800 157,159 146,390 145,417

p22810

64 260,638 142,342 133,587 133,587

16 998,733 1,053,4910, -- 1,033,2140,
24 720,858 759,427 876,529 698,657
32 591,027 544,579 585,309 584,524
40 544,579 544,579 544,579 544,579
48 544,579 544,579 544,579 544,579
56 544,579 544,579 544,579 544,579

p34392

64 544,579 544,579 544,579 544,579

16 1,771,7200, 1,932,3310, -- 1,789,3810,
24 1,187,9900, 1,310,8410, -- 1,190,7880,
32 887,751 988,039 947,111 914,865

p93791 40 698,583 794,027 816,972 732,407
48 599,373 669,196 677,707 608,612
56 514,688 568,436 542,445 527,127
64 460,328 517,958 467,680 467,091

Figure 3.1. The basic flow.



quence of test sessions. Based on definitions, if there

are n cores in core set C, there are n test sessions. The

SOC test schedule could be (TS1, TS2, …, TSn).

The example in Figure 3.2 is the modified RMSC

architecture. The test sessions in Figure 3.2(a) could be

showed as Figure 3.2(b). Two cores are two test sessions.

The number of patterns for TSi is Li – Li-1. In the sequence

of test sessions, we could know the processes of test

clearly by the name of test sessions.

Chain Cycles (CCi) denotes the chain cycles under the

test session TSi which is the minimum number of clocks re-

quired to shift in or shift out the test data. The scan chains

are reconfigurable, each CCi for TSi may not be the same.

In Figure 3.3(a) shows two scan chains of Figure

3.2(a) under test session 1. For a test vector, the bottle-

neck is the shift-in cycles for Scan Chain 1. At the end of

TS1, the control signal Ctrl1 is activated. All the scan

chains are reconfigured with Ctrl1. This operation is

shown in Figure 3.3(b). In Figure 3.3(c), there shows the

scan chains with the activated Ctrl1. All registers of Core

A are bypassed CC2 for TS2 is 7.

In other words, the control signals and the MUXs

would bypass the cores. The timing for activating the

control signals should be defined as following:

(1) Ctrli is activated at the end of TSi only.

(2) Once a control signal is activated, it remains active

until the last test session. The cores bypassed by con-

trol signals means no need to feed with patterns.

(3) Once Ctrli is activated, it is possible to bypass the

register in core C1, C2,..., Ci. If the number of control

signals is a constraint, this definition is necessary for

the test schedule, which would be explain later (In

4.3). Based on the information of CC and set L, we

can estimate the total test cycle of the test by the fol-

lowing equation:

310 Jiann-Chyi Rau et al.

Figure 3.2. Example of (a) reconfigurable multiple scan chain design, (b) test sessions.

Figure 3.3. Example of (a) Scan Chains for test session 1, (b) the registers bypassed by Ctrl1, (c) Scan Chain for test session 2.



(2)

� denotes the total test time(clocks). The summation is

from the test session 1 to the test session n. The Li � Li-1

part denotes the number of test patterns for each test

session. The CCi + 1 part denotes the Chain Cycles for

each test session and one capture cycle. Finally, CC1 is

the initial shifting cycles.

Since the addition of 1 to CCi in each term of the

summation merely adds a constant term equal to Ln and

the last term, CC1, is typically negligible compared to

other terms, the objective function we try to minimize is

given by the following expression:

(3)

For the minimizing test time, there should be n � 1

control signals for n test sessions. If there may not have

control signals activated at the end of some test sessions

TSi, then CCi is the same with previous test session TSi-1,

as the denotation CCi-1.

3.3 Algorithm of Control Signal Selection

We use the Control Signal Selected Table (CSST) for

recording which control signals. For n test sessions, there

need n � 1 control signals only. So the CSST should be

CSST = (CS1, CS2,..., CSn-1). Before the Selection process,

all CSn would be initialized as 0. 0 denote not selected.

At first, we initialize the CSST = (0, 0, 0). Then we

build the 1 � n matrix of TSP, n means the number of

cores. Each element in TSP represents the number of test

patterns for each test session and is computed by Li – Li-1,

where L0 = 0. For example, if L = (15, 35, 53), we build

TSP = [15 20 8 10].

Next for Line 03, we build another n � 1 matrix of

CSC. Each element represents the minimum shift cycle

for the single core with the TAM width w. Notice that the

TAM width w is the same as the total TAM width. For

above example, we could build CSC = [15 20 8 10]T.

Line 04, the Matrix M is an n � n matrix multiplied by

CSC and TSP. In the matrix M, each element means the

cycles for the test session. Then we choosing t + p con-

trol signals. t is the constraint of number of control sig-

nals and p is the parameter for increasing the accuracy.

The array S is selecting control signals, which element

represents the reducing cycles as the corresponding con-

trol signal is chose, as shown in Figure 3.5. The array S =

(S1, S2,..., Sn-1) is calculated by the following equation:

(4)

For the above example, S = (456, 360, 360). Then we

find the maximum number Sm = 456 which m = 1. So we

set CSST1 = 1 as choosing the Ctrl1. After every control

signal is choosing, the matrix M should be updated. The

cycles would be changed corresponding the control sig-

nals. So a control signal is chose should be responded on

matrix M 1 in Figure 3.6 (a). Although we selected the

Ctrl1 by S1, we set the part of summation in S1 to 0 as the

updating.

After updating the matrix M, the loop would select

next control signal until reaching t+p. In Figure 3.6 (b), S

= (0, 144, 240), so we set CSST3 = 1, then control signal

selection is completed.

The selected t control signals may be not the best solu-

Optimal Test Access Mechanism (TAM) for Reducing Test Application Time of Core-Based SOCs 311

Figure 3.4. Algorithm of control signal selection.

Figure 3.5. S1 and S2 on matrix M.

Figure 3.6. (a) Updating matrix M1 (b) Next updating mxtrix
M2.



tion. So we set a parameter p to increase the accuracy. Al-

though the constraint number of control signals is t, we use

the control signal selection process to select p additional

control signals. Then we take the t + p control signals as

a new control single space. Based on the new space, we

would try fewer choices to reduce the computing time.

3.4 The Order for Registers Assignment

We could classify wrappers into three categories. (1)

Pure drivers: wrappers for primary input terminals (PI).

During testing mode are feeding test patterns to CUT

only. (2) Pure receivers: wrappers for primary output ter-

minals (PO). During testing mode are receiving test re-

sponse from CUT only. (3) Driver-receivers: wrappers

for primary bi-direction terminals. During testing mode

are able to feed and receive test data (test patterns and

response).

Figure 3.7 shows that the order of registers would in-

fluence the chain cycles. O denotes the wrapper for PO. I

denote the wrapper for PI. B denotes the wrapper for the

bi-direction terminal. In Figure 3.7(a), if we arrange the

registers in the order from input such as: pure drivers,

driver-receivers, and pure receivers . Then the chain cy-

cles could be minimized in Figure 3.7 (b).

As the figure shown in Figure 3.8, SI denotes the

registers for shift in. SO denotes the registers for shift

out. Figure 3.8 shows the testing of three test patterns.

For reducing the testing time, the lengths of the scan

chains should be as balanced as possible. During the test

process, the registers of the cores in the later test sessions

would be bypassed later. In other words, the registers

would be existed in the scan chain longer. So we assign

the registers of the later test sessions at first. By earlier

assigned, the scan chains could be easier to be balanced.

Based on the reasons above, the order of registers for

Registers Assignment is based on the term of decreasing

n of test sessions. The test sessions order set for registers

assignment is S = (TSn, TSn-1,..., TS1).

3.5 The Definitions of Blocks

There may be not enough control signals for all test

sessions. So t control signals would divide test sessions

into t + 1 block. In Figure 3.9, two control signals divide

test sessions into three blocks. For the test sessions of the

same block, the registers assignment should be consi-

dered together since they are facing the same scan chains.

So we can treat the cores in the same block as a single big

core and assign the registers to the minimum shift cycles.

3.6 Algorithm of Registers Assignment

First we obtain all combinations of the new control

signal space as choices. Then TS are ordered in terms of

decreasing n as the order for the registers assignment.

Lines 06 to Line 08 are assigning the registers to TAM

for the minimum shift cycles. Line 09 and Line 10 are

computing the test cycles, the test time calculation is

based on blocks. After Line 08 the scan-chains was setup

for all test sessions in the same block. In other words, the

CCs for each test session in the same block are the same.

We could just sum the number of test patterns of each test

session in the block and multiply by CC as the test cycles

of the block. Although the scan chains would be as-

signed registers by next block, so the total test time is the

summation of the blocks one by one.

After Line 11, the TAM would be compared and re-

placed if the choice is the batter solution. BestAns con-

tents the best choice and test cycles that the loop had

done before. After every choice had been tried, it would

be compared with the BestAns by the total test cycles.

Then the loop would continue for next choice until all

choices had been tried. At last, the choice and the total

test cycles would be the solution and be returned.

3.7 Experimental Results

We show experimental results of our proposed met-

312 Jiann-Chyi Rau et al.

Figure 3.7. Examples for the order of register in single scan-
chain (a) Random, (b) Specified.

Figure 3.8. Advantage of the specified order. Figure 3.9. Example of blocks.



hod. Even though these SOCs originally contained mul-

tiple levels of design hierarchy, we have assumed in our

experiments that all cores have the same hierarchy level.

In Table 2, the number after the SOC names represents

the number of cores each SOC included. W denotes the

TAM width and PINs denotes the total pins for the test

scheduling comparing to W. The value t is the number of

control signals that is used and cycles represents the test ap-

plication time for the choice of t and SCs. In Table 2, our

method has better test time under the less PINs. With the

less TAM width, our method could save the control signals.

4. Conclusion

In this paper, we have proposed two different methods

to solve SOC testing schedule problem. The OTR algo-

rithm optimizes TestRail Architectures with respect to re-

quired ATE vector memory depth and test application time.

Our algorithm also takes both wrapper and TAM design

into account and require a negligible amount of computing

time. The testing time results of The OTR algorithm are

comparable or better than those previously published.

Another one, we have proposed an effective and effi-

cient algorithm based on based on the framework of Re-

configurable Multiple Scan Chains to solve core-based

SOC schedule problem. In this algorithm, the computing

time is decreased by the Control Signal Selection. The

Optimal Test Access Mechanism (TAM) for Reducing Test Application Time of Core-Based SOCs 313

Figure 3.10. Algorithm of registers assignment.

Table 2. Comparison with other works

Proposed
SOC W PINs ILP [13] GRP [8] Cluster [17] TR [18]

t SCs cycles

01 20 044689
06 18 03612216 42 042644 043713 044330 044307
08 16 041528
01 36 026548
06 34 024697

d695 (10)

32 74 022268 023021 023488 021518
08 32 027767

05 28 606795
11 25 32583716 61 468011 452639 (N/A) 458068
27 16 456963
05 44 542203
09 42 244989
11 41 251277

p22810 (29)

32 93 246322 246150 259975 222471

27 32 343044

01 25 908814
04 24 84172016 52 10332100 10238200 (N/A) 10108210
17 16 10756170
06 39 646062
12 36 616186

p34392 (20)

32 84 591027 544579 585309 551778
17 32 698426

03 31 969757
05 30 962566
12 26 10792240

16 65 17862000 18511350 (N/A) 17916380

24 16 17112540
05 46 606060
07 45 658576

p93791 (33)

32 97 894342 975016 (N/A) 912233
24 32 11216990



Registers Assignment is simplified by the blocks divided

by the control signals and a specified registers order. The

algorithm is performed well for the SOC with a larger

number of cores embedded and tested by few pins.

References

[1] Keating, M. and Bricaud, P., Reuse Methodology Man-

ual for System-on-Chip Designs, Kluwer Academic

Publishers (1998).

[2] IEEE P1500 Web Site, http://grouper.ieee.org/groups/

1500/.

[3] Aerts, J. and Marinissen, E. J., “Scan Chain Design for

Test Time Reduction in Core-Based ICs,” In Proceed-

ings IEEE International Test Conference, pp. 448�

457 (1998).

[4] Varma, P. and Bhatia, S., “A Structured Test Re-Use

Methodology for Core-Based System Chips,” In Pro-

ceedings IEEE International Test Conference, pp.

294�302, Washington, DC (1998).

[5] Marinissen, E. J., Arendsen, R., Bos, G., Dingemanse,

H., Lousberg, M. and Wouters, C., “A Structured and

Scalable Mechanism for Test Access to Embedded Re-

usable Cores,” In Proceedings IEEE International Test

Conference, pp. 284�293 (1998).

[6] Zorian,Y., “A Distributed BIST Control Scheme for

Complex VLSI Devices,” In Proceedings IEEE VLSI

Test Symposium, pp. 6�11 (1993).

[7] Bleeker, H., van den Dijnden, P. and de Jong, F.,

“BoundaryScan Test-A Practical Approach. Kluwer

Academic Publishers,” Dordrecht, Netherlands (1993).

[8] Iyengar, V., Chakrabarty, K. and Marinissen, E. J., “On

Using Rectangle Packing for SOC Wrapper/TAM

Co-Optimization,” In Proceedings IEEE VLSI Test

Symposium, pp. 253�258 (2002).

[9] Iyengar, V., Chakrabarty, K. and Marinissen, E. J.,

“Test Wrapper and Test Access Mechanism Co-Opti-

mization for System-on-Chip,” In Proceedings IEEE

Internal Test Conference, pp. 1023�1032 (2002).

[10] Iyegnar, V., Chakrabarty, K. and Marinissen, E. J.,

“Test Access Mechanism Optimization, Test Schedul-

ing, and Tester Data Volume Reduction for System-

on-Chip,” In Proceedings IEEE Transaction on Com-

puters, pp. 1619�1631 (2003).

[11] Goel, S. K. and Marinissen, E. J., “Effective and Effi-

cient Test Architecture Design for SOCs,” In Proceed-

ings IEEE International Test Conference, pp. 529�

538 (2002).

[12] Larrson, E. and Peng, Z., “An Integrated Framework

for the Design and Optimization of SOC Test Solu-

tion,” In Proceedings Date, Automation and Test in

Europe Conference and Exhibition 2001 , pp. 138�

144 (2001).

[13] Sehgal, A. and Chakrabarty, K., “Efficient Modular

Testing of SOCs Using Dual-Speed TAM Architec-

tures,” In Proceedings Date, Automation and Test in

Europe Conference and Exhibition, pp. 422�427 (2004).

[14] Xu, Q. and Nicolici, N., “Multi-Frequency Test Access

Mechanism Design for Modular SOC Testing,” In Pro-

ceedings 13th Asian Test Symposium, pp. 2�7 (2004).

[15] Chakrabarty, K., Iyengar, V. and Krasniewski, M. D.,

“Test Planning for Modular Testing of Hierarchical

SOCs,” In Proceedings IEEE Transactions on Com-

puter-Aided Design of integrated Circuits and Sys-

tems, pp. 435�448 (2005).

[16] Chakrabarty, K., Iyengar, V., Krasniewski, M. D. and

Kumar, G. N., “Design and Optimization of Multi-

Level TAM Architectures for Hierarchical SOCs,” In

Proceedings 21st VLSI Test Symposium, pp. 299�304

(2003).

[17] Goel, S. K. and Marinissen, E. J., “Cluster-Based Test

Architecture Design for System-on-Chip,” In Pro-

ceedings IEEE VLSI Test Symposium (VTS), pp. 259�

264 (2002).

[18] Goel, S. K. and Marinissen, E. J., “A Test Time Reduc-

tion Algorithm for Test Architecture Design for Core-

Based System Chips,” Journal of Electronic Testing:

Theory and Applications, pp. 425�435 (2003).

Manuscript Received: Sep. 15, 2008

Accepted: Jun. 6, 2009

314 Jiann-Chyi Rau et al.


