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Abstract

The security issue in a wireless sensor network (WSN) has been drawing considerable research

attention in recent years. Key management, a basic security service, becomes the core design for

various security services, such as encryption and authentication. To increase the connectivity of each

key in a large-scale WSN and to enlarge its maximum supportable network size, this paper presents a

scalable grouping (SG) random key predistribution scheme. The SG scheme divides all nodes into

several groups and uses the one-way function to generate group-to-group pairwise keys. To improve

resilience against node capture, i.e., to fortify the security strength, the scheme takes on the concept

that the link key is composed of some shared keys. For any two nodes with two or more shared keys,

the SG scheme uses the exclusive-OR operation to compose the link key -- assuring the link key used

to secure a link is nearly unique. Experimental results show that the SG scheme is able to generate

better resilience against node capture and higher scalability than existing random key based schemes.

Key Words: Wireless Sensor Networks (WSNs), Key Management, Random Key Predistribution,

Performance Evaluation

1. Introduction

The development of wireless sensor networks has

become an important research topic in recent years due

to such critical application needs as emergency response,

medical monitoring, military tracking, energy manage-

ment and pollution monitoring.

A wireless sensor network (WSN) holds the follow-

ing basic features:

� Low bandwidth and computing power

� Limited memory and energy resources

� Being prone to failure

� Large scale of sensor nodes

� Possibly without a central device

A sensor network can be easily assaulted or compro-

mised by adversaries because it is often deployed in un-

attended environments. To enhance its security, re-

searchers have come up with a number of security ser-

vices, including key management [e.g., 1�5] � our inves-

tigation focus in this paper. A key management protocol

for WSNs should be simple and light due to limited pro-

cessing power, battery life, communication bandwidth

and memory space of the sensor nodes. In this sense, the

random key predistribution scheme [6] which allows

each node to communicate only with its neighbor nodes

is appropriate for large scale WSNs. (Note that

traditional key exchange mechanisms in wired networks,

such as the Diffie-Hellman key agreement [7] and the

public key cryptography [8], are not fit for WSNs be-

cause they usually involve high computational overhead

and considerable memory requirement. Key distribution

protocols relying on infrastructures or trusted third par-

ties are also impractical in WSNs considering their re-

stricted communication ranges and inability to learn

about the network topology before deployment.)

There are two extreme cases of key predistribution.

(1) Each node stores a single master key.
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(2) Each node stores all the other nodes’ pairwise keys.

In case (1), each node consumes only limited memory

space, but the entire network will be disrupted when an

adversary compromises a node. Case (2) may provide

the highest security (as the key every two nodes use to

communicate with each other is unique) but is never-

theless unfeasible considering the limited memory re-

source of a node. For instance, if n, the number of nodes

in the network, is large, it will be difficult for each node

to store n � 1 keys.

Based on the concept of the random key predistri-

bution, this paper presents a scalable grouping (SG) ran-

dom key predistribution scheme to increase the connec-

tivity of each key in large-scale WSNs and the maximum

supportable network size. The proposed SG scheme, a

modification of the unique assigned one-way (UAO)

function scheme [9], divides all nodes into several groups

and uses the one-way function to generate group-to-

group pairwise keys. To assure that the link key used to

secure a link is nearly unique, the SG scheme uses the

exclusive-OR operation to compose the link key when

two nodes have two or more shared keys. Experimental

evaluation is conducted to compare the performance of

the proposed SG scheme and other random key based

schemes, and the results exhibit better performance for

our SG scheme in terms of resilience against node cap-

ture (security strength) and supportable network sizes

(scalability).

2. Previous Random Key Based Schemes

Background investigation into several previous ran-

dom key based schemes is provided in this section to fa-

cilitate later discussion. This background investigation

focuses only on the random key based key predistribu-

tion schemes which assume the location information of

each node unknown and unpredictable before deploy-

ment. Schemes (such as [10]) which divide the deploy-

ment region into several sub-regions and assign keys to

nodes according to the sub-regions they are to be de-

ployed to or schemes (such as [11,12]) which further pre-

dict the topology of the network and assign the pairwise

keys to the predicted neighboring node pairs are not of

our focus in this research and therefore left out from fur-

ther discussions.

2.1 The Random Key Predistribution Scheme [8]

In the random key predistribution scheme (referred to

as the basic scheme in this paper), each node randomly

chooses a fixed number of keys before being deployed

and after deployment establishes secure links with neigh-

bors having shared keys. For two neighbor nodes having

no shared keys, a path-key will be established in-between.

The basic scheme covers the following three phases.

(1) The key pre-distribution phase: Before deploy-

ment, each node picks r keys from a large key pool

of S and stores them into its memory to form a key

ring.

(2) The shared-key discovery phase: Each node tries

to find out if its neighbors share a key with it. If a

shared key exists between the node and a neigh-

bor, it becomes the link key for transmission be-

tween the two nodes and a graph is gradually

formed.

(3) The path-key establishment phase: For two neigh-

bor nodes having no shared keys, establish a path-

key through other secure links (as Figure 1 indi-

cates).

The random key predistribution scheme uses the

random graph theory [13] to analyze suitable parame-

ters. Consider a random graph with n nodes G(n, pl) and

assume the probability that a link exists between any two

nodes is pl. When pl = 0, the graph has no edges; when pl

= 1, the graph is fully connected. We find in [13] the

monotone property that there exists a threshold value of

pl and that the property will move from “likely false” to

“likely true” on whether graph G is connected. The th-

reshold function pl is defined as
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Figure 1. Establishing a path-key.



where Pc is the desired probability that graph G is con-

nected. The expected number of secure links for a node

will be

With the expected degree d and the average number

of neighbor nodes for each node, say n�, we can obtain

the required probability p for any two neighbor nodes to

establish a secure link successfully

Note that probability p is used to evaluate the per-

formance of our proposed SG scheme and other random

key based schemes in this paper. In general, the value of

n� will be greater than that of d. If n� is less than d, p will

be larger than 1 � which makes achieving the desired Pc

unlikely even if every node is able to set up secure links

with all its neighbor nodes.

2.2 The q-Composite Keys Scheme [14]

The q-composite keys scheme works similarly as the

basic scheme. It adopts a parameter q to enhance security

against smaller-scale attacks. At least q shared keys are

required to establish a secure link between any two

nodes and the link key K is generated as the hash of all

shared keys:

K = hash(K1 || K2 ||…|| Kq’ ), where q’ � q.

As the probability for any two nodes to share a mini-

mum of q keys may be less than the required probability

p, the key pool size needs to shrink until the probability

of connectivity equals p.

The q-composite key scheme can strengthen net-

work security only when the number of compromised

nodes is limited. When the number of compromised nodes

grows beyond the threshold, the scheme becomes less

secure. When q = 1 (i.e., when the number of keys

needed to construct a secure link = 1), the q-composite

keys scheme becomes the the random key predistribu-

tion scheme. In this special case, the two schemes hold

the same key pool size. However, when a node has two or

more keys, the 1-composite keys scheme will compose

them into a new key and thus yield lower compromised

rates than the basic scheme.

2.3 The Random-Pairwise Keys Scheme [14]

The basic idea of the random-pairwise keys scheme

is to store in each node sufficient pairwise keys, instead

of all pairwise keys, of the other nodes to form a con-

nected graph. Assume each node stores at most m keys

and the required probability for two neighbor nodes to

set up a secure link is p. The maximum supportable net-

work size n can be calculated as

The operation of the scheme includes two phases.

(1) The initialization phase: A total of n = m/p unique

node identities are generated. As the actual size of

the network may be smaller than n, unused node

identities will be used when additional nodes are

added to the network. Each node identity is ma-

tched up with m other randomly selected distinct

node IDs. A pairwise key is generated for each pair

of nodes and is stored in the key rings of both

nodes, along with the ID of the other node that also

knows the key.

(2) The key-setup phase: Each node first broadcasts

its ID to the immediate neighbors. A node will find

out if it shares a common pairwise communication

key with a neighbor node by searching for each

other’s IDs in the key ring. A cryptographic hand-

shake is performed between neighbor nodes who

wish to mutually verify that they do indeed have

knowledge of the key.

The random-pairwise keys scheme is able to pro-

vide node-to-node authentication properties as it uses

pairwise keys instead of picking up keys from a large

key pool. The fact that each key used to secure links is

unique helps the scheme produce more desirable resil-

ience against node capture than the basic scheme and

the q-composite keys scheme. The better performance

is nevertheless obtained at the cost of larger memory

space and a restriction on the number of newly added

nodes.
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2.4 The Unique Assigned One-Way (UAO)

Function Scheme [9]

The UAO scheme also uses pairwise keys derived

from a unique one-way function in each node to establish

the secure link. It can support larger networks than the

random-pairwise keys scheme due to smaller required

node memory: Only one side of the link needs to store

the key; the other side can obtain the key through the

one-way function.

The UAO scheme will perform a key decision algo-

rithm before deploying nodes. Assume that each sensor

node SNi has a unique identifier IDi and is assigned a

unique one-way function Fi. Each node first randomly

selects r node identifiers (r is the required number of

keys) to achieve the connected graph, calculates r pair-

wise keys Kj by equation Kj = Fj(IDi) (j being the selected

node identifier), and then memorizes r pairs of Kj and

IDj. After node deployment, each node performs the

node-to-node authentication protocol to set up secure

links with its neighbors. An SNi first broadcasts its IDi to

all neighbor nodes who then verify if the received IDi is

combined with any key in their key rings. If a neighbor

node SNs finds a key in its key ring, say Ks, combined

with the received IDi, it will send a request message en-

crypted by Ks and its own identifier IDs to SNi. After re-

ceiving the message, SNi obtains the key Ks by comput-

ing Fi (IDs). Both nodes (i and s) verify the link key Ks

through the challenge-response process and establish a

secure link between them.

To obtain the maximum supportable network size of

the scheme, let p be the probability for any two neighbor

nodes to set up a secure link, n be the size of the network,

and every node store r keys from n � 1 pairwise keys.

The probability for a node to have a specific key will be

r/(n � 1), and the probability that the node does not have

the specific key will be 1 � [r/(n � 1)]. As two neighbor

nodes can construct a secure link when one of them has

the pairwise key, we get the probability that two neigh-

bor nodes have no shared keys as {1 � [r/(n � 1)]}2, and

the probability for the two nodes to construct a secure

link will be

The UAO scheme is shown in [9] to support larger net-

work sizes than the random-pairwise keys scheme. As

to security, both schemes are as efficient in preventing

nodes from intruding attacks.

3. The Scalable Grouping Random Key

Predistribution Scheme

The scalable grouping (SG) random key predistri-

bution scheme is proposed in this paper to support more

nodes and to provide desirable resilience against node

capture in a sensor network. As mentioned in Section 2,

the random-pairwise keys scheme achieves the highest

security at the cost of large node memory space, and the

UAO scheme tries to reduce such memory requirement

by using the one-way function to assist the forming of

link keys and attains as favorable security as the ran-

dom-pairwise keys scheme (because each key used to

secure a link is unique).

Different from the UAO scheme, our proposed SG

scheme divides all nodes into several groups to increase

the connecting ability of each key and the maximum sup-

portable network size. It also takes on the concept that

the link key is composed of some shared keys to improve

resilience against node capture. Listed below are the uni-

que features of the k-SG scheme, k being the maximum

number of nodes in a group.

� Each node in the network has a group identifier.

� Each group has at most k nodes.

� Nodes of the same group have a shared group key.

� Two nodes of different groups use the group-to-

group pairwise key to establish the secure link.

� If two nodes have two or more shared keys, the

link key is the composite of these shared keys us-

ing the exclusive-OR operation.

The operation of the k-SG scheme consists of three

phases.

(1) Initialization: The initialization phase runs off-

line. We first divide all nodes into several groups,

each group having at most k nodes. All nodes of the

same group i have a group identifier GIDi, a group

key Ki and a one-way function Fi. Each node in the

group then randomly selects r group identifiers (r

being the required number of keys to achieve the

connected graph), calculates r group pairwise keys

Kji, (j being the selected group identifier GIDj) and
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stores r pairs of Kji and GIDj. The equation for

generating group-to-group pairwise keys is.

(2) Link key setup: After deployment, sensor nodes

work to set up link keys. Each sensor node (in

group i) starts by broadcasting its GIDi to the

neighbor nodes and meanwhile receiving group

identifiers from neighbors. If a node in group i

finds out through GID verification that it is in the

same group with a neighbor, the node then returns

the message (of being in the same group) and the

list of its key ring to that neighbor. Otherwise (i.e.,

the neighbor node is in a different group), the node

will return its group identifier GIDi to the neigh-

bor. In either case, both nodes move on to execute

the link key setup algorithm. Assuming the group

identifiers of nodes A and B are respectively GIDi

and GIDj, the link key setup algorithm can be de-

fined as follows.

if (GIDi = GIDj){ /* node A belongs to the same group

as node B */

if (A has other shared keys with B)

Link Key Ks = Ki � shared keys;

else

Ks = Ki;

}

else { /* node A and node B are not in the same group */

switch (){

case 1 (A has Kji and B has Kij):

A calculates Kij = Fi(GIDj);

B calculates Kji = Fj(GIDi);

Ks = Kij � Kji;

break;

case 2 (A has Kji but B does not have Kij):

B calculates Kji, then Ks = Kji;

break;

case 3 (B has Kij but A does not have Kji):

A calculates Kij, then Ks = Kij;

break;

case 4 (Adoes not have Kji and B does not have Kij):

A can not set up a secure link with B;

break;

}

}

To give an example, Figure 2 gives three neighbor

nodes A, B and C (respectively with group identifiers

GID1, GID1 and GID3) and their key rings. As we can

see, the link key (Ks) generated by nodes A and B is com-

posed of a group key K1 and a shard key K21, and the link

key generated by nodes A and C is the group-to-group

pairwise key K31 set up by node C using F3(GID1).

(3) Secure link establishment: After execution of the

link key setup algorithm, any two nodes with a

shared link key Ks will verify Ks through the chal-

lenge-response protocol. If the result turns out cor-

rect, a secure link is then established between the

two nodes for communication.

4. Performance Evaluation

Simulation runs have been conducted to evaluate the

performance of the proposed k-SG scheme (k = 2 and 3),

the basic scheme and the q-composite keys scheme (q =

2 and 3). The performance parameters of interest include

security strength, maximum supportable network sizes

under limited memory resources and conformity to the

limited global payoff requirement. The following are

some necessary notations.

n: the number of sensor nodes in the network

n�: the average number of neighbor nodes for each node

r: the key ring size (the number of keys in each node)

p: the probability for two neighbors to set up a secure

link

k: the group size of the k-SG scheme (the maximum

number of nodes for each group)

g: the number of groups in the network (= n/k)

X: the number of directly compromised links (i.e., links

Scalable Grouping Random Key Predistribution in Large Scale Wireless Sensor Networks 155

Figure 2. A link key setup example of the SG scheme.



with compromised node(s))

Y: the number of indirectly (or additionally) compro-

mised links (i.e., links with no compromised nodes

but their link keys can be recovered by adversaries)

4.1 The Security Strength

The security of the SG scheme is evaluated in terms

of resilience against node capture. The fraction of links

in a network which an adversary is able to eavesdrop in-

directly (by recovering keys from the captured nodes) is

estimated as

and can be calculated following these steps.

� Randomly pick up i nodes (i is the expected num-

ber of compromised nodes).

� Place all group keys and group-to-group pairwise

keys stored in the i nodes into the adversary’s data-

base.

� Put all one-way functions stored in the i nodes into

the adversary’s database -- all keys that can be de-

rived from these functions will be considered as

compromised keys.

� For each link which is not directly compromised,

check its link key to see if it can be recovered from

the database.

The key ring size (r) for each scheme is listed in Ta-

ble 1. (The key ring for the k-SG scheme includes an ex-

tra key -- the group key.)

Figures 3 and 4 give the resilience against node cap-

ture under different numbers of sensor nodes compro-

mised for the schemes. Note that both the random-pair-

wise keys scheme and the UAO scheme are presented by

y = 0 as adversaries can not get global information from

local node capture.

Figure 3 shows that among the schemes the 2-SG

scheme yields the largest security strength when n =

1000. This is because the proposed SG scheme adopts

the group key and the group-to-group pairwise key, in-

stead of picking up keys from a large key pool. Thus

whenever an adversary compromises a node, it can get

the information about other nodes in the same group only,

significantly reducing the fraction of additional compro-

mised links.

When the network size extends to n = 2000 in Figure

4, the SG scheme provides even stronger security be-

cause in large-sized networks the ratio of information

obtained by an adversary to that of the whole network

decreases.

4.2 The Maximum Supportable Network Size

For schemes using pairwise keys to establish secure
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Table 1. The key ring size for each scheme (p = 0.33)

n = 1000 n = 2000

the basic scheme 200 200

2-composite keys scheme 200 200

3-composite keys scheme 200 200

the 2-SG scheme 90 + 1 180 + 1

the 3-SG scheme 60 + 1 120 + 1

Figure 3. The number of compromised nodes versus the frac-
tion of additional compromised links for various
schemes (n = 1000, n� = 60, p = 0.33).

Figure 4. The number of compromised nodes versus the frac-
tion of additional compromised links for various
schemes (n = 2000, n� = 60, p = 0.33).



links, the key ring size directly determines the probabil-

ity for two neighbor nodes to set up a secure link. Scal-

ability is hence restricted. Take the random-pairwise keys

scheme as an example. Assuming that the network size n

= 10000 and the probability of connectivity p = 0.33, the

required key ring size r will be r = n � p = 3300, which is

quite impractical in a sensor network.

Now suppose pa/pb is respectively the probability for

two neighbor nodes with the same group identifier/dif-

ferent group identifiers to set up a secure link. In the SG

scheme, p can be represented by the following equation

where 1/g is the probability for any two nodes to have

the same group identifier, pa = 1 (because the two nodes

have a shared group key) and pb = 1 � the probability

that neither node has the key derived from the other’s

one-way function. As the key ring size = r, the proba-

bility for any node to get a key derived from a particu-

lar node’s one-way function will be r/(g � 1). Thus

The probability of connectivity p in the SG scheme

can now be derived as

(1)

or be simplified by g = n/k into

(2)

Equation (2) is adopted to evaluate the maximum

supportable network size for the k-SG scheme. The max-

imum supportable network sizes for various schemes are

plotted in Figure 5 under p = 0.33, key length = 128 bits

and the size of the one-way function = 160 bits.

The result displays that the SG scheme supports the

largest-sized network (due to its unique grouping fea-

ture) and that the maximum supportable network size

grows when k increases. It is however more practical to

keep k < 4 due to the limited global payoff requirement

(to be discussed later).

Now consider the SG scheme at the time when nodes

are newly added into the network. Assume that r = 200,

the maximum supportable network size of the 2-SG

scheme is 2210 nodes and the network has at most 1105

groups. In this case, 1105 GIDs are generated before de-

ployment and then assigned to all ready-to-deploy nodes.

Those unassigned at this phase will get assigned when

new nodes are added to the network at a later time.

4.3 The Limited Global Payoff Requirement

The limited global payoff requirement [14] is ap-

plied to the SG scheme because its secure links can be in-

directly compromised, like the basic scheme and the q-

composite scheme. The main purpose of the requirement

is to keep the adversary from gaining too much at little

expense. Take the basic scheme as an example. In a net-

work with size n = 10000, when an adversary compro-

mises 50 nodes, there will be about 9.5% additional com-

promised links. As the ratio of compromised nodes to the

whole network size is only 0.5%, random key based

schemes need to meet the requirement in [14] to avoid

such a situation.

� The number of additional compromised links in

the network � the number of directly compro-

mised links in the network (i.e. Y � X).

The limited global payoff ratio � is thus defined to be

Scalable Grouping Random Key Predistribution in Large Scale Wireless Sensor Networks 157

Figure 5. The maximum supportable network sizes for va-
rious schemes (p = 0.33, the key length = 128 bits
and the size of the one-way function = 160 bits).



Y/X and the limited global requirement will be satisfied

when � � 1.

The limited global payoff ratios for the 2-SG scheme

and 3-SG scheme are respectively given in Figures 6 and 7.

Figures 6(a), (b) and (c) evaluate X and Y under different

network sizes while (d) calculates the limited global payoff

ratio �. As the result indicates, the 2-SG scheme constantly

meets the requirement (� � 1) regardless of the key ring

size and the number of compromised nodes. By contrast,

Figure 7 shows the 3-SG scheme turns over � around 1 and

up, barely meeting the requirement (although it supports

the largest network size among all schemes). Note that we

do not discuss the k-SG scheme with k > 3 because in such

cases the value of � always exceeds one � which apparently

disagrees with the limited global payoff requirement.

5. Conclusion

The security issue in a wireless sensor network

(WSN) has been drawing considerable research atten-

tion in recent years. Key management, a basic security

service, becomes the core design for several security ser-

vices, including encryption and authentication. To in-

crease the connectivity of each key in a large-scale WSN

and to enlarge its maximum supportable network size,

this paper presents a scalable grouping (SG) random key

predistribution scheme. The proposed SG scheme di-

vides all nodes in a WSN into several groups and uses

the one-way function to generate group-to-group

pairwise keys. To improve resilience against node cap-

ture, i.e., to fortify the security strength, the scheme

takes on the concept that the link key is composed of

some shared keys. For any two nodes with two or more

shared keys, the SG scheme uses the exclusive-OR oper-

ation to compose the link key -- assuring the link key

used to secure a link is nearly unique. Experimental re-

sults exhibit that our proposed scheme maintains the

largest security strength (better resilience against node
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� is calculated in (d).



capture) than other random key based schemes because it

adopts the group key and group-to-group pairwise keys

instead of picking up keys from a large key pool. Due to

its unique grouping feature, the SG scheme is also

shown to yield higher scalability, i.e., to support larger

maximum supportable network sizes.
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