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Abstract 

 
An on-line training functional-link neural network 

predictor/controller for dynamic positioning of water surface 
structures is described in this paper. To develop a neural 
network for time-evolving systems, the deterministic on-line 
training model in a traditional parameter identification theory 
and the functional-link network are combined. The system’s 
previous input and output are used to be additional 
enhancements to the functional-link network. The on-line 
training neural network predictor acquires the knowledge about 
the system using a small number of samples of the latest system 
status measured on board of the structure. The trained 
functional-link neural network is used with an optimal 
controller to control the output of the system. The accuracy and 
robustness of the on-line training predictor are demonstrated 
through the numerical simulations of two ship maneuvers. The 
on-line training neural network predictor/controller is applied 
to the dynamic positioning (station-keeping) of a ship in a 
uniform current with and without external environmental 
disturbances. The results of the numerical simulations are very 
satisfactory.  
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1. Introduction 
The role of dynamic positioning (DP) of 

offshore floating structures is becoming 
increasingly important when exploration and 
production for natural resources in oceans get 
into deeper water. A dynamic positioning system 
employs the propellers, lateral thrusters, and 
other control devices mounted on a structure and 
commanded by either human operator or 
automatic control system to counteract 
environmental forces due to wind, waves and 
current. The DP system maintains or assists to 
maintain the structure as close as possible to a 
desired position and heading so that the structure 

can operate properly. DP has many advantages 
over other position keeping methods (e.g. 
mooring lines, tension legs, etc.). These 
advantages (e.g. costs not increasing 
proportional to water depth, better accuracy, 
larger flexibility and wider applications, etc.) can 
be particularly significant for deep water 
operations [1].   

Most automatic DP systems employ 
closed-loop control in which the structure’s 
response is compared to the desired position and 
heading and the difference is fed back to the 
controller to generate the control actions. 
Environmental sensors and a position reference 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225196921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


142                                              Tzung-hang Lee et al. 

 

system are needed to provide the feedback on the 
structure’s location and heading, and 
environmental conditions (wind speed and 
direction; wave amplitude, frequency and 
direction; and current speed and direction; etc.).    

Many traditional control algorithms require a 
mathematical model of the structure’s motion, 
and a solution method to solve the equations of 
motion and predict the position (including 
orientation) of the structure given the 
environmental conditions. The predictions are 
compared continuously with the desired 
structure’s position. The error of control action 
generated by a PID (proportional-integral- 
differential) controller is proportional to the error 
of the prediction of the desired value in the 
structure’s position. The effectiveness and 
performance of the PID controller heavily 
depends on the accuracy of the mathematical 
model and the solution method, the 
computational speed of the prediction, the choice 
of the proportional, integral and differential 
constants. The computing power required for the 
prediction increases dramatically as the 
complexity and accuracy of the mathematical 
model increase.  Besides, many PID controllers 
are very frequency sensitive and a filtering of the 
signals from the sensors is required to achieve a 
good control. This requires significant additional 
computing power. A compromise between the 
accuracy of the prediction and a fast response of 
the controller has to be made. Although 
significant amount of work has been devoted to 
increase the accuracy and speed of analytical 
predictions, the problem has not been solved 
satisfactorily.  

Recently, there has been an increasing 
growth in interest in artificial neural networks 
and fuzzy logic theories over a wide spectrum of 
research domains. Within control engineering, 
neural networks and fuzzy logic controls are 
attractive because they hold the promise of 
solving problems that have so far been difficult 
to handle with traditional analytical methods. To 
acquire the knowledge about a process, a 
traditional analytical method uses the so-called 
white-box approach. If the characteristics of all 
the elements in the box (representing the process 
being considered) are known, then the relation 
between the output and the input of the process 
can be obtained. The white-box approach 
attempts to describe the elements in terms of 
mathematical formulae relating the system 
output to the input. Major drawbacks of the 
white-box approach are: 1) that a good 

mathematical model depends on our knowledge 
about each element in the box and our 
knowledge about the elements is incomplete 
most of time; and 2) that even if we can develop 
an accurate model, our ability to solve the 
mathematical problem is limited; assumptions 
about the physics of the process and 
approximations must be made to simplify the 
formulae. Therefore, in most cases, our 
knowledge about the process acquired through 
the white-box approach is incomplete. Neural 
network and fuzzy logic modeling, on the other 
hand, acquires the knowledge about the process 
using the so called black-box approach. By 
observing enough number of input-output 
samples, the neural network or fuzzy logic 
modeling can establish the relation between the 
input and output of the process using network 
computing or fuzzy reasoning. One of the 
advantages of controllers based on neural 
network and fuzzy logic model is that no 
mathematical modeling of the process is 
necessary, thus greatly reducing the 
computational time for the system behavior 
prediction. A considerable body of work has also 
shown that the neural network and fuzzy 
modeling can be more accurate than traditional 
analytical methods, especially for complicated 
processes. 

In the recent years, attempts have been made 
in applying fuzzy logic controllers to surface 
ship path control [9], to depth control of 
unmanned undersea vehicles [2] and to autopilot 
design optimization [10]. It has been shown that 
fuzzy logic controllers have many advantages 
and can perform better than traditional 
controllers. A neural network controller has two 
main components: a process emulator (predictor) 
and a control algorithm. The emulator predicts 
the system’s behavior that is used by the control 
algorithm to generate the control action. In a 
traditional controller, the emulator consists of a 
mathematical model and the solution method. In 
the neural network controller, the emulator is an 
artificial neural network that possesses the 
knowledge about the system acquired through 
training and can predict the behavior of the 
system. A set of the measured system’s 
input-output samples are used to train the 
network.  Once trained, the network is able to 
predict the system’s behavior. The prediction is 
then used by the control algorithm to generate 
the control action.      

The core of a fuzzy logic controller is the 
fuzzy associative memory rules that are derived 
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from expert knowledge or experience about the 
system. Given the control input, the controller 
applies appropriate rules to generate the control 
output. The control algorithm is simple and a fast 
and effective control action can be generated. 
Obviously, the performance of the fuzzy 
controller highly depends on how good the 
expert knowledge is. Neural network controllers 
have also been applied to ship maneuvering 
controls. [7] developed a quick adaptive method 
based on a neural network for control of 
autonomous underwater vehicles. [11] used neural 
network approaches to design course-keeping 
autopilots, track-keeping controllers and automatic 
berthing systems. [4,5,6] and [8] investigated a 
functional-link neural network for dynamic 
positioning of ships. Their work has shown a 
very promising potential for successful 
application of the neural networks to control of 
motions of offshore structures.    

In this paper, we present a neural network 
predictor/controller for dynamic positioning of 
offshore structures. Our neural network predictor 
is developed based on the functional-link 
network proposed by [4,5]. However, many 
improvements are made to increase the accuracy 
and speed of the prediction of the system 
behavior. The major improvements include: 
on-line network training and cost function for 
optimal control, etc. 

2. Neural Network Predictor 

2.1 Basic Neural Network Predictor 

Consider a time varying multiple-input 
multiple-output (MIMO) process as shown in 
Figure 1, where  

{ })t(U,),t(U),t(U)t( N⋅⋅⋅⋅⋅⋅= 21U  -N input vector 
{ })t(Y,),t(Y),t(Y)t( M⋅⋅⋅⋅⋅⋅= 21Y  -M output vector 

A basic artificial neural network 
representation of the system is illustrated in 
Figure 2. The network consists of a few layers of 
nodes (neurons).  The nodes in each layer on 
the left receive signals and pass the modified (or 
weighted) signals to the nodes in the layer on the 
right. The first layer (input layer) receives the 
input signals. The signals are then modified and 
passed to the next layer until the signals reach 
the last layer (output layer). The signals coming 
out from the output layer are transformed into 
the system’s output.  The layers between the 
input layer and the output layer are called hidden 
layers.  
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Figure 2. Structure of a basic MIMO artificial 

neural network 

The mathematical description of the signals 
passing through the network can be expressed 
as, 

)M,,,m())t(O(g)t(Y~ I
mmm ⋅⋅⋅⋅⋅⋅== 21     (1) 

where t is time, )(~ tYm is the mth component of 
the system output from the neural network, mg  
is a squashing function.  I is the total number 
of layers. )(tO I

m is the signal coming out from 
the mth node in the output layer,   
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and the signals coming out from the m th node in 
the i th layer can be expressed, 

)1,,3,2(),,2,1(

)()(

1

1

1

),(1

−⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=

∑=

−

−

=

−

IiMm

tOwtO

i

i
j

M

j

im
j

i
m

i

        

(3) 
with 1 =i being the input layer and Ii = being 
the output layer. iM is the number of nodes in the 
ith layer, with NM =1

 and MMI = . )()(1 tUtO mm = for 
m=1,2,….,N  are the input signals. ),( im

jw  is a 
weighting constant that represents the strength of 
the connection between the mth node in the ith  
layer and the jth node in the )1( −i th layer. If the 
weights are known, one can calculate the system 
output from the network using Eqs. (1-3) with the 
system input given. 
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The design of the network is to determine the 
weights so that the system output from the network 
predicts as closely the output of the real system. 
This is achieved by training the network with a 
series of measured sample input-output sets of the 
system. Once the network has learned the system, 
it can be used to predict the future behavior of the 
system. The network training consists of choosing 
the weights so that the error between the predicted 
system output by the network and the measured 
system output is minimized.  

Let )N,,,n,)k(Û( n ⋅⋅⋅⋅⋅⋅= 21 and
),,2,1,)(ˆ( MmkYm ⋅⋅⋅⋅⋅⋅= be a pair of the measured 

system input-output at time ktt =  for 
Kk ,,2,1 ⋅⋅⋅⋅⋅⋅= . A cost function for training the 

network can be defined as functions of weighting 
constants, 
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where )(~ kYr is the computed network’s system 
output by Eqs.(1-3) using the sample input )(ˆ kU n .  
Now the training of the network is equivalent to 
finding the weights to minimize the cost function.  

2.2 On-line Training Functional-link Neural 
Network Predictor 

To overcome the difficulty with the high 
computational cost of the basic neural network 
with hidden layers, [4,5] proposed use of a 
functional-link neural network. The structure of the 
network is depicted in Figure 3. For simplicity of 
illustration, the structure of the network for a 
multiple input single output (MISO) system is 
shown; extension to a MIMO system is straight 
forward.   

 
Figure 3. Structure of MISO Functional-link Neural 

Network  

Instead of having hidden layers, Gu et al 
enhanced the input of the network with additional 
terms of nonlinear functions of the system input 

)N,,,j()jbj(G)(jf f⋅⋅⋅⋅⋅⋅=+⋅= 21UAU     

(5) 

where fN  is the number of the nonlinear 

enhancements. jA  is a vector of length N  whose 

elements are random numbers. jb  is also a 
random number. g  is a squashing function which 
usually is the hyperbolic tangent function, 

)(tanh)( uuG =                       (6)         
The network’s output is expressed as, 
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where  
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and nw  are the weights for the link of the inputs 
to the output and jβ  are the weights for the link 
of the enhancements to the output.   

The functional-link network can be viewed as 
a neural network of two layers (no hidden layer) 
with an expanded input vector (the original inputs 
plus the nonlinear enhancements). Compared to the 
networks with hidden layers, the number of 
weights to be trained is significantly reduced. [4,5], 
and [8] have demonstrated that the functional-link 
network trained with sufficient sample data from a 
system can serve as a universal approximator of 
the system, and it is fast and accurate.   

However, the functional-link neural network in 
Figure 3 can not represent time-evolving systems 
very well. A time-evolving system, such as the 
motion of a marine vessel dynamically positioned, 
has memory effect. The system output depends not 
only on the current input but also on previous input 
and output. To develop a neural network for 
time-evolving systems, the deterministic on-line 
training model in a traditional parameter 
identification theory and the functional-link 
network are combined. The on-line training model 
assumes that the output of a time-evolving system 
can be expressed in the discretized form as a 
nonlinear function of the current input and 
previous input and output,  

,),k(),k(),k(()k( ⋅⋅⋅−−= 21 UUUfY  
))ymk(,),k(),k();mk( u −⋅⋅⋅−−− YYYU 21     (9) 

where um and ym are the integers 
representing the time span of the memory effect 
for the input and output respectively. We take 
the system’s previous input and output as 
additional enhancements to the functional-link 
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network.  The structure of the new on-line 
training functional-link network is depicted in 
Figure 4.  The outputs of the network at time 
k are 

),,2,1())(~()(~ MmkogkY mm ⋅⋅⋅⋅⋅⋅==         (10) 
where 
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and ),,( rnmwu is the weight for the link of 
the n th component of the input at time k-r to 
the m th component of the output at time k; 

),,( qlmwy is the weight for the link of the l th 
component of the previous output at time k-q 
to the m th component of the output at time k; 
and jβ is the weights of the j th nonlinear 
functional-link enhancement. These weights 
are to be trained with the sample data of the 
system so that the cost function is 
minimized, 
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The on-line training will be used because of its 
advantages discussed earlier. A set of 

),max( yu mmK +  latest data samples is used to 
train the network. Every time step, the oldest 
sample is discarded and a most recent sample is 
added to the data set.  The network is trained 
every time step.  Once trained, the network can be 
used to predict the system output for the next time 
step given the input at the next time step.  

 
Figure 4. Structure of a SISO On-line Training                                                            

Functional-link Neural Network 

2.3 The System 

The on-line training functional-link neural 
network is tested with the prediction of the 
motion of a maneuvering ship. Without losing 
generality, the results of numerical simulation 
of the motion of the ship, instead of the 
measured data of a real ship, are used for the 
network training and verification of the 
network. The purpose of the test is to verify 
the ability of the network to learn an unknown 
system, whether it is a real physical system or 
a numerical system. If the network can learn 
the numerical system, there is no reason not to 
believe that the network can learn the real 
system prediction.  

Our system is based on the 3-degree-of- 
freedom nonlinear ship maneuvering equations 
given in [3], 
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All the quantities in the above equations 
are non-dimensionalized based on the ship’s 
length, water density and the ship’s initial 
speed moving ahead along a straight line. Two 
coordinate systems are used to describe the 
ship’s motion: One is the ground-fixed system 
and the other ship-fixed, shown in Figure 5. 
The meanings of the notations are, 
u  ----  ship speed in x-direction of the ship-fixed 

system; 
v  ----  ship speed in y-direction of the ship-fixed 

system; 
r  ----  ship’s rotation velocity (yaw rate); ψ&=r  

where ψ is the ship’s yaw angle; 
u& ----  acceleration of ship in x-direction of the 

ship-fixed system; 
v& ----  acceleration of ship in y-direction of the 

ship-fixed system; 
r&  ----  rotational acceleration ship; 

Rδ ----  rudder angle; 
oX ---  increase in propeller thrust relative to the 

propeller thrust when the ship travels 
ahead steadily. 

1uuu −=δ ; 11 =u  is the non-dimensional 
ship’s initial steady speed. 

oY  ---  hydrodynamic side force on the ship when 
the ship travels ahead steadily.  

oN  --- hydrodynamic moment on the ship about a 
vertical axis through the center of gravity 
of ship (z-axis) when the ship travels 
ahead steadily.  

∆  ---  mass of ship; 
zI  ---  mass moment of inertia about the z-axis. 

oY , oN , and the other hydrodynamic 
derivatives are also time-independent and can 
be obtained either by model tests or theoretical 
calculations.  A dot above a variable indicates 
its derivative with respect to time. 

 
Figure 5. Coordinate systems 

 

The ship speed in the ground-fixed 
system can be written in terms of u , v , and 
ψ , 

ψψ sincos vuxg −=&             (16)         

ψψ cossin vuyg +=&            (17)         

where ),( gg yx is the position of the ship’s 
center of gravity in the ground-fixed 
coordinate system; and, by definition, and we 
have,  

r=ψ&                           (18)        
                                             
Eqs. (13-18) can be re-arranged into the following 
form, 
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Eq. (19) is a system of the 1st-order ODEs with 
respect to time. The vector ),,,,,( rvuyx gg ψ can 
be regarded as the state variables because once 
they are determined, the system is completely 
known. The h  functions on the right hand side 
of Eq. (19) are known functions of the state 
variables, the rudder angle Rδ , and the 
propeller thrust increase oX . With 

),( o
R Xδ specified and ),,,,,( rvuyx gg ψ known 

at time t, Eq.(19) can be integrated in time to 
give the system output at the next time instant 

tdt + .  

2.4 Prediction of Ship Motion by On-line 
Training Neural Network Predictor 

The ship used for the numerical simulation 
is a Mariner class model. The information about 
the model can be found in [3].  In the 
numerical tests, the ship initially moves at a 
constant speed along a straight line. Then some 
specified rudder angle and thrust change are 
applied. The ship maneuver can then be 
simulated by solving Eq.(19) in a time-stepping 
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fashion. This is the process that the on-line 
training neural network is to learn and predict.   

We first run the numerical simulation for 
),max( yu mmK + steps and store the system input 

),( o
R Xδ and output ),,,,,( rvuyx gg ψ at every 

time step. So, we have ),max( yu mmK +  

“measured” samples which are used to train the 
neural network. Given the system input ),( o

R Xδ at 
the next time step, we use the trained network to 
predict the system’s output ),,,,,( rvuyx gg ψ at 

the new time step. The system output is also 
obtained using the numerical simulation. The 
network prediction is assessed by comparing it 
with the result of the numerical simulation. The 
training data is then updated by discarding the 
oldest set of  ),( o

R Xδ and ),,,,,( rvuyx gg ψ , 

and adding the newest set. The above same 
procedure is repeated for the next time step. The 
procedure continues until the desired length of 
simulation is reached. 

Two simulation cases are used for the tests: 
zigzag maneuver and turning path maneuver. In 
both cases, the network predictions agree very 

well with the numerical simulations. However, 
when used for the ship motion control, the 
network predictor sometimes fails to give the 
needed prediction. For example, in 
station-keeping of a ship, the objective is to 
keep the ship to a fixed point with a desired 
heading direction. Suppose that the ship has 
been brought to the desired position and the 
heading and the environmental disturbance has 
ceased.  To maintain the desired position and 
the heading, no control action is needed, i.e. 

),( o
R Xδ is zero. Suppose that this situation lasts 

for more than ),max( yu mmK + time steps. Then 

all the samples for the network training become 
identical. All the knowledge about the dynamic 
system is lost since the weights linking the 
input ),( o

R Xδ to the output ),,,,,( rvuyx gg ψ  

are zero.  When the environmental disturbance 
appears again, the network is not able to give 
the needed prediction and the control fails. To 
avoid this difficulty, we decompose the total 
system output into,
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where the first and second terms are the linear 
contributions due to the changes in the rudder 
angle and the thrust increase, respectively. The last 
term contains everything left including the 
nonlinear contributions. The derivatives (columns 
in the first and second terms) are evaluated at time 
t and they can further be expressed  as, 
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Derivatives ( )
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are the increases in  ),,,,,( rvuyx ogog ψ  due to 

the change in the rudder. ),( ogog yx is the movement 
of the center of gravity in the ship-fixed coordinate 
system. Similarly, 
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the increases in ),,,,,( rvuyx ogog ψ  due to the 
change in the propeller thrust. These derivatives are 
not functions of time. They only depend on the ship’s 
mass, moment of inertia and the hull geometry and can 
be determined by either model test or theoretical 
calculation. They are considered known values. 

The first two terms on the right hand side of 
Eq.(20) are known. Only the last term needs to be 
learned by the neural network. The same on-line 
training procedure described above can be used except 
that the sample data must be modified by subtracting 
the first two terms on the right hand side of Eq. (20) 
from the “measured” system output 

),,,,,( rvuyx gg ψ . The trained network can then 

predict ),,,,,( rvuyx gg ψ , and hence 

),,,,,( rvuyx gg ψ , at the next time step given the 
input ),( o

R Xδ .  
The on-line training neural network predictor 

using the output-decomposition treatment is now able 
to give a needed prediction that a control algorithm can 
use to generate the control action when the 
above-mentioned situation in the station-keeping 
problem occurs.  

2.4.1 Zigzag Maneuver 

In the zigzag maneuver, the typical procedure of 
conducting the test is as follows [3], 

(a) Bring the ship to the steady state.  
(b) Deflect the rudder at a maximum rate to a 

pre-selected angle and hold until a pre-selected 
change of heading angle is reached. 

(c) At this point, deflect the rudder at the maximum 
rate to an opposite angle and hold until the 
execute change of the heading angle on the 
opposite side is reached. This completes the 
overshoot test. 

(d) If a zigzag test is to be completed, again deflect 
the rudder at the maximum rate to the same 
angle in the first direction. This cycle can be 
repeated through the third or more executes.  

For our test, the pre-selected rudder angle is o15 and 
the pre-selected change of the heading angle is o10 .  
The neural network parameters used are: =K 15, 

== yu mm 5, and =fN 5.  The ship’s initial 
position is at (0,0) with a zero yaw angle and moves 
with speed  11 =u . 

 
 

Figure 6.  Rudder angle )( Rδ , ship position    

),( gg yx , and yaw angle )(ψ vs. time 
 

The rudder angle Rδ , the ship position 
),( gg yx  and yaw angle ψ (solid lines) by 

solving Eq. (19) and those predicted by the 
neural network (dashed lines) are shown in 
Figure 6. The neural network predictions are so 
close to those of Eq. (19) that one can not 
distinguish them graphically.  Figure 7 
compares the ship’s trajectory by Eq. (19) and 
that predicted by the neural network, while 
Figure 8 compares the translation and rotation 
velocities of the ship by Eq. (19) and those by 
the network prediction.  Again, the results 
from Eq. (19) and the network prediction are 
too close to distinguish from the figures. 

Figure 9 and Figure 10 show the 
differences (errors) in gy  and ψ  between 
the neural network predictions and the 
simulation results using Eq. (19) since these 
two quantities are of primary interest in the 
zigzag maneuver test. The average error in 

|| gy  is 0.29% of the ship length with a 
maximum error of around 1%.  The average 
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error in ||ψ  is 0.0038 radian with a maximum 
of approximately 0.045 radian. The maximum 
error in ψ occurs every time when ψ  
reaches the maximum, and stays for only a 
very short period of time.  

 
Figure 7. Trajectory of the Ship’s center of gravity 

 
Figure 8. Translation and rotation velocity of the ship vs. 

time 

 
Figure 9. Error in gy vs. time t 

 
Figure 10. Error in ψ  vs. time t 

2.4.2 Turning Path Maneuver 

Turning path maneuver is another important test 
of the ship’s maneuverability, and is also used to assess 
the effectiveness of the neural network. The same 
network parameters and ship’s initial condition as 
those in the zigzag maneuver are used. The rudder 
angle is deflected at the maximum rate to a 
pre-selected maximum angle of o10  and then held 
unchanged during the whole simulation period.   

Figure 11 compares the trajectory of the ship’s center 
of gravity by Eq. (19) and the network prediction. The 
two are too close to see the difference.  Figure 12 shows 
the translation and rotation velocities of the ship of the 
results of the simulation and the network prediction. As 
expected, they are almost identical.  Figure 13 shows the 
errors in gx , gy  and ψ .  The average error in 

|| gx is 0.16% with a maximum error of 1.5%. The 

average error in || gy  is 0.15% with a maximum error 
of 3%. The average error in ||ψ  is 0.0016 radian with a 
maximum error of 0.008 radian.  The maximum error 
occur during the early stage of the maneuver when the 
rudder is deflected from zero to o10 rapidly. 

 
Figure 11. Trajectory of the ship’s center of gravity 

(turning path maneuver) 

 
Figure 12. Ship’s translation and rotation velocities 

(turning path maneuver) 
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Figure 13.  Errors in gx , gy  and ψ  vs. time t 

One thing worth pointing out is that the 
errors in the neural network predictions are 
bounded with respect to time because of the 
on-line training. The numerical tests have 
shown that the neural network is fast and the 
neural network predictions are satisfactory.  

3. Neural Network Controller 
We combine the on-line training neural 

network predictor with an optimal controller 
to result in a neural network controller for 
dynamic positioning of a ship. The control 
objective is to bring the ship to a desired fixed 
point dd yx ,( ) in the ground-fixed coordinate 
system and keep the ship in that position with 
a desired heading dψ . We define a cost 
function, 
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where ))(),(( dttXdtt o

R ++δ is the rudder angle 
and the propeller thrust increase to be 
determined at time dtt + . The optimal control 
algorithm searches for an optimal control action 

))(),(( dttXdtt o
R ++δ so that the cost function is 

minimized. In Eq. (21), variables with a “~” on 
the top are the predicted system output at dtt + . 

)(tdψ( is a desired intermediate heading angle 
defined as, 
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          (22) 

The first three terms on the right hand side of 
Eq.(21) aim at bringing the ship to the desired 
position and heading, while the remaining terms 
are introduced to reduce the excessive 
overshooting and high frequency oscillatory 
action of the rudder angle. The desired 
intermediate heading is also used for this 
purpose. Constants 21 ,CC  and 3C are 
parameters to determine the relative importance 
between the first three terms and the remaining 
terms in Eq. (21). aheadX  is some length 
usually about 4-5 ship lengths. 

For practical ship control, there are 
constraints on how fast the rudder can move and 
how fast the propeller thrust can change. There 
are also constraints on the maximum rudder 
angle and the maximum propeller thrust. 
Therefore, the control algorithm searches the 
optimal ))(),(( dttXdtt o

R ++δ by minimizing 
the cost function with the constraints on Rδ  
and oX .  For the numerical simulations 
presented in this paper, the constraints are set as: 
the maximum Rδ  is 30o, the maximum change 
in Rδ  in one time step is 2o; The maximum 

oX  is 0.05, and the maximum change in 
oX in one time step is 0.005.  
The performance of the controller not only 

depends on the accuracy of the prediction but 
also on the control algorithm and the associated 
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cost function. To verify the performance of the 
proposed control algorithm and the cost 
function, we first use the “exact” prediction 
from the equation-of-motion simulation to 
calculate the cost function.  Our tests have 
shown that the performance of the controller is 
very satisfactory. We then use the neural 
network prediction and examine the 
performance of the on-line training neural 
network controller.  

Eq. (19) is used to calculate the ship’s 
motion in the simulation of the dynamic 
positioning of the ship with the neural network 
controller. At time t, the network is trained with 
the sample data calculated using Eq. (19) at 
previous time steps. The system’s 
status dttgg rvuyx +),,,,,( ψ predicted by the trained 
network is used to evaluate the cost function in 
searching for the optimal ))(),(( dttXdtt o

R ++δ . 
This optimal control action is then used in Eq. 
(19) to calculate the status of the ship at dtt + . 
The rudder angle and the thrust are assumed to 
vary linearly from ( )(,)( tXt o

Rδ ) to 
( )(,)( dttXdtt o

R ++δ ). The results of the 
numerical simulations of three control problems 
are presented. 

3.1 Case 1 (without environment disturbance) 

 The first case is a ship initially located at 
(0,4) against a current in the –x direction in the 
ground coordinate frame. No environmental 
disturbances are present. The task is to bring 
the ship to point (5,0) and keep it in the 
position with a zero heading angle. Notice that 
Eq.(19) can be used to simulate the ship 
motion in a current with a simple coordinate 
transformation.  

Figure 14 shows the path and the heading 
of the ship.  Figure 15 and Figure 16 show the 
rudder angle and the thrust increase as 
functions of time. The coordinates of the ship’s 
center of gravity and its heading are given in 
Figure 17. These figures clearly demonstrate 
that the neural network controller has 
successfully accomplished the control task.   

3.2 Case 2 (with environment disturbance) 

The second case is the same as the first case 
except that there are some environmental 
disturbances present. The resultant effects of 
the disturbances can be represented by a force 
and an moment acting on the ship which are 
added to Eq. (19) in the numerical simulation. 

For the results presented, the disturbing force 
and moment are 
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with 11 =ω and 22 =ω .  
Figure 18 shows the path and the heading 

of the ship.  Figure 19 and Figure 20 show 
the optimal Rδ  and oX as functions of time. 
The coordinates of the ship’s center of gravity 
and its heading are given in Figure 21. As 
expected, they are different from those in the 
first case during the transient period because 
of the external disturbances.  But the neural 
network controller is able to bring the ship to 
the desired position within about a same 
amount of time and keep the ship in the 
position with the desired heading.    

 
Figure 14. Path and heading of ship (no disturbance) 

 
Figure 15. Optimal rudder angle vs. time (no 

disturbance) 
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Figure 16. Optimal thrust increase vs. time (no 

disturbance) 

 
Figure 17. Coordinates of ship’s center and heading 

angle vs. time (no disturbance) 

 
Figure 18. Path and heading of ship (with disturbance) 

 
Figure 19. Optimal rudder angle vs. time (with 

disturbance) 

 
Figure 20. Optimal thrust increase vs. time (with 

disturbance) 

 
Figure 21. Coordinates of the ship’s center of gravity and 

heading angle vs. time t  (with disturbance) 

4. Conclusion and Discussion 
In this paper, we describe an on-line training 

neural network predictor for prediction of the 
output of MIMO systems. The advantages of the 
structure of the on-line training neural network and 
the on-line training of the network are discussed. A 
procedure of training the network on-line and 
utilizing the trained network with an optimal 
control algorithm for dynamic positioning (station 
keeping) of a ship is presented. 

The effectiveness and accuracy of the network 
predictor are verified with the numerical ship 
maneuvering simulations: zigzag maneuver and 
turning path maneuver. The simulations have 
shown that the on-line training neural network is 
effective and fast. The network prediction is very 
accurate.   

The feasibility of the neural network 
predictor/controller for dynamic positioning of 
marine vessels is demonstrated with the numerical 
simulations of station keeping of a ship with and 
without environmental disturbances. The neural 
network controller successfully accomplished the 
station-keeping task. The predictor/controller was 
able to adapt itself through the on-line training and 
cope with the new situations (such as 
environmental disturbances) without the need for 
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additional means to measure and analyze the 
disturbances.  

 The on-line training neural network predictor 
was designed for a general MIMO system so it can 
have a wide range of applications.  In principle, 
this neural network predictor can be applied to any 
MIMO system as long as the system’s input and 
output are measurable.  In this paper, the 
predictor has been validated with a 2-input, 
6-output system.  

It is believed that, once validated, the on-line 
training neural network predictor/controller can be 
a very powerful, robust and reliable tool for 
floating structure operators.  
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Nomenclature 

jA     a vector of length N  whose elements are 
random numbers. 

jb     random number. 

mg     squashing function. 

zI     mass moment of inertia about the z-axis. 
I            the total number of layers. 

)(tO I
m  the signal coming out from the mth node in 

the output layer. 
iM     the number of nodes in the i th layer. 

fN     the number of the nonlinear enhancements. 
oN     hydrodynamic moment on the ship about a 

vertical axis through the center of gravity 
of ship (z-axis) when the ship travels 
ahead steadily.  

r      ship’s rotation velocity (yaw rate). 
r&      rotational acceleration ship. 
t      time. 
u      ship speed in x-direction of the ship-fixed 

system. 
u&     acceleration of ship in x-direction of the 

ship-fixed system. 
v      ship speed in y-direction of the ship-fixed 

system. 
v&     acceleration of ship in y-direction of the 

ship-fixed system. 
),( im

jw   weighting constant. 

nw     the weights for the link of the inputs to the 
output. 

oX  increase in propeller thrust relative to the 
propeller thrust when the ship travels 
ahead steadily. 

)( ogx   is the movement of the center of gravity in 
the ship-fixed coordinate system. 

)(~ tYm   the mth component of the system output 
from the neural network. 

)( ogy  is the movement of the center of gravity in 
the ship-fixed coordinate system. 

oY     hydrodynamic side force on the ship when 
the ship travels ahead steadily.  

Rδ     rudder angle. 
uδ     the non-dimensional ship’s initial steady 

speed. 
∆      mass of ship. 

jβ      the weights for the link of the enhancements 
to the output. 

ψ      the ship’s yaw angle. 
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