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Abstract

In order to satisfy the accelerating nanotechnology of high-tech precision manufacturing, it is

essential to develop the efficient integration of amplifying device producing very fine resolution. This

paper proposes such a development using topological optimal synthesis to design a monolithic

mechanical amplifying lever actuated by a PZT in single-axis nano-positioning stage. This one-piece

compound compliant mechanism consists of an amplifier and nano-motion bed. The resultant

amplifier yields to a larger magnification factor than that in original design. The completed design

implementation shows that the presenting design optimization is practical to apply. In addition, it

provides a creative computational aided design (CAD) environment and integrated design process for

mechanical amplifier and nano-positioning stage.
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1. Introduction

High precision and positioning performances are

extremely important along with the rapid growing of

semiconductor, MEMS (Micro-Electro-Mechanical Sys-

tems) and precision manufacturing process [1]. Due to

composing different structures and materials, popular

used dual motion positioning stage, both motor actuated

ball screw and linear slider for coarse motion, and as-

sociated piezoelectric parts for fine motion require high

level but difficult control system. A development of inte-

grating amplifying device [2] can directly expand the

motion of nano stage that shows very convenient for

control. Such the device assembly makes very fine reso-

lution possible and meets accelerating nanotechnology

in high-tech precision manufacturing.

The earlier effort of Yang et al. [3] applied the flex-

ure structural mechanics to develop an amplifying de-

vice incorporated with piezoelectric actuated single-axis

nano stage. Lee and Kim [4] also applied flexural me-

chanics and proposed a design of micro XY-stage. Ryu et

al. [2] presented a flexure hinge based XY� wafer stage

with size optimization constrained by travel distance

within 100 �m. Elmustafa and Lagally [5] applied finite

element analysis (FEA) to study the behavior of nano-

position stage guided by flexural-hinges. Another mi-

cro-stage presented by Dai et al. [6] using the FEA to an-

alyze the behavior of a flexural hinge guided by nano-

motion.

A monolithic structure contains flexures that gain its

mobility from the flexibility of some or all of members,

so called the compliant mechanism. Some existing real-

istic compliant mechanisms were designed by combin-

ing trial approaches and experiences. Recently, the pse-

udo-rigid-body model (PRBM) [7] provides a systematic

method to analyze general compliant structures. Interest-

ing readers can refer a historical development of compli-

ant mechanisms to Chang and Wang [8] in which a four-

bar compliant micro-mechanism in polyethylene (PU)

material was presented. Fu [9] applied the PRBM that

includes mechanical flexures and amplifying lever with

size optimization in a nanometer positioning stage. Hsiao
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[10] adopted Fu’s nano-resolution stage analyzed by FEA

and tolerance design. Their continuous efforts establish

the knowledge to the fundamental nano-resolution stage.

Topology optimization is an integrated methodology

developed for the mechanism or structural synthesis.

Sigmund [11] first introduced the micro displacement

inverter and amplifier that were created by structural

topological optimization. Huang and Lan [12] presented

a micro mechanical amplifier coupled with a PZT ac-

tuator. Shih et al. [13] presented a system topological

design process with multiple objectives optimization

technique for the design of compliant micro gripper. It is

concluded that the hinge-like locations created in topo-

logy optimization are the exact locations of the flexure

hinges in monolithic compliant mechanism.

This paper refers to Fu’s [9] demonstration of a sin-

gle-axis nano-positioning stage including an amplifying

lever actuated by a PZT. Fu applied the conventional

mechanical design method and genetic algorithm for op-

timization. The design task and conditions and require-

ments of current work remain the same as Fu’s work. The

presented monolithic compliant amplifier has been re-

design by topological synthesis [13] mounted on a flex-

ural nano stage of one-bed foundation. This one-piece

compound compliant mechanism consists of amplifier

and nano-motion bed consequently analyzed by the FEA.

Several valuable recipes are given in the paper to resolve

some possible difficulties during practical process. The

performance, strategy, and parameters are analyzed and

discussed that shows the effectiveness of this CAD based

process for the mechanical amplifying mechanism inte-

grated in PZT nano-positioning stage.

2. Model of Nano-Resolution Stage

A completed nano-positioning stage [9] shown in

Figure 1 contains a PZT actuator, an amplifying lever

and a flexure motion stage. The horizontal distance be-

tween two hinges indicated as B is 46 mm. The height of

the amplifier is 18 mm. Such a one-piece nano-motion

stage with four double compound leaf springs and two

notch hinges B are machined by wire electric discharge

machining (EDM). A PZT actuator has been applied at

location A. The whole stage is made of stainless steel

SUS304 with density 7.92 g/cm3, Young’s modulus 190

GPa, Poisson ratio 0.29 and yielding strength 520 MPa.

The design goals require high stiffness, more than 200

Hz natural frequency, and a maximum output stroke. Fu

[9] applied the genetic algorithm for parametric optimi-

zation resulted in the maximum output stroke 135.8 nm

(nanometer) with natural frequency 280.8 Hz. Addition-

ally, the experimental work using a P-840.30 PZT ob-

tained a maximum output stroke 109.8 nm and natural

frequency 264.0 Hz.

Hsiao [10] conducted the FEA to Fu’s nano-stage

with total thickness 18.5 mm, spring rate 0.09 � 106 N/m

of each leaf, and thrust 1 Newton at PZT actuator. The

maximum output displacement is 206.0 nm; the static

stiffness of stage is 4.85 � 106 N/m, and the natural fre-

quency is 316.04 Hz. The above nano-resolution stage

has been conducted by optimum design, experimental

test and finite element simulation. In this research, the

portion of nano-motion stage is not considered for any

change. However, the shape and material distribution of

the amplifying lever has been redesign by formal topo-

logy optimization technique. The next section presents

the redesign amplifying lever integrated into PZT nano-

positioning stage.

3. Integrated Design Optimization

3.1 Design Variables, Domain and Boundary

Conditions

Figure 2 shows a general domain for topological
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Figure 1. Original nano-stage model and loading.



structural design of a monolithic compliant mechanism.

A spring with coefficient Ks at output port simulates the

resistance from work-piece. It is critical to the formation

of topology configuration [14]. The goal of the optimi-

zation problem is to maximize the work performed on

the spring. In this paper, the design bound shown in Fig-

ure 3 presenting compliant magnifying mechanism that

is identical to the configuration in Figure 1. The slant

line at the right edge denotes the supported area. The out-

put coefficient of soft spring is 0.36 � 106 N/m; and the

coefficient of input spring is 20 times of output spring.

The material is SUS304. An input force 1 Newton is ap-

plied at a distance of 9.5 mm from the center of the sup-

port area shown in Figure 3.

The design variable xe represents the relative density

of material in each finite element e that satisfies � = xe�o.

The representation �o means the original material den-

sity of a single element. A certain element is solid which

means xe = 1. In the SIMP model (solid isotropic micro-

structure with penalization) [14�16] the Young’s mo-

dulus of each element can be represented in Ee = (xe)
� Eo,

where � is a penalty factor. In order to obtain true “0-1”

design, � � 3 is usually required. In this work, � = 3 is se-

lected for study.

3.2 Mathematical Model of Topology Optimization

A topology optimization presented in this work, re-

solves the problem of distributing a limited amount of

material in the design domain such that the output dis-

placement is maximized, is formulated as follows.

Maximize f (X) = Uy,out (X) (1)

(2)

(3)

0.001 � xi � 1 (4)

The expression Uy,out indicates vertical output dis-

placement; and Ux,out indicates horizontal output dis-

placement. In the optimization process, the relation of

{F} = [K]{U} must satisfy. The relative density in each

element is a design variable. Eq. (2) indicates the mate-

rial volume must be restricted within an allowable value

Va, as called control volume. In the Fu’s result, the con-

trol volume is estimated around 64.2%. Therefore, the

60% for Va in this study is used as constrained control

volume. Since the useful output motion is vertical direc-

tion only; thus, Eq. (3) constrains the output displacement

in horizontal direction is less than vertical direction.

3.3 Numerical Topology Optimization

The method of moving asymptotes (MMA) is ado-

pted as the optimizer for optimum search [17,18] cou-

pled with adjoint method for sensitivity analysis. In the

solution process, the technique of a mesh-dependent fil-

ter is utilized to eliminate checkerboard-like phenome-

non. The total finite element number used is 3744 (104

� 36). This multidisciplinary computational process is

consequently summarized in the following algorithm.
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Figure 2. Domain of topology optimization for a compliant
mechanism design.

Figure 3. Design domain of amplifying mechanism using
topology optimization (units are in mm).



(1) Perform the finite element analysis for structural

stress, displacement, stiffness and natural frequency.

(2) Perform the sensitivity computation by applying ad-

joint method for the usage in numerical optimiza-

tion.

(3) Apply the filter technique to eliminate the checker-

board occurrence which is generated in the finite ele-

ment computation.

(4) Using asymptotes method to compose the approxi-

mate function for the mathematical formulation of

topology optimization in MMA.

(5) Execute the numerical optimization using the algo-

rithm of MMA.

(6) Examine the convergence. If the numerical result is

converged, output the optimum topology and result.

Otherwise, go to step 2 and the process is repeated.

The optimized topology synthesis can be obtained as

shown in Figure 4. The maximum output of vertical dis-

placement is 300.52 nm; the maximum output of hori-

zontal displacement is 7.72 nm; the vertical input dis-

placement is 61.0 nm, so that the magnification factor of

vertical direction is 4.927.

3.4 Modification of Original Topology

The topology obtained in Figure 4 has a nice shape;

however, the edges are not smooth and clear enough for

practical use. Based on our knowledge of mechanical

hinge, a modification can be treated after Figure 4 cre-

ated. By the conclusion of Shih et al. [13], at the bottom

right and above the support area there is a hinge-like

flexure even it looks like a single point connection. The

center of such a hinge at the support is then fixed so that

the final modification of the amplifier with hinge area is

presented in Figure 5. The distance of the input load from

the hinge is 8.25 mm resulted from the outcome of topo-

logy optimization. The original range of 52 mm changes

to 49.5 mm. The primary dimension of nano-motion bed

is presented in Figure 6. The portion of the stage bed

maintains the same as that in Fu’s work. Consequently, a

complete bed of nano stage connecting a compliant ampli-

fying mechanism is shown in Figure 7 where an additional

flexure hinge at the output portion is presented in Figure

8. One can see the space of 53 mm � 19 mm in Figure 7 is

allowed for the machining and amplifier’s motion. The

length between two arcs on the flexure hinge is 1.5 mm

that is same as that in Fu’s study [9]. The radius of the arcs

of flexure hinge is adopted as 2 mm. The different radius

of arc is not as critical as the different distance between

arcs in the sense of mechanical performance.

4. Performances Analysis of Nano Stage with

Amplifier

Figure 9 indicates the displacement field of this
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Figure 4. The final topological result of the amplifying me-
chanism (Va = 0.6)

Figure 5. Modification of the amplifying mechanism of Va =
0.6 after topology synthesis (units are in mm).

Figure 6. Nano-motion bed (units are in mm).



nano stage assembly by ANSYS. The representation

SMX means the maximum vertical displacement at the

front head of amplifying mechanism. However, the use-

ful point is the connection between the bed of nano-stage

and amplifying lever. In there, a point with output ver-

tical displacement is 192.58 nm and induced input ver-

tical displacement is 42.19 nm using finite element an-

alysis. Thus, the magnification ratio of output to input

vertical displacement is 4.56.

The displacement field in Figure 9 not only shows

the displacement observation corresponding to each po-

int, critical location and magnification performance. It

also provides information to produce the animation th-

rough digital computation technique. One can imagine

the upper monolithic amplifier pull the nano-stage up

and down through PZT actuation and the reaction of leaf

springs. Since the motion is too small to observe the ef-

fective behavior in the animation through Figure 9.
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Figure 9. The displacement field of the nano stage assembly (Va = 0.6).

Figure 7. The assembly of the nano-stage (units are in mm).

Figure 8. The neighborhood area of output hinge (units are in
mm).



Therefore, we enlarge the mobility scale that results in a

out-of-plane distortion noted in Figure 9.

The static stiffness 5.19 � 106 N/m is obtained in this

assembly stage. Since the horizontal displacement of

output point is only 2.48 nm that is 1.28% of output

vertical displacement. It is verified that the constraint

of Eq. (3) is effective in proposed topology optimization.

The maximum von Mises stress is 0.2124 MPa which

occurs at the flexure hinge of input loading area. The

fundamental natural frequency of the assembly stage is

318.8 Hz that is more than required 200 Hz.

When one compares the current design based on

topological synthesis and the one presented in Fu [9]

and Hsiao [10], Table 1 summarizes some properties and

performances. The representation of Uy,in indicates the

input vertical displacement. M.F. means the magnifica-

tion factor, i.e. the ratio of Uy,out to Uy,in. The expression

	e indicates the resulting maximum von Mises stress.

Both results analyzed in this paper and Hsiao [10] show a

good conformity. Additionally, the proposed topological

basis design yields to a larger magnification factor (M.F.)

than Hsiao. A larger vertical output displacement can be

obtained by slightly moving applied load toward left. For

example, when the applied load 1 Newton relocates at

11-mm away from the support hinge, the vertical output

displacement becomes 257.66 nm. This significantly re-

veals that the location of the loading position can be si-

multaneously arranged while the structural material is

redistributed. Consequently, the topology synthesis pro-

vides a more convenient and efficient way. Particularly,

several topological outcomes can be generated through

different control volume, boundary condition and mate-

rial properties depending on designer’s preference. Thus,

the topology optimization can be an alternative synthesis

methodology with much creativity and flexibility for

monolithic compliant mechanism.

5. Post Design of Amplifying Mechanism

From Table 1 one knows that the maximum von

Mises stress is much lower than yield strength 520 MPa.

The material volume and weight of amplifier may be ad-

justed by either reducing the structural thickness or re-

gulating control volume during the topology synthesis.

This concept inspires and results in two experiments de-

scribed as follows.

5.1 Reducing Thickness of Amplifier

Four amplifier thicknesses are studied: 18.5 mm, 15

mm, 10 mm and 5 mm. The distance between arcs on the

flexure hinge is prescribed as 1.5 mm for both 18.5 mm

and 15 mm. The distance between arcs on a flexure hinge

is 2.0 mm for both 10 mm and 5 mm. The rest of parts of

nano-stage assembly are the same as that in previous

case. The resultant analysis by ANSYS is summarized in

Table 2. One can see the magnification factor (M.F.)

generally maintains similar for different structural thick-

ness in this two-dimensional topology optimization. As

long as the material strength is strong enough, a lighter

weight mechanism is preferred for generating larger

magnification factor and vertical output displacement.

5.2 Reducing Material Volume of Amplifier

In the primary design phase of topological synthesis,

the control volume in Eq. (3) is constrained by:

(5)
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Table 1. Comparison of Hsaio [10] and presented topological basis design

Volume Uy,out (nm) Ux,out (nm) Uy,in (nm) M.F. Stiffness (N/m) 
1 (Hz) Max. 	e (MPa)

Hsiao [10] 64.2% 206.00 / / / 4.85 � 10
6

316.04 /

Simulate [10] 64.2% 240.20 3.19 60.70 3.96 4.16 � 10
6

285.31 0.2596

Va = 0.6 60%.0 192.58 2.48 42.19 4.56 5.19 � 10
6

318.80 0.2124

Table 2. Performances of different amplifier thickness

(Va = 0.6)

Thickness (mm) 18.5 15 10 5

Uy,out (nm) 192.58 235.69 282.10 530.32

Ux,out (nm) -2.48 -3.04 -3.79 -7.04

Uy,in (nm) 42.19 51.05 62.83 113.81

M.F. 4.56 4.62 4.49 4.66

Max. 	e (MPa) 0.2124 0.2599 0.3244 0.6269


1 (Hz) 318.80 322.70 292.80 294.00



In this case of reducing control volume, the design do-

main is the same as Figure 3. All conditions are also the

same as that in Section 3.1. The synthesis using topo-

logy optimization can be obtained as shown in Figure

10. The maximum vertical output displacement is 292.71

nm; the maximum horizontal output displacement is

6.74 nm; the input vertical displacement is 55.09 nm, so

that the magnification factor of vertical displacement is

5.31.

The topology obtained in Figure 10 has a well lay-

out. At the bottom right and above the support area, a sin-

gle point connection shows the location of a hinge-like.

A final configuration of amplifying mechanism after to-

pology synthesis is modified and presented in Figure 11.

The assembly of nano-stage is ready for ANSYS an-

alysis including an additional flexure hinge located at

output portion. The length between two arcs on the flex-

ure hinge is 1.5 mm that is same as in previous study. The

radius of the arcs of flexure hinge still matain 2 mm. The

maximum vertical displacement at output and detailed

hinge area is 214.98 nm. An induced vertical input dis-

placement is 42.66 nm. Thus, the magnification factor of

vertical to input displacement is 5.04. The static stiffness

of this assembly stage can be obtained as 4.65 � 106 N/m.

The horizontal displacement of output point is only 5.01

nm. The maximum von Mises stress is 0.2119 MPa

which occurs at the flexure hinge of input loading area.

The fundamental natural frequency of the assembly stage

is 268.2 Hz that is more than required 200 Hz.

When one compares the current design based on the

topological synthesis and the design presented in Fu [9]

and Hsiao [10], Table 3 shows some properties and per-

formance. Once more, four kinds of amplifier thickness

(18.5 mm, 15 mm, 10 mm and 5 mm) are studied under

Va = 0.3. The distance between arcs on the flexure hinge

is 1.5 mm for both 18.5 mm and 15 mm. The distance be-

tween arcs on a flexure hinge is 2.0 mm for both 10 mm

and 5 mm. A larger distance between arcs can compen-

sate the flexure rigidity due to the smaller structural

thickness. The rest of parts in nano-stage assembly are

the same. The results of ANSYS analysis are summa-

rized in Table 4. One compares Table 2 and Table 4, both

control volume and material thickness are significant to

the resulting performances. A practical consideration of

applying the proposed implementation is to repeat the

computation by alternating those two factors until a sa-

tisfaction appears.
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Table 3. Comparison of presented topological basis design

Volume Uy,out (�mm) Ux,out (�mm) Uy,in (�mm) M.F. Stiffness (N/m) 
1 (Hz) Max. 	e (MPa)

Hsiao [10] 64% 206.00 / / / 4.85 � 10
6

316.04 /

Va = 0.6 60% 192.58 2.48 42.19 4.56 5.19 � 10
6

318.80 0.2124

Va = 0.3 30% 214.98 5.01 42.66 5.04 4.65 � 10
6

268.20 0.2119

Figure 10. The final topological result of the amplifying me-
chanism (Va = 0.3).

Figure 11. Modification of the amplifying mechanism of Va =
0.3 after topology synthesis (units are in mm).

Table 4. Performances of different amplifier thickness

(Va = 0.3)

Thickness (mm) 18.5 15 10 5

Uy,out (nm) 214.98 263.06 301.31 566.88

Ux,out (nm) 5.01 6.14 6.70 12.83

Uy,in (nm) 42.66 51.55 60.06 108.84

M.F. 5.04 5.10 5.02 5.21

Max. 	e (MPa) 0.2119 0.2588 0.3266 0.6339


1 (Hz) 268.20 267.70 299.90 296.10



6. Concluding Remarks

Through the presented design and analysis, the topo-

logical synthesis is a very creative and effective method

to generate alternative layout for a monolithic compliant

mechanism, particularly for the design of mechanical am-

plifier. The resultant topological structure can yield to a

maximum magnification factor and a satisfying output dis-

placement. This paper demonstrates an integrated design

process of designing a monolithic compliant amplifier for

single-axis nano-positioning stage with an amplifying lever

actuated by a PZT. As long as the strength based constraints

and specified actuator meet the operation requirements, the

presented implementation shows convenient and practical.

A further study can be extend to three dimensions, simulta-

neously minimize compliance and weight, and includes

stress constraints in one phase in the design optimization.
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