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Abstract

In this paper, we discuss the dual-problem of adjusting the mixture number and avoiding local

optima in the estimation of a Gaussian mixture. This estimation is widely used in unsupervised-classification

applications; however, its results are serially sensitive to the initial setting, which is difficult to

optimize. It is also difficult to automatically designate the mixture number in advance. In much of the

literature, these two issues are discussed separately, meaning that one is considered at the expense of

the other. To overcome this problem, we present some strategies that automatically and simultaneously

adjust the mixture number and escape from local optima. The evaluation results are very encouraging

and show that the proposed strategies are effective.

Key Words: Parameter Estimation of Gaussian Mixture, EM Algorithm, Clustering Algorithm,

Local Optima

1. Introduction

The parameter estimation of mixture density is prob-

ably one of the most widely used techniques in computa-

tional pattern recognition. Multivariate Gaussian mix-

ture density functions are the most popular continuous

probability density functions used to describe an unor-

dered statistically independent set of vectors (input data)

because they can approximate any continuous probabil-

ity density function. In this paper, we focus on a mixture

of non-overlapped and non-adjacent multivariate Gaus-

sian functions because it is very useful for solving unsu-

pervised classification (clustering) problems. The Ex-

pectation Maximization (EM) algorithm is the method

most frequently used for this purpose [1�3]. In this paper,

we discuss two widespread problems that occur when we

use the EM algorithm to estimate the parameters of the

Gaussian mixture. The first is that improper initial data

cause the local-optimum result, and the second is that the

mixture number cannot be decided in advance.

Not only EM algorithm but also many conventional

clustering algorithms, e.g., the k-means [4], the fuzzy c-

means [5�7], and the varieties of fuzzy c-means [8,9],

cannot designate the number of clusters in advance. If the

number of clusters is incorrect, most clustering algori-

thms cannot yield a satisfactory result. Many researchers

have tried to decide the number of clusters [10�14] by

running a clustering algorithm several times with differ-

ent assigned numbers of clusters. This leads to a sequ-

ence of clustering systems, whereby each system is te-

sted by various objective functions to determine the best

cluster number. In these methods, all possible cluster

numbers must be tried and tested manually or by other

techniques, e.g., MDL (Maximum Description Length).

Unfortunately, every trial may fall into local optima if the

initial setting is improper. This means that the trial with

the correct number of clusters may produce a local opti-

mum result that may be not good enough to compete with

the results from wrong numbers of clusters. Moreover, as

it is necessary to designate the range of possible cluster
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numbers in advance, the above approaches will still fail

if the real cluster number is not in the designated range.

Consequently, these kinds of trial mixture-number (num-

ber of clusters) discovery methods are not always reli-

able. If an algorithm can adjust the number of clusters au-

tomatically, trying to test all possible mixture-numbers is

a redundant process.

Even if the correct number of clusters is determined

in advance, conventional clustering algorithms can be

trapped in local optima when the initial setting is im-

proper. These algorithms are very sensitive to the chosen

initialization; that is to say, if a poor initial setting is cho-

sen, they fall into the local optima. However, good initial

settings are difficult to determine. To overcome the abo-

ve problem, Lawrence O. Hall et al. [15] proposed a ge-

netically guided algorithm (GGA) that can ameliorate

the difficulty of choosing an initialization for the fuzzy

c-means clustering algorithm. The GGA algorithm at-

tempts to achieve minimal sensitivity to initialization and

avoidance of local optima. Nir Friedman et al. [16] en-

hanced the basic EM algorithm procedure by incorporat-

ing the technique of simulated annealing to escape from

the local optima. Meanwhile, B. Schachter et al. [17] used

the test statistic of distortion to estimate the goodness of

fit for a hypothetical distribution of clusters.

Several researchers have devised supplementary en-

hancement strategies to improve conventional clustering

algorithms. In the Split and Merge EM algorithm, (SMEM)

[18], Naonori Ueda et al. used split and merge operations

based on different justification criteria to escape from the

local maxima. In the SMEM algorithm, on one hand the

larger the number of samples that belong to two clusters

simultaneously, the greater will be the opportunity to

merge these two clusters, and on the other hand if the

Kullback-Leibler divergence between the distribution of

a cluster and the local density among the clusters is lar-

ger, the clusters have more opportunities to be split. With

these two entirely different criteria, the full EM steps and

the partial EM steps are performed iteratively until the

objective function obtained by the SMEM is convergent.

This algorithm holds the number of clusters (mixture

number) by synchronized split and merge operations, and

the number of clusters must be designated in advance,

which is the same as the above-mentioned clustering met-

hods. However, as stated previously, the number of clus-

ters is usually unknown in practical applications, but the

SMEM algorithm is powerless to find the correct number

of clusters.

As previous discussion, it is clear that, for the param-

eter estimation of a Gaussian mixture using the EM algo-

rithm, the problem of choosing the mixture number and

the problem of local optima cannot be solved separately

because they both influence the results. Therefore, if

only one is solved, successful results cannot be guaran-

teed. Nikos, Vlassis et al. [19] proposed a greedy EM al-

gorithm to improve the general EM algorithm and attem-

pted to solve these two problems simultaneously. Under

the assumption that maximum likelihood learning of a

k+1 mixture of Gaussian clusters can be performed in a

greedy manner by adding one new component to the ma-

ximized k mixture of the Gaussian clusters, they started

with one component and successively added components

to the mixture until the objective function of the EM al-

gorithm was convergent. Although the greedy EM algo-

rithm seems to outperform general EM algorithms, it has

a problem in that the (k+1)th optimum solution can not al-

ways be derived from the kth optimum solutions. More-

over, if one of the derivations is deviant, the result will be

abnormal because the greedy algorithm cannot correct it-

self.

With regard to the issue of local optima, some re-

searchers propose a simple scheme that tries many dif-

ferent random initial-settings to obtain many results and

chooses the best one. However, we do not know how

many times we need to try because the failure rate may

be rather high in some cases. For example, the sample

shows in Figure 1 is a tough case for using the pure EM

algorithm. We can test and verify that most random ini-

tial-settings are improper. That is, when the failure rate is

very high, we should not expect to obtain a correct result

merely depending upon the trick of many trials. Thus this

kind of strategy for avoiding local optima is not always

reliable and we do not suggest using it.

We analyzed several results of local optima. Some of

the final clusters contain more than one cluster, and some

clusters overlap each other. These unreasonable phenom-

ena must be corrected. Recall that Gaussian distribution

governs clusters in the EM algorithms; therefore, to ob-

tain a refined clustering result, we must ensure that every

cluster fits with the hypothesis of Gaussian distribution.

Henry C. Thode et al. [20] proposed a number of strate-

gies to calculate the maximum likelihood estimates of a
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local, rather than global, maximum via the likelihood ra-

tio test of the null hypothesis, which states that a sample

is from only one normal distribution. This contrasts with

the alternative hypothesis, which states that the sample is

from a mixture of two distinct normal distributions, each

with an equal variance. The latter approach is only useful

for 1-dimensional samples with an equal variance for ev-

ery cluster. Another kind of approach is to use the �2 test

to calculate the goodness of fit for the hypothesis of Ga-

ussian distributions. B. Schachter et al. [17] proposed

that the goal of clustering is to obtain a sequence of hy-

per-ellipsoidal clusters starting with cluster centers posi-

tioned at maximum density locations in the pattern spa-

ce, and growing clusters around these centers until an �2

test for goodness of fit is violated. However, in our expe-

rience, using the �2 test for the goodness of fit of a Ga-

ussian distribution in the high-dimensional pattern space

is not always accurate. This is because the fit of a high-

dimensional Gaussian distribution is not only a matter of

the number of samples in specific ranges. It is also a mat-

ter of fitting the strict definition of multivariate normal

distribution. By definition, a random vector X having a

multivariate normal distribution must guarantee at least

the following two conditions: first, the linear combina-

tions of the components of X must be distributed nor-

mally; second, all subsets of the components of X must

have a (multivariate) normal distribution [21]. From the

viewpoint of geometry, this is not only a matter of the

number of samples in specific ranges; it is also a matter

of testing for the symmetry and completeness of struc-

tures in the multi-dimensional space. The properties of

symmetry and completeness in the high dimensional spa-

ce cannot to be determined by the �
2 test solely, so these

methods are not suitable for solving general clustering

problems especially not for high-dimensional problems.

The hypotheses test for goodness of fit only has the abil-

ity to suspect or not suspect the distribution hypotheses,

but does not provide unequivocal evidence to accept or

reject the distribution hypotheses [21].

Because of the shortcomings of the above methods,

we are motivated to develop a clustering strategy that en-

ables clustering algorithms to escape from local optima

and adjust the cluster number automatically and simulta-

neously. In this paper, we develop novel strategies to ac-

hieve our goal. Based on delete, split, and merge opera-

tions, we enhance the EM algorithms for parameter esti-

mation of a Gaussian mixture and construct a refined al-

gorithm that can escape from local optima automatically

and adjust the mixture number simultaneously. In addi-

tion, we have designed a justification criterion that com-

bines the Euclidean distance and the Mahalanobis dis-

tance. This enables us to determine the independent char-

acters of two Gaussian distributions and choose either

the split or the merge operation among the clusters. Dif-

fering from the SMEM algorithm, the proposed algori-

thm does not hold the number of clusters, and the split

and the merge operations show their specific potencies in

their own proper time. Therefore, the number of clusters

is adjusted in the proper moment while the split and the

merge operations executes. Besides split and merge oper-

ations, in order to deal with unreasonable parameters du-

ring the iterative process, we apply the delete operation

to maintain the normality of the iterative processes and

also reduce the mixture number. Therefore, our algori-
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Figure 1. The tough satellite sample with one planet cluster and 6 satellite clusters. (a) is the expected result, but for most random
initial settings, the pure EM algorithm produces the local-optimum results, e.g. (b), (c) and etc.



thm not only escapes from local optima, but also yields a

precise cluster number automatically and simultaneous-

ly. Also, the algorithm always guarantees that the itera-

tion can be processed normally, even if the middle para-

meters are unreasonable. Experimental results and thor-

ough evaluations are given for our findings.

The remainder of the paper is organized as follows.

The way to determine the boundary of a Gaussian cluster

is discussed in Sec. 2. An overview of the proposed algo-

rithm is presented in Sec. 3. Determination of five cases

is described in Sec. 4. The partial EM algorithm before

the split operation is shown in Sec. 5. Some experimental

results and discussion are given in Sec. 6. Finally, the

conclusions and the direction of future work are presen-

ted in Sec. 7.

2. The Boundary of a Gaussian Cluster

In this paper, we focus on a mixture of non-over-

lapped and non-adjacent multivariate Gaussian functions.

In order to determine two Gaussian clusters are over-

lapped or not, we must first define the boundary of a

Gaussian cluster. We define the boundary of a Gaussian

cluster as the set of vectors that have a specific identity

value of the specific Gaussian function as (1). We can

calculate only the exponent part of a Gaussian function,

the square of Mahalanobis distance namely m2 in (2), for

simplifying. In fact, the set of the vectors that have iden-

tity Mahalanobis distance, i.e. m, against a Gaussian clu-

ster make up a hyper-ellipsoid [21,22].

(1)

(2)

With focusing on the hyper-ellipsoid composed by

the set of vectors that have a specific identity value of a

Gaussian function, the value of m in (2) decides the size

of the hyper-ellipsoid. In a Gaussian cluster, the large-

size hyper-ellipsoids contain more samples, and vice

versa. A proper-size hyper-ellipsoid that contains suffi-

cient samples can be defined as the boundary of a Ga-

ussian cluster. In fact, m must be set as infinity to support

the hyper-ellipsoids to contain all the possible samples.

If so, all clusters are overlapped with each other and

those are not expected boundaries for us. In fact, to de-

cide the ratio of samples inside the hyper-ellipsoid can

help us determine proper m. For the proposed algorithm,

users must assign this ratio. In fact, assigning the ratio of

samples inside the hyper-ellipsoid is much more compre-

hensible than assigning suitable m.

It can be proved that the d-dimensional Mahalanobis

distance has a �2-distribution with d degree of freedom.

That is, the probability of (x - u)T��1(x � u) � �d
2 (�) is 1 �

� [21], and this probability is identical with the ratio of

samples inside the hyper-ellipsoid if the quantity of sam-

ples is large enough. If the ratio 1 � � is designated by us-

ers, we can obtain the proper Mahalanobis distance m as

� �d

2 ( ) with incomplete gamma function [24]. Or other-

wise, if you can gain a complete �2-distribution critical

points table, you can get the � �d

2 ( ) simply by the table.

If not so, we can also calculate 1 � � under specific Ma-

halanobis distance m and specific dimension d to create

the mapping between 1 � � and m under different dimen-

sions by Mote Carlo simulation [23,24]. If we choose the

latest method, we can let the half axes (unit eigenvectors

multiplied the square roots of corresponding eigenva-

lues) of the hyper-ellipsoid be the new coordinate axes

and the center of the hyper-ellipsoid be the new origin.

Thus, the Gaussian function (1) is simplified as (3),

where �’ = diag(1,…,1)d , u’ = (0,…,0)d
T and both can be

left out. Thus the ratio 1 � � can be gained by the integra-

tion of (4). The mapping between 1 � � and m under dif-

ferent dimensions can be easily created by Monte Carlo

simulations via (5) [24]. No matter which method we

choose, once the ratio of samples inside the hyper-ellip-

soids has assigned under a specific dimension, we can

obtain the proper Mahalanobis distance m to determine

the boundaries of Gaussian clusters.

(3)

(4)
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(5)

3. The Proposed Algorithm -

Delete/Split/Merge Operations

We develop enhancement strategies for the EM algo-

rithm to resolve the problems of local optima and mix-

ture number simultaneously. As shown in Figure 2, the

developed algorithm, which extends the EM algorithms,

consists of three extra key operation rules; namely, De-

lete a Gaussian component when it is not reasonable,

Split a Gaussian component into two Gaussian compo-

nents when it contains separated blobs, and Merge two

Gaussian components into one Gaussian component when

they overlap each other. Hereafter, we call it the DSMEM

algorithm. For each iterative process of the proposed al-

gorithm, the first rule is appended to the EM algorithm.

When all the parameters of the appended algorithm are

convergent (stable), the last two rules are applied recur-

sively. After the conditions of these two rules no longer

exist, the appended algorithm continues the iteration re-

peatedly. The entire clustering process does not stop until

the appended algorithm is convergent and the conditions

of these three principles are non-existent.

Although these three rules appear simple and intu-

itive, determining when to delete, split, and merge is cru-

cial. The fundamental principles of our derivations are

based on the concept that the data in a Gaussian distribu-

tion forms a cluster, and if the Gaussian distribution can-

not perfectly describe a cluster, that cluster must be de-

leted, split into two clusters, or merged with another clus-

ter. The conditions of these three rules are as follows.

Rule 1, deleting

A multivariate Gaussian distribution is obsolete if

the determinant of its covariance matrix equals to or

closes to zero, and thus the whole EM algorithm is no

longer calculable. A simple solution is to ignore all the

intermediate results, renew the initial setting, and exe-

cute the EM algorithm anew. However, this simple ap-

proach would be very frustrating if this obsolete situation

were to occur continually. We prefer, therefore, to delete

the unreasonable components directly and then the EM

algorithm is calculable again. We also delete a Gaussian

component that has too few samples, and by this way we

can speed up the convergence of the whole algorithm and

avoid the effects of noisy samples. In practice, users can

assign the threshold of the minimum sample number

heuristically. If users do not determine the threshold, the

clusters with fewer samples will not be deleted. How-

ever, deleting irregular and too-small clusters is reason-

able in order to guarantee that the algorithm can perform

normally and efficiently, even though the algorithm has

no choice but to generate some unreasonable components.

Rules 2 and 3, splitting and merging

If a cluster can be split into two non-adjacent clus-

ters, it should be separated into two clusters. Conversely,

if two clusters are adjacent or overlapped, they should be

merged into one cluster. However, two clusters can have

five kinds of relationship, which we need to consider, see

Figure 3. Two clusters are distant in Figure 3(a) and 3(b).

Two clusters are overlapped or adjacent in Figure 3(c),

3(d), and 3(e). The cases in Figure 3(b) and 3(c) are a bit

ambiguous. The difference is that the tangent or intersec-

tion point of two ellipsoids is either outside of, or within,

the lines connecting the centers of the two ellipsoids. Ba-

On the Approach of Automatic Adjustments for Gaussian-Mixture Clustering 159

1 �� 	

2 2100,000

1

1

1, ( ') , ' is a standard Gaussian random variable

0,

100,000

d

i i

i

j

x m x

otherwise

	
	

� �
�� �

� �
� �
� �





Figure 2. The flow chart of the proposed algorithm.



sed on the shapes of these two ellipsoids, we subjectively

consider that the two clusters are nonadjacent in Figure

3(b) and the two clusters are adjacent in Figure 3(c).

Therefore, we need to separate one cluster into two clus-

ters in the first two cases, and we need to combine two

clusters into one cluster in the last three cases. In contrast

to the SMEM algorithm [18] through split/merge condi-

tions, we only use one principle to make decisions about

split and merge, whereas SMEM uses two entirely dis-

tinct principles to make the same decisions. This is one of

the significant differences between our algorithm and the

SMEM algorithm.

When the EM algorithm is convergent, the proposed

algorithm will check whether all Gaussian clusters need

to be separated, or whether all pair Gaussian clusters

need to be combined. If any split and merge operator is

functioning, the EM algorithm will continue. Otherwise,

the parameter estimation is complete.

There are still two problems that must be solved when

the proposed algorithm is used. The first is how to deter-

mine which case of two clusters any pair of Gaussian clus-

ters belongs to. The second problem is how to generate two

suitable sub-clusters to help us decide whether a Gaussian

cluster should be split or not. The solutions for these two

problems will be presented in the next two sections.

4. The Determination for Split and Merge

Operations

As bounded Mahalanobis distance m is decided as

Sec. 2, we can look at Figure 3 more carefully. As the

equations shown in (6), the vector from u0 to e0 is a multi-

ple of the vector from u0 to u1, and the vector from u1 to e1

is a multiple of the vector from u1 to u0. The factors k0 and

k1 in (6) are both positive. Moreover, the Mahalanobis

distances between e0 and the Gaussian cluster with the

mean u0 and the Mahalanobis distances between e1 and

the Gaussian cluster with the mean u1 are both m exactly

as (7). With the known values of m, u0, u1, �0, and � 1, the

values of k0 and k1 can be computed using (8).

(6)

(7)

(8)

In the five cases described in the previous section, if

the Euclidean distance between u1 and u0 (9) is larger

than the sum of the Euclidean distance between e0 and u0

and the Euclidean distance e1 and u1 (10), the two clusters

are distant; otherwise, the two clusters are adjacent or

overlapped. Comparing with (9) and (10), we can make a

short conclusion: if the value of dmix defined in (11) is less

than 0, the two clusters are adjacent; otherwise, the two

clusters are distant.

(9)

(10)

(11)
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Figure 3. Five main kinds of relationships of two clusters.

0 0 0 1 0 1 1 1 0 1( ), ( )e u k u u e u k u u� 	 � � 	 �

2 1

0 0 0 0 0 0 0

2 1 2

0 1 0 0 1 0

2 1

1 1 1 1 1 1 1

2 1 2

1 0 1 1 0 1

( , ) ( ) ( )

( ) ( )

( , ) ( ) ( )

( ) ( )

T

Mahalanobis

T

T

Mahalanobis

T

d e u e u e u

k u u u u m

d e u e u e u

k u u u u m

�

�

�

�

	 � � �

	 � � � 	

	 � � �

	 � � � 	

2
1 2

0 1

1 0 0 1 0

2
1 2

1 1

0 1 1 0 1

[ ] ,
( ) ( )

[ ]
( ) ( )

T

T

m
k

u u u u

m
k

u u u u

�

�

	
� � �

	
� � �

1 2

0 1 1 0 1 0( , ) [( ) ( )]T

Euclideand u u u u u u	 � �

0 0 1 1

1 2

0 1 1 0 1 0

( , ) ( , )

( )[( ) ( )]

Euclidean Euclidean

T

d e u d e u

k k u u u u

�

	 � � �

0 0 1 1 0 1([ , ],[ , ]) 1 ( )mixd u u k k� � 	 � �



5. The Partial EM Algorithm Before the Split

Operation

As mentioned at the end of Sec. 3, before deciding

whether a Gaussian cluster should be split or not, we

should produce two sub-clusters from each cluster. For

this purpose, it is intuitive to use the pure EM algorithm

and set the number of clusters as 2. As a result, we will

obtain two hypothetical clusters to determine whether

the original cluster needs to split or not via the approach

introduced in the Sec. 4. Nevertheless, we have to desig-

nate several initial parameters of these two sub-clusters,

i.e., the means and the covariance matrices before further

processing this partial EM algorithm. If the partial EM

algorithm starts with random settings, it is still possible

that the algorithm will be trapped in the local optima. Se-

veral researchers have investigated into the solutions of

this elementary problem in order to avoid the local op-

tima for only two clusters [18,19,25]. It seems much eas-

ier than the cases with more than two clusters, but if it is

not satisfactorily arranged on a sound basis, the full algo-

rithm will be completely annihilated because the split op-

eration will be not executed correctly. To solve this prob-

lem, we designed a two-step approach that chooses the

best one from d different candidates for d dimensional

samples.

In Step 1, we designate d pairs of means and d co-

variance matrices to collocate as d different candidates.

Because every covariance matrix of the original cluster is

symmetrical, d different corresponding eigenvectors and

eigenvalues can be derived to generate means and cova-

riance matrices. Each pair of means is symmetric accord-

ing to the mean of the original cluster and is generated by

the mean of the original cluster adds and subtracts one of

the eigenvectors multiplied the square root of the corre-

sponding eigenvalue as (12); and further, each covari-

ance matrix is generated by (14) to gain two half-sized

sub-clusters because the original covariance matrix can

be orthogonally diagonalized as (13) since it is symmet-

rical. Each initial candidate has two sub-clusters using

one pair of means and identical corresponding covari-

ance matrices. Therefore, these two sub-clusters are sym-

metric according to the original mean and have identical

size and contour.

(12)

(13)

(14)

In Step 2, the best one of d different candidates gen-

erated in step 1 will be chosen. First, we must test and ve-

rify which sub-cluster all samples of the original cluster

belong to. If the Mahalanobis distance between a sample

and a Gaussian sub-cluster is shorter, the sample belongs

to the sub-cluster. Therefore, two new groups of samples

are composed. After that, we can calculate two new means

and two new corresponding covariance matrices accord-

ing to these two groups of samples for each candidate,

and then we can calculate the d values of dmix (11) for d

candidates individually. If any dmix are larger than zero,

we choose the candidate that has maximum dmix as the

initial setting of the partial EM algorithm. If all dmix are

smaller than zero, d pure EM processes started with new

means and covariance matrices are executed. With these

d initial settings, the outcome of these pure EM processes

that has maximum dmix will be the result of the partial EM

algorithm. Please notice that it is not necessary to exe-

cute the split operation when all dmix are still smaller than

zero after these pure EM processes because we find no

non-adjacent outcome from the d candidates for this

situation.

In our experience, above two-step approach is effi-

cient for various cases. Two experiments in 2-dimen-

sional space, for example, are shown in Figure 4. In the

case of Figure 4(a), we can decide the initial setting of the

partial EM algorithm in Step 2. In the case of Figure 4(b),

the two candidates generate the same results for partial

EM algorithm. In these two cases the original cluster must

be split to fit the practice.

6. Experimental Results and Evaluations

The proposed algorithm can escape from the local

optimum. Theoretically, we do not prove that the pro-

posed algorithm is guaranteed to converge to the global

optimum. But, based on various test samples and thor-

ough evaluations presented later in this section, the pro-

posed algorithm yields very satisfactory results; and fur-

ther, the proposed algorithm can automatically adjust the
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number of clusters. Of course, if the initial number of

clusters is near the real one, it will be faster to converge.

In our experiments, even if the initial number of clusters

is far from the real one, the results are still correct after

more iterative processes. We now present our experimen-

tal results and evaluations.

The first experimental data set is named as the satel-

lite data set, which has 692 samples from 7 clusters in-

cluding one big planet cluster and 6 satellite clusters as

shown in Figure 5(a). For this data set, the demonstrated

results of the fuzzy c-means algorithm with Euclidean di-

stance are shown in Figure 5(b) and Figure 5(c). These

two results start with different initial settings individu-

ally. Both of these results are unexpected. In Figure 5(b),

the final result falls into the local optimum. Two pairs of

satellite clusters are combined into one cluster, and the

planet cluster is separated into three fragmented clusters.

The best result of the fuzzy c-means algorithm with Eu-

clidean distance is shown in Figure 5(c), but the planet

cluster is unacceptably narrow. That is, the satellite clus-

ters attract the surrounding samples of the planet cluster.

This shows that the fuzzy c-means algorithm (or the k-

means algorithm) with Euclidean distance frequently ac-

hieve poor results in this kind of data sets, even though

the cluster number is correct, the initial setting is good,

and so-called lobal optimization is gained.

With the same data set, the results in Figure 1(b) and

Figure 1(c) are the results of the pure EM algorithm with

different initial settings individually. These results show

that the EM algorithm guarantees to converge toward the

local optima, but does not guarantee to converge toward

the correct results. After many tries and tests, we disco-
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Figure 4. Demonstrations of the partial EM algorithm.



ver that the EM algorithm hardly avoid locals optima in

this kind of data sets; that is to say, the traditional EM al-

gorithm usually falls into local optima with starting from

random initial-settings in this kind of data sets. However,

by using our proposed algorithm, even if the wrong num-

bers of clusters are assigned and the improper initial set-

tings are given, the result is still exactly correct as Figure

1(a). This explains that the proposed algorithm is consid-

erably robust.

Another data set is the wine recognition data from

the UCI repository of machine learning databases [26].

The data contains one hundred and seventy-eight 13-

dimensional data that are the results of a chemical analy-

sis of three kinds of wines produced in the same region of

Italy. This data set has been utilized in [27,28] to test the

performance of classifiers. In our experiment, we use the

technique of Latent Semantic Indexing [29] through sin-

gular value decomposition (SVD) to reconstruct repre-

sentative properties, which contain only 6-dimensional

data because the raw data have lots of redundant proper-

ties. We ignore the class label, i.e., the number of wines,

when testing the proposed clustering algorithm. Even

though we incorrectly set the initial number of clusters as

6, our proposed algorithm automatically adjusts the num-

ber of clusters to 3 correctly. The result of the proposed

algorithm is compared with the original classification, and

the precision rates are all above 92.96% as shown in Ta-

ble 1. This demonstrates that the proposed algorithm can

deal with high-dimensional samples efficiently.

In addition, in order to investigate the performance,

we generated large sets of data to compare the proposed

algorithm to the fuzzy c-means algorithm with Euclidean

distance and the pure EM algorithm. The numbers of

clusters are set from 2 to 10. For each number of clusters,

we randomly generate 100 data sets in 2-dimensional

space, and each cluster has 100 samples. Besides, all

clusters are overlapped with each other. Each algorithm

has only one chance to execute for every data set. We cal-

culate the precision for all tests. One algorithm succeeds

with a data set only if the numbers of samples of all final

clusters are between 95 and 105, and at least 90 samples

in every final cluster belong to the same original cluster.

One algorithm fails if any final cluster does not fit the

above two conditions. Therefore, success in this investi-

gation is considerably difficult.

The evaluation results are given in Figure 6. We dis-

cover that the average precisions of all algorithms are

comparatively high when the cluster number is small, but

decreases significantly for the fuzzy c-means and the EM

algorithms when the cluster number increases. In the ca-

se with 10 clusters, the average precision rates are lower

than 60% and 70% for the fuzzy c-means and EM algo-

rithms respectively. However, the proposed algorithm,

DSMEM, has fairly high precision over a range of cluster

numbers with an average precision rate of about 95%.

When using the fuzzy c-means algorithm and the EM

algorithm, we must designate the number of clusters. All

results stated in the previous paragraph are based on the

given correct number of clusters, but it is not necessary
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Figure 5. The satellite experiments.

Table 1. Experimental results of wine recognition data by

using the proposed algorithm

Cluster No. Sample count Correct count Precision

1 59 58 98.31%

2 71 66 92.96%

3 48 47 97.92%



for the proposed algorithm in fact. In order to explain this

property, we perform two distinct tests. One is with given

correct numbers of clusters and denoted as DSMEM; an-

other is without designated numbers of clusters and de-

noted as DSMEM2. The latter is executed with random

numbers of clusters from 2 to 20 for each test. As shown

in Figure 6, it is clear that the proposed algorithm has

high precision without designated numbers of clusters.

The average precision rates are always higher than 90%

by using the proposed algorithm, DSMEM2. Although the

precision rate is slightly lower than DSMEM, it is obvi-

ously better than the fuzzy c-means algorithm and pure

EM algorithm.

In order to explain the optimizing process of the pro-

posed algorithm, we demonstrate parts of an entire exec-

utive process in Figure 7. There are 10 clusters in this test

sample. In the Figure 7(a), the EM algorithm is initiated

by 10 random set parameters. After 7 steps, 3 unreason-

able clusters are deleted, as shown in Figure 7(b). In the

31st step, the EM algorithm is trapped at the local opti-

mum, as shown in Figure 7(c). In the 32nd step, 3 clusters

are split into 3 pairs of clusters, as shown in Figure 7(d).

In the 43rd step, 1 cluster is split into 2 clusters again, as

shown in Figure 7(e); therefore, there are 11 clusters at

this point. Finally, in the 59th step, 2 clusters are merged

into 1 cluster and the correct result is obtained, as shown

in Figure 7(f). We can see that these three operations, i.e.,

delete, split, and merge, are applied reciprocally and se-

amlessly to gain the correct result successfully.

7. Conclusions and Future Works

In this paper, we have discussed three problems of

the EM algorithm in estimating the parameters of Gaus-

sian mixtures. The first problem is that an improper ini-

tial setting will induce the EM algorithm towards local
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Figure 6. Evaluation of different clustering algorithms, fuzzy
c-means (FCM), EM algorithm, and the proposed
DSMEM algorithm with 100 randomly generated
samples per cluster number. FCM, EM, and
DSMEM are calculated with a known cluster num-
ber, but DSMEM 2 is calculated with a random
cluster number from 2 to 20 for each test.

Figure 7. An optimizing process.



optimum results. The second problem is that the EM al-

gorithm cannot decide the correct mixture number (the

number of clusters). The third problem is that the EM al-

gorithm cannot guarantee to produce the correct results if

the above two problems are not solved simultaneously.

We therefore propose the DSM (Delete, Split, and Mer-

ge) algorithm to solve these three problems. The experi-

ment results show that our algorithm can escape from the

recognized local optima and adjust the number of clus-

ters automatically, simultaneously, and effectively. How-

ever, the idea of split and merge to solve local optima

problem for clustering is not new. Several researchers

have discussed it [18,30]. However, we discover that no

one uses this idea and unites with the delete operation to

solve the problems of unknown number of clusters and

local optima simultaneously for parameter estimation of

Gaussian mixture. This is the most important contribu-

tion of this paper.

The split and merge rules are not only useful for the

purpose discussed in this paper. They can also be utilized

by other situations that need to determine the factors of

separation and combination, for example, the multi-cen-

ter clustering algorithm [31], hierarchical clustering met-

hods, and the SVM clustering algorithm [32]. In addi-

tion, if the number of clusters is already known and can-

not be modified, the proposed algorithm could still work;

however, the balance between decreasing a cluster (de-

lete and merge rules) and increasing a cluster (split rule)

requires further study. Also, there are cases where the

Gaussian distribution may not govern directly, and the

samples cannot be simply grouped by hyper-ellipsoids.

In other words, there are irregular shapes, e.g., concave

or doughnut shapes, in the hyperspace. In such cases, the

criterion developed in this paper needs to be modified.

We will also address these issues in our future work.
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