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Abstract

As most previous studies on privacy-preserving data mining placed specific importance on the

security of massive amounts of data from a static database, consequently data undergoing

privacy-preservation often leads to a decline in the accuracy of mining results. Furthermore, following

by the rapid advancement of Internet and telecommunication technology, subsequently data types have

transformed from traditional static data into data streams with consecutive, rapid, temporal, and

unpredictable properties. Due to the increase of such data types, traditional privacy-preserving data

mining algorithms requiring complex calculation are no longer applicable.

As a result, this paper has proposed a method of Privacy-Preserving Clustering of Data Streams

(PPCDS) to improve data stream mining procedures while concurrently preserving privacy with a high

degree of mining accuracy. PPCDS is mainly composed of two phases: Rotation-Based Perturbation

and cluster mining. In the phase of data rotating perturbation phase, a rotation transformation matrix is

applied to rapidly perturb the data streams in order to preserve data privacy. In the cluster mining

phase, perturbed data will first establish a micro-cluster through optimization of cluster centers, then

applying statistical calculation to update a micro-cluster, as well as using geometric time frame to

allocate and store a micro-cluster, and finally output mining result through a macro-cluster generation.

Two simple data structure are added in the macro-cluster generation process to avoid recalculating the

distance between the macro-point and the cluster center in the generation process. This process

reduces the repeated calculation time in order to enhance mining efficiency without losing mining

accuracy.
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1. Introduction

As we are in an era of information explosion, it is

very important to be able to find out useful information

from massive amounts of data. Consequently, various

data mining techniques have been developed. Data min-

ing is often applied to fields such as marketing, sales, fi-

nance, and medical treatment. Besides, the rapid ad-

vance in Internet and communications technology has

led to the emergence of data streams. Due to the con-

secutive, rapid, temporal and unpredictable properties

[1,2] of data streams, the study of data mining techniques

has transformed from traditional static data mining to dy-

namic data stream mining.

In recent years, enabled by the rapid development of

various telecommunication technologies, many com-

panies have enhance their competitive edge by forming

strategic alliances or information outsourcing, one after

another. Consequently, many companies frequently ex-

pose private data while engaging in data analysis ac-

tivities, which has led to grave threats to data privacy.

For example, online marketing companies usually em-

ploy information technology outsourcing with a data

mining company for cluster mining, in order to earn
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greater profits and to find the best target groups of cus-

tomers. Therefore, how to preserve private data without

disclosure while obtaining an accurate mining result in

the process of mining, will become increasingly diffi-

cult, which in turn has led to the development of Pri-

vacy-Preserving Data Mining techniques. Nonetheless,

traditional Privacy-Preserving Data Mining is not appli-

cable in a data stream environment which requires dy-

namic updating. For example, for a massive amount of

income data, the execution efficiency of traditional met-

hods can no longer respond to user demand. Further-

more, the potential infinite number of data streams plus

limited memory space has constrained the traditional

methods from obtaining the mining result with accuracy.

In view of the above-mentioned issues, studies on Pri-

vacy-Preserving Data Stream Mining in recent years

have become one of the important issues in the field of

data mining.

However, most of the studies on Privacy-Preserving

Data Stream Mining have emphasized on Association

Rule and Classification techniques, with only few stu-

dies focusing on Clustering technique. Furthermore,

these studies emphasize on privacy-preserving of data

while overlooking the accuracy of mining results. Con-

sequently the paper proposes a method of Privacy-Pre-

serving Clustering of Data Stream (PPCDS), stressing

the privacy-preserving process in a data stream environ-

ment while maintaining a certain degree of excellent

mining accuracy. PPCDS is mainly used to combine

Rotation-Based Perturbation, optimization of cluster

center and the concept of nearest neighbor, in order to

solve the privacy-preserving clustering of mining issues

in a data stream environment. In the phase of Rotation-

Based Perturbation, rotation transformation matrix is

employed to rapidly perturb with data streams in order to

preserve data privacy. In the phase of cluster mining, per-

turbed data is primarily used to establish a micro-cluster

through the optimization of a cluster center, then ap-

plying a statistic calculation to update the micro-cluster,

whereas a geometric time frame is used for allocation

and storage, and finally mining results are output th-

rough a macro-cluster generation. Two simple data struc-

tures are added into the macro-cluster generation, which

allows the generation process to avoid recalculating the

distance between the macro-point and the cluster center

in each generation process, as well as reducing the re-

peated calculation time to enhance mining efficiency

without sacrificing mining accuracy.

The following chapter is composed of the following

sections. Section 2 will discuss some relevant studies.

Section 3 will propose the method of PPCDS to describe

how PPCDS performs privacy-preserving data of cluster

mining in a data stream environment. Section 4 empha-

sizes on the experiment and analysis for PPCDS. Finally

section 5 offers a conclusion for the paper and the pro-

posal for future studies.

2. Related Work

The study of Privacy-Preserving Data Mining tech-

niques started extensively since 2000 [3], covering de-

velopment approximately in two categories: Perturba-

tion-Base technique [3�6] and Secure Multi-Party Com-

putation Base technique [7�9]. The main idea of Pertur-

bation-Based technique involves increasing a noise in

the raw data in order to perturb the original data distribu-

tion and to preserve the content of hidden raw data. Geo-

metric Data Transformation Methods (GDTMs) [5] is

one simple and typical example of data perturbation

technique, which perturbs numeric data with confiden-

tial attributes in cluster mining in order to preserve pri-

vacy. Nonetheless Kumari et al. [6] proposed a privacy-

preserving clustering technique of Fuzzy Sets, trans-

forming confidential attributes into fuzzy items in order

to preserve privacy. Furthermore, the largest issue en-

countered when implementing a perturbation technique

is the inaccurate mining result from a perturbed data. In

view of this issue, the technique of Random-data pertur-

bation introduced by Agrawal and Skrikant [3] was the

first study addressed. Whereas the technique derives the

original data distribution using a random noise for data

distribution, and constructs a result similar to the original

data, it finally use this similar result to execute mining.

This method could construct a more accurate data min-

ing model, while reducing mining errors. In addition,

usually the perturbation technique that has a higher pri-

vacy preservation comes with a lower level of mining ac-

curacy, whereas most of the perturbation techniques to-

day belong to the one-size-fits-all and are relatively in-

flexible. To resolve this issue, Liu and Thuraisingham

[10] developed the two-phase perturbation technique

which frames different intervals according to different

user demand, and directly obtain sample data from a spe-

cific interval to derive the original data distribution. In

the study on Secure Multi-Party Computation Base tech-

nique, Vaidya and Clifton [8] proposed the method of
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privacy preserving clustering technique over vertically

partitioning data, whereas data with different attributes

and different locations are considered as the same data

set, all data could perform K-means under preserving

privacy. On the contrary, Meregu and Ghosh [9] pro-

posed the method of privacy preserving cluster mining

over horizontally data partitioning, whereas it is frame-

work of “Privacy-preserving Distributed Clustering us-

ing Generative Model.” In this framework, each data in-

dependently owns an individual source, using local data

to train generative models, and delivers model para-

meters to the central combiner responsible for model

integration, hence avoiding direct contact between data

source and combiner in order to accomplish privacy pre-

serving through this method.

Among the cluster mining algorithms, K-means is

one of the most popular and well-know methods mainly

due to its simple concept, easy implementation and com-

prehensible mining result. Although the method has its

own drawbacks [11], most of the existing data stream

clustering algorithm are nonetheless developed based on

studies of this method. In literature [12�14], a machine

learning algorithm names, Very Fast machine Leaning

(VFML) has been proposed, whereas this method de-

pends on determining an upper boundary to be applied as

data items test in each step of the algorithm. Subse-

quently, Very Fast K-Means (VFML) clustering and

Very Fast Decision Tree (VFDT) classification tech-

niques have been developed based on the concept of

VFML, and applied on the data stream of artificial and

real network. On the other hand, Ordonez [15] deve-

loped an incremental K-means algorithm to improve the

problems of clustering binary data streams with K-

means. Incremental K-means not only real-time process-

ing and artificial datasets, but simplification of data pro-

cessing for binary data could also eliminate the need for

data normalization. The concept of this algorithm is

based on the updating cluster center and weight im-

mediately following examining a batch of data, in order

to perform fast clustering. Furthermore, Aggarwal et al.

[16] proposed another CluStream which is applicable in

data stream clustering, using summarized statistical in-

formation of data streams to cluster according to the user

desired cluster numbers. On the other hand, Gaber et al.

[17] has developed a Lightweight Clustering algorithm

to handle high speed data stream. This algorithm is based

on the concept of Algorithm Output Granularity, which

is mainly used to adjust the minimal boundary value of

distance among datasets representing different clusters,

then controls the output-input ratio according to avail-

able resources, and to output a combined clustering re-

sult when the memory space is full. More recently, Yang

and Zhou [18] further developed an HCluStream data

stream clustering algorithm which processes combined

attributes based on CluStream algorithm in order to solve

the weakness of inability to perform non-numerical data

mining by CluStream.

In view of the above mentioned related work, the

study on data mining technique has shifted from tradi-

tional static data mining to consecutive, rapid, temporal,

and unpredictable dynamic data stream mining. More-

over, as most people in recent years have increasingly

placed more importance on the issues of privacy, many

scholars have started to emphasize on how to preserve

data privacy in the mining process. However, the accu-

racy of mining results are frequently sacrificed when

performing privacy preserving on data, not to mention

mining on data streams concurrently. Accordingly, most

current methods have failed to perform data stream min-

ing with efficiency while concurrently preserving data

with an accurate mining result.

3. The PPCDS Method

The basic concept of PPCDS is based on Rotation-

Based Perturbation, optimization of a cluster center and

its nearest neighbor to solve the current privacy preserv-

ing clustering of mining issues in a data stream environ-

ment. PPCDS is mainly composed of two phases: Rota-

tion-Based Perturbation and cluster mining. In the Rota-

tion-Based Perturbation phase, an incoming data stream

is rotated and perturbed to preserve data privacy. In the

cluster mining phase, perturbed data will primarily ge-

nerate Q number of micro-clusters through the cluster

center optimization from the micro-cluster generation

process, then update the micro-cluster using statistical

calculation. The generated micro-cluster is temporarily

saved in cluster feature vector [19] to snapshots, and

using geometric time frame to store these snapshots,

whereas if there is insufficient memory space, geometric

time frame will keep the older snapshots in storage. Fi-

nally referring to the desired observation period and the

expected obtained cluster number by the user, snapshots

from the memory and storage will be searched for best

match, and output mining results through macro-cluster

generation using micro-cluster stored in these snapshots.
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3.1 Rotation-Based Perturbation

The concept of Rotation-Based Perturbation (RPB)

originated from isometric transformation, which is a

form of geometric transformation. When a data stream is

incoming, data will be represented in data matrix, collo-

cating with rotation transformation matrix to perform

perturbation on data. The basic theory of RPB is to rotate

and perturb the data on the coordinate axis in clockwise

direction in a � angle, with a method of perturbing data

from data matrix using Rotation Transformation Matrix

in a 2-D discrete space. Due to the method lacks of com-

plex computing formula, data process speed is shortened

while the isometric transformation feature has main-

tained the data distortion within a certain degree of scope.

Assuming the data stream for processing includes

multiple multi-dimensional numeric data X 1...X K ...,

each data contains its proprietary timestamp T1…TK...,

with multi-dimensional data represented by X i = (xi

1...

xi

d ). When a data stream incoming, data is represented in

a m � n data matrix Dmn, while each row represents one

entry and each column represents an attribute of data.

Subsequently a Rotation Transformation Matrix R(�) is

collocated to perturb on data, with the data on the coordi-

nate axis is rotated clockwise in a � angle in order to per-

turb data. The steps for Rotation-Based Perturbation are

described below.

Step 1: Set the initial value of unperturbed attribute

number T as the attribute number n of data ma-

trix Dmn.

Step 2: Determine the existence of any unperturbed at-

tribute, if affirmative then execute the loop.

Step 2.1: In the event of more than one unperturbed at-

tribute, randomly select two attributes, Aj and

Ak, from Dmn to perform rotation perturbation

on selected attributed data V(Aj, Ak), using Ro-

tation Transformation Matrix R(�)and to re-

duce T value by 2.

Step 2.2: In the event of only one unperturbed attribute,

randomly select an already perturbed attribute

Aj and the remaining last attribute Ak to per-

form perturbation, and reduce T value by 1.

3.2 Cluster Mining

3.2.1 Micro-Cluster Generation

Regarding data after perturbation, the primary pro-

cedure includes employing micro-cluster generation

process to generate micro-clusters according to the mi-

cro cluster numbers set by the users. The attribute value

at each data point of the micro clusters is taken to calcu-

late the statistical information of the micro clusters there-

after used to represent the specific micro-clusters. Each

micro-cluster generated from micro-cluster generation

process is given a specific id. Due to the optimization of

micro-cluster, the accuracy of micro-cluster absorbing

data points is enhanced during the updating process, and

thereby obtaining better clustering results.

The so-called micro cluster is an extension of cluster

feature vector [19], with a main purpose of recording sta-

tistical information of data points after rotation pertur-

bation. Assume one micro-cluster represents n number

of multidimensional data X 1...X n, each multidimen-

sional data is represented by X i = (xi

1...xi

d ), and each

multidimensional data has its proprietary timestamp T1...

Tn. Each micro-cluster has (2 � d + 3) numbers of data

items, with d as the attribute number and expressed as

{SS, TS, SST, ST, n}. Among which, SS = {SS1, SS2, …,

SSp, …, SSd}, SSp = ( )xi

p

i

n 2

1�� , 1 � p � d, which is the to-

tal square sum for data value of p-th attribute; TS = {TS1,

TS2, …, TSp, …, TSd}, TSp = ( )xi

p

i

n

�� 1
, 1 � p � d, which is

the sum of data values of p-th attribute; SST = ( )Tii

n 2

1��
is the sum of the squares of timestamp T1...Tn; ST =

Tii

n

�� 1
is the sum of timestamp T1...Tn; while n is the

number of data points.

The steps for micro-cluster generation are described

below:

Step 1: Calculate the squared Euclidean distance d 2(xi,

xj) between each data point xi and xj.

Step 2: Find the two data points that have the longest

distance, store the distance to the cluster center

set S and add the cluster center number q by 2.

Step 3: Determine if the current cluster center number q

equals to the micro-cluster number Q set by the

user, if affirmative then execute Step 4, if not ex-

ecute Step 3.1 and Step 3.2.

Step 3.1: Execute Step 3.1.1 and Step 3.1.2 on each data

point xi outside of the cluster center.

Step 3.1.1: Calculate the squared Euclidean distance d 2 (xi,

sk) between the data point xi and the cluster

center sk for each cluster center sk.

Step 3.1.2: Find the minimal value of the squared Eu-

clidean distance between each data point xi

and each cluster center.

Step 3.2: Find the maximal value of Dmin, set the data

point xi as the new cluster center. Then add the

cluster center number q by 1, return to Step 3.
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Step 4: Set Q number of cluster center as the initialized

cluster center and generate Q number of micro-

cluster M using K-means algorithm.

When a new data stream which has been rotated and

perturbed is incoming, calculate the squared Euclidean

distance between each data point and each micro-cluster

center (the cluster feature vector TS inside the micro-

clusters is divided by n) to find out the nearest micro-

cluster from each data point. Then using cluster feature

vector, determine if the new stream data is smaller than

the maximal boundary value t of the nearest micro-clus-

ter. The so-called maximal boundary value is the root

mean square deviation from the data point inside the mi-

cro-clusters to the micro-cluster center. If the data num-

ber of the nearest micro-cluster is 1, the maximal bound-

ary value is set as � times more than the root mean square

deviation of the second nearest micro-cluster, with the �

value set by the user. When the new data stream is

smaller than the maximal boundary value, then the new

data stream should be absorbed by the existing micro-

cluster and the statistical information inside the micro-

cluster is updated, with the steps described below:

If the new stream data is not smaller than the maxi-

mal boundary value, then establish a new micro-cluster.

When establishing a new micro-cluster, due to li-

mited memory space, an existing micro cluster must be

reduced in order to free a memory space, which is done

through deleting or joining the existing micro-cluster to

achieve this purpose. First check for the existence of any

micro-cluster considered as outlier by estimating the av-

erage timestamp of the most recent data point m from

each micro-cluster, delete the micro-cluster with the mi-

nimal average timestamp. However in a data stream en-

vironment, it is unlikely to store the most recent data

point m of all micro-clusters. To solve this issue, assume

timestamp as normal distribution and proceed with the

following procedures. When the data quantity n inside

the micro-cluster is smaller than 2 � m, directly use the

timestamp of the micro-cluster to calculate the time-

stamp mean, ST / n, which is used as the average time-

stamp for the data point of each micro-cluster. Other-

wise use the timestamp mean, standard deviation

SST n ST n/ ( / )�
2 and the Z-score calculated from

the timestamp data from the micro-cluster to estimate the

average timestamp for m/(2 � n)% of the data point in

each micro-cluster, thereby obtaining an estimated value

of recent stamp. For example, if the 85% of one par-

ticular micro-cluster has a recent stamp of 12, then 85%

of the data points in the micro-cluster have a timestamp

greater than 12. If the smallest recent stamp of all micro

clusters is smaller with the boundary value � defined by

the user, then that particular micro-cluster should be de-

leted. If all recent stamps are greater than the boundary �,

then combine the two nearest micro-clusters. Assume

micro-cluster A and micro-cluster B are combined as

micro-cluster AB, the statistical information for updat-

ing micro-cluster are described in the following steps:

The combined micro-cluster id is the union of the id

for both micro-clusters.

3.2.2 Geometric Time Frame Allocation

The updated micro-clusters are stored using geo-

metric time frame allocation through snapshot form. In

comparison with the traditional pyramidal time frame

[16], geometric time frame has solved the redundancy

resulting from pyramidal time frame, enhancing more

efficiency for memory use. Geometric time frame allo-

cates snapshots to different frame numbers, with the

number lying between 0 and log2 (T), with T referring to

the longest time length of data stream, while the allo-

cated frame numbers for snapshots refer to the degree of

granularity for the stored snapshot. The snapshots stored

in frame number i whose moment must meet the condi-

tion of divisible by 2i, therefore the snapshots stored in

frame number 0 will have odd-numbered moments. In

addition, assume max_capacity is the maximum stored

snapshots for each level, and the limit for the maximum

frame number should not exceed log2 (T) from the pre-

vious information, and from here we know that the max-
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imum snapshot numbers stored starting from data stream

to time unit T is (max_capacity) � log2 (T). The proceed-

ing is the principle for snapshots of geometric time frame

allocation: Assume s is the new snapshot, when s enters

the geometric time frame, it is required to determine if s

is divisible by 2i, and if s is divisible by 2i and not di-

visible by 2i+1, then s is inserted into the level of frame

number i. Due to each level containing a maximum stor-

age quantity, if assuming level i has reached its maxi-

mum storage quantity, then the snapshot of the earliest

moment of that level will be removed and put into stor-

age and inserted with the snapshot of the latest moment.

3.2.3 Macro-Cluster Generation

Macro-cluster generation has become a process for

re-clustering on stored micro-clusters with reference on

user demand. As micro-cluster reflect the overall time in-

formation since the start of data streams, therefore the

subtractive characteristic of feature vector is used accord-

ing to the micro-cluster id to find out the time scope of

micro-clusters set by user. Assume the current time is tc,

users would like to mine on the data during the period h

from current to period of past experiences in order to obtain

K clustering result. Under the condition given, we will need

to find the snapshots stored before time tc-h. We take

S(tc-h’) to represent the micro-cluster set for time tc-h’, take

S(tc) to represent the micro-cluster set for time tc, whereas

h’refers to the tolerance for error for time tc-h previously set

by user. For each micro-cluster in S(tc), find out the mi-

cro-cluster that conform to S(tc-h’) according to its indi-

vidual id, and reduce the cluster feature vector what con-

forms to the micro-cluster of S(tc-h’). This approach will

ensure the micro-cluster generated during the period h set

by user will not influence the mining result. Then, use the

micro-cluster center as the macro-point in conformity with

the period h for user observation, then take the data point

quantity contained in the macro-point as weight to select K

number of the data points as the cluster center for macro-

clustering, using macro-cluster generation process to clus-

ter for generation of K number of macro-clusters. The

steps for macro-cluster generation are described below:

Step 1: Calculate the squared Euclidean distance d 2 (mi,

sj) between each macro-point mi and each cluster

center sj.

Step 2: Find the minimal value of the squared Euclidean

distance between each macro-point mi with each

cluster center sj, store the value to Pointdis[i] while

store the current cluster center sj to CenterM[i].

Step 3: For each current cluster center sj, calculate the

weighted mean inside the cluster and store the re-

sult to sj.

Step 4: For each macro-point mi, recalculate the squared

Euclidean distance d 2 (mi, sj) between the macro-

point and each cluster center sj.

Step 5: For each macro-point mi, store the current cluster

center sj to CenterM[i].

Step 6: Determine if the distance d 2(mi, CenterM[i]) be-

tween any arbitrary macro-point mi and the cur-

rent cluster center is greater than the distance

stores for mi stored in Pointdis[i], if affirmative

then execute Step 6.1, or else execute Step 7.

Step 6.1: For the squared Euclidean distance d 2(mi, Cen-

terM[i]) between the current clusters is greater

than the distance Pointdis[i] stored at each

macro-point mi, execute Step 6.1.1 to Step 6.1.5.

Step 6.1.1: For each macro-point mi, recalculate the squ-

ared Euclidean distance d 2 (mi, sj) between

the macro-point mi and each cluster center sj.

Step 6.1.2: Find out the minimal value of the squared

Euclidean distance between each macro-

point mi and each cluster center sj, then store

the value to Pointdis[i] and store the current

cluster center sj to CenterM[i].

Step 6.1.3: Calculate the weighted mean of the cluster

for each current cluster center sj and store the

result to sj.

Step 6.1.4: Recalculate the squared Euclidean distance

d 2 (mi, sj) between each macro-point mi and

each cluster center sj.

Step 6.1.5: Store the current cluster center sj for each

macro-point mi to CenterM[i].

Step 7: Store each macro-point mi to its belonging

macro-cluster Gj.

Accordingly, the macro-cluster generation process

eliminates the redundancy of repeatedly calculating the

distance between all macro-points and cluster centers

during the mining process, and consequently enhancing

mining efficiency and foremost importantly maintaining

mining accuracy.

4. Performance Evaluation

4.1 Experimental Implementation Environment

and Data Resource

Due to the privacy-preserving scenario being di-

354 Ching-Ming Chao et al.



vided into multiple scenarios, for this reason this paper

has set the privacy-preserving scenarios as one-on-one

situation. In other words, organization to organization,

department to department or person to person situation.

For example, the marketing department of a retail store

wants to use customer real-time transaction information

to perform target customer analysis, in order to raise the

company’s competitiveness. Therefore how not to dis-

close customer transaction information to the analysts in

the information department, will become an issue for pri-

vacy-preservation.

First we test on the accuracy of PPCDS, and employ

CluStream to make comparison with PPCDS. The main

reason for selecting CluStream is due to CluStream is

one of the well-known data stream clustering techniques,

while the proceeding study has already proved that Clu-

Stream has a good mining accuracy [16]. Despite PPCDS

being divided into privacy-preserving and data stream

mining phases, nonetheless in the comparison of accu-

racy, we only emphasize on analysis of the mining re-

sults. Consequently the issue of inappropriate compari-

son does not exist. Subsequently, the artificial datasets

generated by controlling data point quantity, number of

dimensions and number of clusters is used to verify the

scalability of PPCDS. The so-called scalability is the

system processing capability as data quantity and para-

meter vary. Finally the impact on the mining accuracy

caused by micro-cluster ratio is used to perform the sen-

sitivity analysis for PPCDS, whereas sensitivity analysis

refers to the analysis of degree of sensitivity which leads

to the variation of the result when the surrounding condi-

tions of a system changes.

The KDD-CUP’98 Organ Charitable Donations

Datasets from the Association for Computing Machinery

(ACM) is employed as the real datasets, whereas this

datasets includes personal data of 95,412 donations,

each data includes 481 attributes and the experiment has

retrieved 56 attributes to conduct the experiment. In or-

der to verify the scalability of PPCDS in the artificial

datasets, we perform analysis on artificial data generated

from controlling changes in data point quantity, number

of dimensions and number of clusters. The artificial data

is distributed in Gaussian distribution, and in order to re-

flect the data streams in the evolution of time, we change

the average and variance of the current Gaussian distri-

bution in every 10K data points generated in the artificial

datasets.

4.2 Experimental Results

4.2.1 Accuracy Evaluation of PPCDS

In the experiment of accuracy evaluation, we use the

average of the sum of square distance, also known as the

Average SSQ [16,20] to evaluate accuracy, whereas the

smaller the value of the Average SSQ, means the higher

the accuracy. The data source is the real datasets KDD-

CUP’98, with experimental parameters set to n = 2000

and t = 2. The so-called Average SSQ consists of the fol-

lowing definitions: Assume there are W number of

macro-points in the period h before the current moment

Tc, find the cluster center with the nearest distance to

each macro-point mi and calculate the squared Euclidean

distance d 2 (mi, sj) between mi and sj. Consequently the

Average SSQ of period h before the current moment Tc is

equal to the total sum of the squared Euclidean distance

between the cluster centers and all W number of macro-

points in period h, divided by the macro-cluster number

K. Figures 1 (a), (b) demonstrates the circumstance of

changes in mining accuracy in different period h and data

stream rate SP, with SP = 200 referring to data streams

Privacy-Preserving Clustering of Data Streams 355

Figure 1. Comparison of mining accuracy.



flow in at the rate of 200 data points per every time unit.

The horizontal axis in Figure 1 represents a different

time unit quantity, while the vertical axis represents the

Average SSQ. It is noted from the figure that despite the

data having to undergo a privacy-preserving treatment

through rotation perturbation during the mining process,

nonetheless due to rotation perturbation it contains char-

acteristics of isometric transformation, and consequently

it will not cause much impact on the accuracy of mining

results. In addition, in the micro-cluster generation pro-

cess, the quality micro-cluster generated through optimi-

zation of cluster center will further enhance the mining

accuracy.

4.2.2 Scalability Evaluation of PPCDS

In the experiment of scalability evaluation, the pri-

mary test emphasizes on the data stream processing ca-

pability of PPCDS, with data sources from real datasets,

and experimental parameters set to n = 2000, t = 2 and SP

= 2000 respectively. Figure 2 demonstrates the process-

ing capability of PPCDS on data streams, with the hori-

zontal axis referring to the elapsed time in units of se-

conds to data processing, while the vertical axis refer-

ring to the data point quantity processed in each second.

As shown in the figure, due to PPCDS starts performing

rotation perturbation on data and establishes micro-clus-

ters with incoming data streams. Consequently it causes

a poor efficiency on the initial data processing, with the

time approximately at 20 seconds. The generation of mi-

cro-clusters allows the data undergoing rotation pertur-

bation treatment to directly cluster the data stream, which

in turn gradually stabilizes process efficiency.

Furthermore, through setting different numbers of

dimensions and numbers of clusters, we observe the time

required for PPCDS in stream data processing. In the ex-

periment of testing the impact of the number of dimen-

sions on scalability, we use three artificial datasets of

B400C20 (representing 400K data points and 20 clus-

ters), B200C10 (representing 200K data points and 10

clusters) and B100C5 (representing 100K data points

and 5 clusters) respectively, with the number of dimen-

sions varying from 10 to 80. Figure 3 demonstrates the

execution time of PPCDS in different numbers of dimen-

sions, with the horizontal axis indicating the different

number of dimensions and the vertical axis indicating

the execution time in units of seconds. It is noted from

the figure that PPCDS has a linear increase in execution

time to changes in number of dimensions. For example,

when the number of dimensions increases from 10 to 80,

the execution time for PPCDS on B400C20 increases

from 414 seconds to 1,579 seconds, nearly quadrupled.

In the experiment of the impact of testing the number

of clusters on scalability, similarly we use three artificial

datasets of B400D40 (representing 400K data points and

40 dimensions), B200D20 (representing 200K data po-

ints and 20 dimensions) and B100D10 (representing

100K data points and 10 dimensions), with the variation

of number of clusters from 5 to 40. Figure 4 demon-

strates the variation of execution time for PPCDS in dif-

ferent numbers of clusters, with the horizontal axis indi-

cating the different number of clusters, while the vertical

axis indicating the execution time in units of seconds. It

is noted from the figure, the variation of execution time

is approximately a linear increase. Therefore through

setting different numbers of dimensions and numbers of

clusters, we will observe that the execution time of

PPCDS is very stabilized, with the exception of when the

number of dimensions drastically increases, due to data

rotation perturbation employed dimensions to perform

privacy-preserving which will lead to a decline in execu-

tion efficiency. However in general will possess a certain

degree of scalability.

4.2.3 Sensitivity Evaluation of PPCDS

In order to obtain a high accuracy mining result, the
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Figure 2. Stream data processing efficiency. Figure 3. Impact of variation on number of dimensions.



number of micro-cluster must far exceed the number of

macro-clusters. However, excessive micro-clusters will

reduce the execution efficiency and the memory use be-

nefits. Therefore how to strike a balance between mining

accuracy and storage benefits becomes relatively signifi-

cant. In this experiment, we use KDD-CUP’98 datasets

as the data source, and through controlling the number of

micro-clusters, using micro-cluster ratio and the Average

SSQ, we evaluate the impacts of the number of micro-

clusters on mining accuracy. The so-called micro-cluster

ratio refers to the number of micro-clusters divided by

the number of macro-clusters. Figure 5 demonstrates the

impact of micro-cluster ration on accuracy, with the hori-

zontal axis indicating different micro-cluster ratios, while

the vertical axis indicates the Average SSQ. We fix the

number of time units as 200, SP = 200 and h = 16. It is

noted from the figure, if the number of micro-clusters

used is equal to the number of macro-clusters, then we

will obtain a poor mining accuracy result, mainly be-

cause the number of micro-clusters used being too small.

However when the micro-cluster ratio increases, the

mining accuracy will increase accordingly. When the

micro-cluster ratio increases to approximately 15, the

mining accuracy will become stabilized. The result indi-

cates that it is not required to set the number of micro-

clusters with a large number to obtain a good mining ac-

curacy, provided that the numbers of micro-clusters and

macro-clusters reach to a certain ratio.

5. Conclusion

The PPCDS method proposed in this paper performs

perturbation rapidly on data streams using rotation trans-

formation matrix in order to preserve data privacy. In the

cluster mining phase, we first establish micro-cluster for

post-perturbation data through optimization of the clus-

ter center. Subsequently, we implement statistical calcu-

lation to update micro-clusters while allocating and stor-

ing data using geometric time frame, while finally we

output mining results through macro-cluster generation.

In the macro-cluster generation process, we add two sim-

ple data structures to reduce the need for recalculating

the distance between all macro-points and the cluster

center for the generation process, which not only reduces

the time for repeating calculation to enhance the mining

efficiency but also retains the mining accuracy. The ex-

perimental result of accuracy evaluation indicates that

the performance of PPCDS is better than the CluStream

algorithm in terms of the accuracy of mining results. Fur-

thermore, this paper also conducts testing with emphasis

on the scalability and sensitivity of PPCDS. The experi-

mental result of scalability evaluation indicates that re-

gardless of the variation on the number of dimensions

and number of cluster, PPCDS retains a good scalability.

The experimental result of sensitivity evaluation indi-

cates that it is not required for setting a large number of

micro-clusters in order to obtain a good mining accuracy

result for PPCDS, providing that the number of micro-

clusters and the number of macro-clusters reach a certain

ratio. From this result we find out that PPCDS merely re-

quires a suitable amount of memory to obtain a good

mining accuracy result without wasting too much mem-

ory. It is noted from the previously mentioned analysis

that the PPCDS method proposed in this paper not only

preserves privacy but also efficiently and accurately

mines data streams.
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