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Abstract: In this article, the direct singular positions of the parallel manipulator Tricept are
determined. An alternative 3 � 3 Jacobian matrix, simpler than the existing one, is obtained
in this study. For a given moving platform’s orientation, the determinant of this Jacobian
matrix may be expressed as a cubic polynomial in moving platform’s extension length. Direct
singular positions may thus be obtained by solving cubic polynomial equations. For an arbitra-
rily chosen moving platform’s orientation, there exists at least one moving platform’s extension
length that causes direct kinematic singularity. It is found that if moving platform’s size is larger
than a specific value, then within the moving platform’s domain there exist two regions, in
which direct kinematic singularities can only occur at positions impossible to reach.
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1 INTRODUCTION

Parallel manipulators have high stiffness and low
inertia; hence, they can be used in high speed man-
ufacturing processes. Machining instruments based
on the architecture of six-degree-of-freedom (DOF)
parallel manipulators have been developed [1, 2].
Alternatively, manufacturing units may be formed
by a limited DOF parallel manipulator in combi-
nation with a serial (or another parallel) manipulator,
and such kinds of systems are called hybrid kin-
ematic machines [3, 4]. Figure 1 shows the schematic
diagram of the hybrid kinematic machine Tricept
[5, 6], which consists of a three-DOF parallel manip-
ulator and a serial manipulator with two or three
DOFs. The three-DOF parallel manipulator has four
limbs. The middle limb is passive and has only one
link that connects the moving platform and the
base with a prismatic (P) joint and a universal (U)
joint, respectively. Other three limbs have the
common SPS structure, i.e. two links are joined by

a prismatic (P) pair, and this limb connects both
the moving platform and the base by spherical (S)
joints. The parallel manipulator is driven by three
linear actuators in the three prismatic pairs of
the SPS limbs. The middle limb is passive, which
allows the moving platform to possess the following
three-DOF motion: two rotations provided by the U
joint and an extension provided by the P joint. Note
that spinning of the moving platform about the
longitudinal axis of the middle limb is restrained by
both the U joint and the P joint of this limb. In
what follows, the term Tricept is restricted to mean
the three-DOF parallel manipulator only.

Tricept has been utilized in high-speed milling,
drilling, welding, and deburring processes [7]. Many
research efforts have been devoted to the analysis
and design of this manipulator. Siciliano [8] suggested
a numerical procedure for kinematic analysis and
proved that convergence can always be obtained. Cac-
cavale et al. [9] obtained kinematic and dynamic
models for analyses and control. Zhang and Gosselin
[10] established a kinetostatic model to analyse and
optimize the stiffness properties of Tricept. Joshi
and Tsai [3] performed a direct position analysis for
Tricept. They obtained polynomial equations for
moving platform positions and found that there are
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at most 24 solutions in a direct position analysis.
In comparing Tricept with the 3UPU parallel mani-
pulator, Joshi and Tsai [4] found that Tricept has a
larger workspace and also a much higher value in
the minimum stiffness. In these aspects, Tricept is a
better three-DOF parallel manipulator than the
3UPU manipulator.

It is known that kinematic singularity positions
exist in the workspace of a parallel manipulator
[11]. Kinematic singularity can be categorized into
the following three types [12]: direct singularity,
inverse singularity, and combined singularity. At a
direct singularity position, the moving platform
gains certain DOFs and may perform micromove-
ments even when all actuators are stationary
[12, 13]. Inverse singularities, in general, occur at
workspace boundary. At such a position, the moving
platform loses some DOFs even when actuators are
still moving. At a combined singular position, both
the above-mentioned properties occur. Combined
singularities represent uncertainty positions [13],
and they only appear in manipulators with particular
dimensions [12]. Because direct singular positions
often appear in the inside of the workspace, locating
direct singularity positions of a parallel manipulator
is much more difficult than locating inverse singular
positions. Various attempts have been suggested in
locating direct singular positions of parallel manipula-
tors. For the 3-3 Stewart–Gough parallel manipulator,
for example, they can be located by using screw theory
[14], by using the Grassmann geometry [15], by
solving polynomial equations of global coordinates

that have 16 to 32 terms [16–19], by a numerical tech-
nique [20], or by using analogous mechanisms [21].

At a direct singular position, the corresponding
Jacobian matrix becomes singular [13]. Hence in
locating these singular positions, generally, the
Jacobian matrix for a particular manipulator is
derived first, and then the positions that make the
determinant zero are located. A Jacobian matrix of
Tricept has been derived [3]. It is the multiplication
of a 3 � 6 matrix by a 6 � 3 matrix, resulting in a
fully occupied 3 � 3 matrix. The determinant of this
matrix is very complicated; hence, direct singular
positions have not yet been determined. In this
study, a new Jacobian matrix with a simpler determi-
nant is derived. This determinant is a function of
moving platform’s position, namely, the two rotation
angles of the U joint and the extension length of the
P joint in the middle limb (Fig. 1). By specifying
the rotation angles of the U joint, the determinant
reduces to a cubic polynomial of the extension
length. Hence, direct singular positions can be deter-
mined by solving cubic equations [13, 21]. Direct
singular positions thus determined are substituted
into the existing Jacobian matrix [3] to verify results.

2 JACOBIAN MATRIX

Three spherical joints A1, A2, A3 on the fixed base
form an equilateral triangle. The origin O of the xyz
coordinate system is located at the circumcentre of
this triangle (Fig. 2(a)). In this study, all lengths are
normalized by the distance OA1. In other words, all
the manipulators analysed in this study have the
base dimensions OA1 ¼ OA2 ¼ OA3 ¼ A1x ¼ 1. The
three spherical joints B1, B2, B3 on the moving plat-
form also form an equilateral triangle, the circum-
centre of which is denoted by P. The dimensions of
this triangle, already normalized by OA1, are given
by the relation PB1 ¼ PB2 ¼ PB3 ¼ b (Fig. 2(b)). The
point P is also the origin of the body-fixed coordinate

Fig. 1 An illustrative diagram of the hybrid kinematic

machine – Tricept

Fig. 2 The illustrative diagrams of the base and the

moving platform: (a) fixed base and (b)

moving platform
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system denoted by (j, h, z). The j and h axes lie on the
moving platform and are directed as shown in
Fig. 2(b). The z axis is normal to the moving platform.

The moving platform of Tricept has an extended
part that is connected to the middle limb by a
prismatic joint (i.e. the part above the prismatic
joint in Fig. 1 is fixed to the moving platform).
Hence, the orientation of the moving platform can
be determined by the direction of the vector OP,
which can be specified by two angles as explained
below. In Fig. 3, the movable axes j–h–z originally
coincide with the x, y, and z axes, respectively. To
bring the z axis to coincide with OP, one may first
rotate the j–h–z frame about the x axis by an angle
f to move the z axis to pass through the point P0,
which is the projection of the point P onto the yz
plane, as Fig. 3 shows. This rotation moves the j–
h–z axes into the positions of j0 –h0 –z0, as shown in
Fig. 3. A second rotation about the h0 axis by an
angle u carries the z axis into OP. Orientation of
OP is, therefore, specified by (f, u), which can be
identified with the first two Bryant angles [22].
Without losing generality, values of f and u are con-
fined to the ranges: 2p/2 4 f 4 p/2, 2p/2 4
u 4 p/2; meaning that the domain of (f, u) is a
square region in the f–u plane. An arbitrary
combination of f and u determines a unique orien-
tation of the moving platform, although the same
vector OP may correspond to more than one combi-
nation of (f, u). For example, the situation OP lies on
the x axis can be obtained by simply setting u ¼ p/2,
leaving f arbitrary, but each value of f defines a
specific orientation of the moving platform. If the
normalized length of OP is denoted by r, then
moving platform’s position is uniquely determined
by (f, u, r).

The direction cosine matrix R between the xyz
frame and the jhz frame (Fig. 3) is given by

½R� ¼

1 0 0

0 cf �sf

0 sf cf

2
64

3
75

c u 0 s u

0 1 0

�s u 0 c u

2
64

3
75

¼

c u 0 s u

sf s u cf �sf c u

�cf s u sf cf c u

2
64

3
75 (1)

where c and s denote cosine and sine functions,
respectively. If OP has a length r, then the xyz coor-
dinates of P are given by

Px

Py

Pz

8<
:

9=
; ¼ ½R�

0
0
r

8<
:

9=
; ¼

r s u
�r sf c u
r cf c u

8<
:

9=
; (2)

Coordinates of B1, B2, and B3 in (j, h, z) coordinate
system are (b, 0, 0), (2b/2,

ffiffiffi
3

p
b/2, 0) and (2b/2,

2
ffiffiffi
3

p
b/2, 0), respectively. Their xyz coordinates are

B1x

B1y

B1z

8>><
>>:

9>>=
>>;
¼OPþPB1¼

r s u

�r s f cu

r c f c u

8>><
>>:

9>>=
>>;
þ½R�

b

0

0

8>><
>>:

9>>=
>>;

¼

r s uþ b c u

�r s f c uþ b sf su

r c f c u�b cf s u

8>><
>>:

9>>=
>>;

(3a)

B2x

B2y

B2z

8>><
>>:

9>>=
>>;
¼

r s u�(b c u)=2

�r s f c u�(b s f s u)=2þ(
ffiffiffi
3

p
b c f)=2

r c f c uþ(b c f s u)=2þ(
ffiffiffi
3

p
b s f)=2

8>><
>>:

9>>=
>>;

(3b)

B3x

B3y

B3z

8>><
>>:

9>>=
>>;
¼

r s u�(b c u)=2

�r s f c u�(b s f s u)=2�(
ffiffiffi
3

p
b c f)=2

r c f c uþ(b c f s u)=2�(
ffiffiffi
3

p
b s f)=2

8>><
>>:

9>>=
>>;

(3c)

The xyz coordinates of A1, A2, and A3 are (1, 0, 0),
(21/2, 2

ffiffiffi
3

p
/2, 0), and (21/2, 2

ffiffiffi
3

p
=2; 0). Using

these coordinates, one may show that limb lengths
AiBi (i ¼ 1, 2, 3), denoted by di, satisfy the followingFig. 3 The revolving angles of U joint
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relations [23]

d2
1 ¼ (r s uþb c u�1)2 þ (� r s f c u þb s f s u)2

þ (r c f c u �b c f s u)2 (4a)

d2
2 ¼

1

4

h
ð2r s u�b c uþ1)2 þ (

ffiffiffi
3

p
b c f �2r s f c u

�b s f s u�
ffiffiffi
3

p
)2 þ (2r c f c u þb c f s u

þ
ffiffiffi
3

p
b s f)2

i
(4b)

d2
3 ¼

1

4

h
(2r s u �b c uþ1)2 þ (�

ffiffiffi
3

p
b c f

�2r s f c u�b s f s uþ
ffiffiffi
3

p
)2

þ (2r c f c u þb c f s u�
ffiffiffi
3

p
b s f)2

i
(4c)

Direct kinematic singularity means that the moving
platform can perform micromovements even when
all drivers are locked, that is, when _d1 ¼

_d2 ¼
_d3 ¼0.

Using equations (4a) to (c) to obtain _di, and letting
_di ¼0, one may obtain [23]

C(f,u, r) ḟ u̇ _r
� �T

¼0 (5)

where C is the 3 � 3 Jacobian matrix, whose
elements are given below

C11 ¼0 (6a)

C12 ¼2(b s u� r c u) (6b)

C13 ¼2(r� s u) (6c)

C21 ¼
3

2
b s fþ

ffiffiffi
3

p

2
(2r c u þb s u)c f (6d)

C22 ¼
b

2
�

ffiffiffi
3

p
r s f

� �
s uþ

ffiffiffi
3

p

2
b s fþ r

� �
c u (6e)

C23 ¼2rþ s uþ
ffiffiffi
3

p
s f c u (6f)

C31 ¼
3

2
b s f �

ffiffiffi
3

p

2
(2r c uþb s u)c f (6g)

C32 ¼
b

2
þ

ffiffiffi
3

p
r s f

� �
s u�

ffiffiffi
3

p

2
b s f� r

� �
c u (6h)

C33 ¼2rþ s u�
ffiffiffi
3

p
s f c u (6i)

At a position that makes the determinant jCj zero, the
moving platform may have a non-zero velocity
vector ½ḟ u̇ ṙ�T when all drivers are locked. The pur-
pose of this study is to locate all such positions.

3 DIRECT SINGULAR POSITIONS

The determinant of the Jacobian matrix C is

jCj ¼ C13C21C32 þ C12C23C31 � C13C22C31

� C12C21C33 (7)

Substituting equations (6a) to (i) into equation (7)
and forcing the determinant to be zero, the following
cubic equation of r be obtained [23]

V1r
3 þV2r

2 þV3r þV4 ¼ 0 (8)

where coefficients Vi (i ¼ 1, 2, 3) depend on f and u,
as follows

V1 ¼ 12cf c2u (9a)

V2 ¼ 6bs2 f s u (9b)

V3 ¼ �3b2 cf s2u� 3b2s2

f c u� 6b cf s2u c u� 6b s2f (9c)

V4 ¼ 3b2(3s2 f c u� cf s2u)s u (9d)

If the coefficient V1 = 0, then the three roots are
given by [24]

r1 ¼ S þ T �
V2

3V1
(10a)

r2 ¼ �
S þ T

2
�

V2

3V1
þ

1

2
i

ffiffiffi
3

p
(S � T ) (10b)

r3 ¼ �
S þ T

2
�

V2

3V1
�

1

2
i

ffiffiffi
3

p
(S � T ) (10c)

where

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

p
3

q
(11a)

T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þ R2

p
3

q
(11b)

Q ¼
3V3V1 �V2

2

9V2
1

(11c)

R ¼
9V1V2V3 � 27V4V

2
1 � 2V3

2

54V3
1

(11d)

A cubic polynomial equation has at least one real
root. For values of f and u arbitrarily chosen from
the domain 2p/2 4 f, u 4 p/2, there exists at
least one extension length r that gives rise to direct
singularity. After such a length r is obtained, the cor-
responding spherical joint positions can be found by
using equations (3a) to (c). The direct singular
positions thus determined are substituted into the
Jacobian matrix obtained from reference [3] to
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verify the results. A MATLAB program is written to
perform the above-mentioned numerical calcu-
lations and also to generate graphical outputs.

4 RESULTS AND DISCUSSIONS

Three obvious cases of direct singularity are dis-
cussed first. The first case is when the normalized
lengths b and r take the following values: b ¼ cos u

and r ¼ sin u (0 4 u 4 p/2). Substituting these
values into equations (6b) and (6c), one may find
that C12 ¼ C13 ¼ 0. Matrix C is singular because all
elements in the first row are zero. By using equation
(4a), one may also show that the first limb length d1 is
always zero in this case. A particular configuration
when b ¼ r ¼ 1/

ffiffiffi
2

p
(i.e. f ¼ u ¼ p/4) is shown in

Fig. 4. The second obvious case is when f ¼ 0 and
r ¼ 2(b tan u)/2 and u is confined to the region
2p/2 4 u 4 0. It can be seen from equations (6d)
to (g) that C21 ¼ C31 ¼ 0. Hence, all elements in the
first column of C are zero. Figure 5 shows the singular
configuration when (f, u) ¼ (0, 2 p/4), b ¼ 2, and
r ¼ 1. It can be seen from this figure that two limbs
lie on the base plane in this particular singular pos-
ition. The third case is obtained by setting

f ¼ u ¼ 0 in equations (9c) to (d), coefficients
V2 ¼ V3 ¼ V4 ¼ 0 in this case. Equation (8) reduces
to the form V1 r 3 ¼ 0, and it has a triple root at
r ¼ 0. The corresponding configuration is shown in
Fig. 6, from which it is seen the moving platform
coincides with the base.

Although the forgoing cases were obtained by
observation, all the following singular positions are
obtained by first choosing f and u values from the
domain [2p/2, p/2] and then solving equation (8)
to obtain the extension length r. It can be easily
seen that all the coefficients Vi (i ¼ 1, 2, 3, 4)
remain the same if f is replaced by 2f and that
only V2 and V4 change sign if u is replaced by 2u.
This means that solutions to equation (8) are
symmetric about the line f ¼ 0 and anti-symmetric
about the line u ¼ 0. In other words, if direct singu-
larity appears at (f, u, r), then it also appears at
(2f, u, r), (f, 2u, 2r), and (2f, 2u, 2r). In the
following discussions, the three real roots to
equation (8), denoted by r1, r2, and r3, are arranged
in the descending order of absolute values, namely,
jr1j 5 jr2j 5 jr3j. Figures 7 to 9 show the three
singular surfaces in the three-dimensional (f, u, r)
space. These singular positions can be classified
into the following three categories.

Fig. 4 Direct singular position for the case f ¼ u ¼

p/4 and b ¼ r ¼ 1/
ffiffiffi
2

p

Fig. 5 Direct singular position for the case (f, u) ¼

(0, 2p/4), b ¼ 2, and r ¼ 1

Fig. 6 Direct singular position for the case (f, u) ¼ (0,

0), b ¼ 1.5, and r ¼ 0

Fig. 7 The singular surface generated by root r1
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1. V1 = 0: then either one or three real roots exist.
All points lie inside the square domain for (f, u)
to fall into this category. Figure 7 shows that a
real root r1 always exists, but Figs 8 and 9 show
that the second and the third real roots r2 and r3

do not exist in some regions. For the particular
case (f, u) ¼ (0.518, 0.108), there are three real
roots: r1 ¼ 20.6919, r2 ¼ 0.5300, and r3 ¼ 0.1389.
The corresponding three singular configurations
are shown in Fig. 10. The moving platform in
these configurations is parallel, because they
have the same values of f and u.

2. V1 ¼ 0 but V2 = 0: from equation (9a), one knows
that V1 ¼ 0 when f ¼ +p/2 or u ¼ +p/2. Hence,
all points on the boundary of the square region
cause degeneracy of the cubic equation. If
V2 = 0, the equation becomes quadratic. In
such a case, no real root exists when
V3

2 2 4V2V4 , 0. The authors found that along
the boundaries f ¼ +p/2, no real root exists in
the two intervals: 21.4682 4 u 4 2 0.6193 and
0.6193 4 u 4 1.4682. Also, as (f, u) approaches
the four corner points (+p/2, +p/2), the coeffi-
cient V1 is of the order of 03, hence it approaches
to zero very rapidly, making the root r1 approach
infinity (equations (10a) to (c)), as Fig. 7 shows.

3. V1 ¼ V2 ¼ 0: equation (8) becomes linear. This
happens in the following two cases: (a) cos f ¼

sin u ¼ 0, that is, (f, u) ¼ (+p/2, 0) and (b) sin
f ¼ cos u ¼ 0, which means that (f, u) ¼ (0, +p/
2). In the former case (i.e. cos f ¼ sin u ¼ 0), V4

is zero, and the root r ¼ 0 is obtained. The direct
singular configurations for (f, u) ¼ (2p/2, 0) and
(f, u) ¼ (p/2, 0) are shown in Figs 11 and 12,
respectively. It can be noticed that the moving
platforms are orthogonal to the base. In the
latter case (i.e. sin f ¼ cos u ¼ 0), then
V3 ¼ +V4, hence r ¼ +1. Singular configurations
shown in Figs 13 and 14 are for cases with (f,
u) ¼ (0, 2p/2) and (f, u) ¼ (0, p/2), respectively,
again the moving platforms are normal to the
base.

In the current numerical procedure, whenever a
direct singular position is determined, it is introduced
into the Jacobian matrix found in reference [3].

Fig. 8 The singular surface generated by root r2

Fig. 9 The singular surface generated by root r3

Fig. 10 Direct singular position for the case (f, u) ¼

(0.5180, 0.1080), b ¼ 1.5, r ¼ 0.5300, 0.1389,

and 20.6919

Fig. 11 Direct singular position for the case (f,

u) ¼ (2p/2, 0), b ¼ 1.5, and r ¼ 0
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The configurations shown in Figs 4 to 6, 10 to 14 as
well as the configurations corresponding to all the
roots shown in Figs 7 to 9 are found to make the Jaco-
bian matrix in reference [3] singular.

Inasmuch as the normalized extension r is
expected to be non-negative, only non-negative
roots are shown in Fig. 15. One may notice that
there are two regions in which non-negative values
of r do not exist; hence, in practice, direct kinematic
singularities do not occur in these regions. Figure 15
is valid for the particular moving platform size
b ¼ 1.5, and the purpose of the following analysis is
to determine whether such regions also exist for
other values of b. According to Descartes’ rule of
sign, the number of positive real roots of equation
(8) is equal to the number of sign changes of its coef-
ficients Vi or is less than that number by 2. The
number of negative roots may also be determined
after replacing r by (2r) in equation (8). Table 1
shows the signs of Vi and the numbers of positive/
negative roots obtained by using Descartes’ rule. In
this table, the results for negative roots are shown

in parentheses, and the variable D is defined by

D ¼ 3s2f c u� cf s2u (12)

Table 1 suggests that in either of the following two
situations, there may be no positive real root:

(a) u . 0 and D . 0;
(b) u , 0 and D , 0.

Figure 16 shows two solid curves, and the points
on which satisfy the equation D ¼ 0. These two
curves, together with the line u ¼ 0, separate the
domain into several regions. Both the two regions
satisfying u . 0 and D . 0 are labelled as region 1,
and the region satisfying u , 0 and D , 0 is region
2. One knows from Table 1 that equation (8) has a
negative real root for any point in regions 1 and
2. Hence, the appearance of two complex roots can
rule out the possibility of a positive real root. As the
coefficient V1 = 0, two complex roots for equation
(8) may appear when the variables Q and R defined
by equations (11c) and (d) satisfy the inequality

Fig. 13 Direct singular position for the case (f, u) ¼

(0, 2p/2), b ¼ 1.5, and r ¼ 1

Fig. 12 Direct singular position for the case

(f, u) ¼ (p/2, 0), b ¼ 1.5, and r ¼ 0

Fig. 14 Direct singular position for the case (f, u) ¼

(0, p/2), b ¼ 1.5, and r ¼ 21

Fig. 15 Direct singular positions with non-negative

roots (r 5 0), b ¼ 1.5, three roots r1, r2, and r3

are denoted by x, þ, and o, respectively
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Q 3
þ R 2 . 0 [24]. However, if f ¼ +p/2, V1

becomes zero and equation (8) reduces to a quadra-
tic equation. In this case, two complex roots may still
appear if the discriminant V3

2 2 4V2V4 , 0. All the
regions in which equation (8) has two complex
roots, for the particular moving platform size
b ¼ 0.75, are shown in Fig. 17. A positive real root
cannot exist within the intersections of regions
shown in Fig. 17 and regions 1 and 2 in Fig. 16. For

this reason, only the two upper regions shown in
Fig. 17 do not contain any positive real root; meaning
direct kinematic singularities cannot happen in these
two regions in practice. The authors found that the
size of the regions that have no direct singularity
decreases with the moving platform size b. This can
also be seen by comparing the size of the regions
when b ¼ 1.5, as shown in Fig. 15, with the size of
the regions when b ¼ 0.75, which are the two upper
regions in Fig. 17. As the moving platform size b
equals to 0.5824, the regions with no direct singular-
ity reduce to the following two points (f, u) ¼ (+p/2,
0.33p). The regions vanish with a further decrease in
the moving platform size.

5 CONCLUSIONS

In this study, a simpler Jacobian matrix for Tricept is
obtained. By using this matrix, the direct kinematic
singularity positions of Tricept and the correspond-
ing configurations may be obtained by solving a
cubic polynomial equation. The singular surfaces in
the three-dimensional (f, u, r) space are shown.
When the normalized moving platform size
b 5 0.5824, there are two regions in the f–u
domain inside which direct kinematic singularities
can only occur with impossible configurations. The
size of these regions decreases with decreasing
moving platform size b.
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