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Role and action selections are two major procedures of the game strategy for multiple robots playing the soccer game. In role-select
procedure, a formation is planned for the soccer team, and a role is assigned to each individual robot. In action-select procedure,
each robot executes an action provided by an action selection mechanism to fulfill its role playing. The role-select procedure was
often designed efficiently by using the geometry approach. However, the action-select procedure developed based on geometry
approach will become a very complex task. In this paper, a novel action-select algorithm for soccer robots is proposed by using the
concepts of artificial immune network (AIN). This AIN-based action-select provides an efficient and robust algorithm for robot
role selection. Meanwhile, a reinforcement learning mechanism is applied in the proposed algorithm to enhance the response of
the adaptive immune system. Simulation and experiment are carried out to verify the proposed AIN-based algorithm, and the
results show that the proposed algorithm provides an efficient and applicable algorithm for mobile robots to play soccer game.
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1. Introduction

The objective of this research is to design a strategy plan-
ning system for multiple robots playing soccer game. The
proposed system is composed of two levels: namely, role
selection mechanism (RSM) and action selection mechanism
(ASM). The RSM assigns different roles to each robot in
order to work together as a team and fulfill the game strategy.
When each robot is assigned a certain role, the ASM will
consider what the appropriate action is for each robot to
accomplish their roles. Each robot executes its own actions
provided by the ASM, and a team of robots performs a
formation task in the soccer game by collaboration.

In the literature, the RSM was often developed by
geometry approach based on decision-tree theory [1-5]. A
decision tree has several nodes arranged in a hierarchical
structure as depicted in Figure 1 [5]. It is based on the
instantaneous geometric situation on the soccer field, such
as the absolute position of the ball and the relative position
between the ball and robots, to choose the most suitable role
for each of the robots. Roles of the robot can be distinguished
into active robot and passive robot. Every moment in the
game can only allow one robot to play as an active robot
and in charge of offense and defense; while the others are

passive robots to assist the active robot to carry out the
mission. From Figure 1, it is easy to see that the decision
tree implements the decision in a simple, apparent, and
multistage manner. Since each node of a decision tree uses
only a simple splitting rule, the entire decision process can
be implemented very fast and efficiently.

The ASM is also premeditated by using the geometry
method, and an action is assigned to each robot to accom-
plish the task based on the geometrical location of the ball or
robot in the soccer field [3-5]. Tsou et al. [5] designed eight
basic actions for soccer robot based on geometric thinking
approach, including chase ball, dribble ball, shoot ball, sweep
ball, goal keeping, blocking, active attack, and assist attack.
The details of these actions are explained in Table 1. There are
two major disadvantages in using the concept of geometry
thinking for constructing an ASM. First, if the ball is located
at the boundary of two zones, the geometry thinking method
will fail to function. Second, there are too many actions to
be considered in order to cover all possible conditions of all
geometrical divisions. In this paper, an ASM based on the
artificial immune network (AIN) is proposed to replace the
geometry thinking method thus avoiding its disadvantages.
Meanwhile, the decision tree is still used to decide the role of
each robot in this research.
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TABLE 1: Actions of geometry thinking ASM [5].
Chase ball When robot is far away from ball, this action is
given to go after the ball.
Dribble ball If robot is close to the ball, this action is called
to take control of the ball.
If robot is close to the ball and goal, this action
Shoot ball is used to shoot the ball.
While the ball is in the corner or boundary, the
Sweep ball . .
robot uses this action to sweep the ball out.
Goal keeping Robot playlng asa ggal keeper gets this action
to prevent losing point.
If an opponent and the ball are close to our
Blocking goal, the closest robot goes between the

opponent and ball trying to block the way.

If ball is near the opponent’s goal, the closest

Active attack .
v robot will play as an attacker.

Robot closest to the attacker gets ready to
attack in case the attacker misses.

Where is the ball?
. .( What formation) k distinct
to play? zones
L/ /2 \Pk

Robot
formation

Assist attack

FIGURE 1: Decision tree for robot soccer game [5].

This research has two major contributions. First, the
complexity of designing the robot actions is reduced by
using the novel AIN-based ASM compared to the methods
by geometry thinking [3-5]. Instead of geometry thinking
approach, if the concepts of AIN are applied to design
the ASM, fewer number of robot actions are needed for
playing the soccer game. Second, the geometry thinking
method will fail to function in certain geometrical locations
of the ball in the soccer field. However, the AIN-based ASM
will not have the same functionality problem. Furthermore,
a reinforcement learning mechanism is also utilized to
determine the priority order of antibodies at the initial
stage of the soccer game, and then the game strategy is
carried out according to the priority order. Therefore, a
tactic-based decision system is formed for a soccer robot
team.

In Section 2, the proposed AIN-based action selection
mechanism is presented. The reinforcement learning mech-
anism is explained in Section 3. The problem of camera
calibration is discussed in Section 4. Sections 5 and 6 depict
the simulation and experimental examples. Some conclusion
remarks are discussed in the last section.
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2. AIN-Based Action Selection Mechanism

2.1. Artificial Immune Network. The concepts of artificial
immune network proposed by Farmer et al. [6, 7] are utilized
in this research to design the action selection mechanism
for the robots to accomplish the soccer game. In the human
body, the biological immune system defends the invasion of
outer viruses or antigens by two successive response subsys-
tems, including the innate immune system and the adaptive
immune system. The innate immune system is a primitive
nonspecific recognition system which is able to generate a
series of chemical reactions to detect the invasive viruses or
antigens, and then transmit the identification of antigen to
adaptive immune system. This is the perception competence
of the biological immune system. The lymphocytes (B-cell
receptors) in the adaptive immune system will recognize
an antigen and perform cell division, and then specialize
themselves into plasma cells to duplicate a massive number of
antibodies according to the transmitted identity of antigens.
Each kind of the antibodies aims to recognize a certain kind
of antigen and is responsible to destroy the specific invasive
antigen [8]. This is the reaction competence of the biological
immune system.

By using the concepts of artificial immune network, the
perception competence of the biological immune system is
represented by the function of affinity, describing the relation
between the antibody and antigen [6]. The affinity m; is
defined to represent the relationship between the antibody
and the antigen [6] as follows:

if the antibody i is combined
mi(k+1) = with an antigen, (1)

0, otherwise,

where k is the time step.

Jerne [9] proposed the idiotypic network hypothesis
which stated that an antibody not only can bind with
antigens, but also with other antibodies to form a network.
Therefore, an artificial immune network is established by a
massive number of antibodies against the invasive antigens
[6, 7]. These antibodies form an artificial immune network
by the stimulation and suppression effects among them.
The stimulation and suppression of antibody i triggered by
antibody j are represented by the affinity m;; and defined as
the follows:

1
1 +exp(0.5 — myj(k))
if antibody i is triggered by antibody j,
mij(k),

otherwise.

mij(k + 1)=

(2)

In AIN, the reaction competence of biological immune
system, or called the reaction of an antibody to antigens,
is modeled by the function of concentration. If there are N
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F1GURE 2: Scheme of antibodies for a robot.

antibodies to form an AIN, the concentration x; of antibody
i is expressed as the following first-order difference equation
[6]:

N N
xi(k+1) = <zminj(k) = > mpX(k) + m; — ki)Xi(k)>
=1

j=1
(3)

1
(4)

1+exp(0.5 - xi(k+1))’

Xi(k+1) =

where the first and second terms in the right-hand side
of (3) represent the stimulation and suppression effects,
respectively; k; denotes the mortality of antibody i. By the
procedure of stimulation and suppression among the anti-
bodies, the antibody with the largest value of concentration
will be triggered.

2.2. Robot Action Selection Mechanism. In this paper, the
perception competence of the biological immune system is
utilized to model the perception of a soccer robot system,
while the reaction competence is employed to model the
response of a robot system to the environmental change.

A coordinate system is located on the robot, and the
soccer field surrounding the robot is divided into four
quadrants, as shown in Figure 2. The perception competence
of the robot system at each quadrant is modeled by a
biological immune system which has the capability to detect
three kinds of antigens. These antigens represent three
different kinds of occupant at each quadrant, including the
ball, an opponent robot, and a vacancy. A vacancy means
that there is neither ball nor opponent robot in the quadrant.
As shown in Figure 2, there are twelve kinds of antigens to
be detected for each robot. Therefore, the total number of
antibodies is linearly proportional to the number of robots.

The AIN investigates each quadrant around the robot; if
one kind of antigen is detected, the corresponding antibody
is triggered according to the circumstance. At least one
antigen in each quadrant around the robot is detected at any
given time. For example, there may be two antigens, namely,
the ball and an opponent robot, occupying one quadrant.
A robot collects multiple antigens from the surrounding
quadrants and there may be more than one corresponding
antibodies. Therefore, the number of triggered antibodies
depends on how many antigens are detected by a robot.

The affinity m;; of AIN in (2) is utilized to represent
the detected occupants at each quadrant around the robot.
Similarly, the concentration x; in (3) is applied to model the
reaction competence in a soccer robot system, and the robots
decide the next action according to the antibody having the
highest value of concentration. If there is more than one
antibody containing the highest value, the following priority
orders can be applied to the immune response antibody:

Ball > Space > Opponent robot,
Quadrant I > Quadrant II > Quadrant III > Quadrant IV.
(5)

The flow chart of an AIN behavior-based controller system
in soccer robot game is shown in Figure 3, containing three
portions: sensing and perception, artificial immune net-
work, and reinforcement learning mechanism. The portion
of sensing and perception is composed of environment
detection and antigen determination. The main purpose of
this portion is for the robots to investigate the soccer field,
which is divided into four quadrants, and then marshal
the information to detect the antigens. In the portion of
artificial immune network, there are triggering, stimulation,
and suppression among antibodies, and the calculation
of antibody concentration. Based on the environmental
information obtained from antigenic detection, the robots
determine which antibodies to activate. These antibodies
influence their own concentration and change the affinity
because of stimulation and suppression among themselves.
Finally, the robot system chooses the antibody with the
highest concentration to defend against the invasive antigens,
and therefore, select an appropriate action.

3. Reinforcement Learning Mechanism

The reinforcement learning mechanism in machine learning
area brought in the concept of determining the priority
order and meaning of antibodies [10-12]. In Figure 3, the
reinforcement learning mechanism which has a system of
reward and penalty is utilized to enhance the speed of
producing antibodies by affecting the calculation of the
affinity. The reinforcement learning mechanism determines
whether the reaction of the antibody with the highest
concentration conforms to the priority order. If the reaction
matches the priority order, a reward is offered to the
antibody; otherwise, a penalty is given. The reward and
penalty will affect the concentration of the help T-cell. The



Sensing and perception

Environmental

detection
N2
Antigen
determination

Triggering
antibodies
2
Stimulation &
suppression of
triggered antibodies

Journal of Control Science and Engineering

Priority order
matched?

Help T-cell larger
than threshold?

Penalty
Reward np =np + 1
np=np-1

|

|

|

|

|

|

|

|

|

1 T Concentration
: ; Reward: Penalty: of Help T-cell
! Calculation of ty:

! concentration for increase affinity increase affinity decrease.su

! triggered antibodies of responded of responded exponentially
} N antibody & antibody &

| Antibody with highest stimulated suppressed

'| concentration defend the antibodies antibodies

! invasion of outer antigen

|

Artificial immune
network

Reinforcement learning
mechanism

F1GURE 3: Flow chart of immune behavior controller system.

definition of the concentration of the help T-cell is expressed
as [12]

1

Talke+1) = 1+exp(—#n - np)’

(6)

where # is the growing factor, and np is the number of times
the penalty is offered. If there is no penalty, np is decreased by
1. When the concentration of Ty reaches a preset threshold,
6, the help T-cell will take action and influence the affinity of
the triggered antibody, and then help the antibody to learn
and memorize the history of robot action. In this case, the
learning rate y is greater than zero; otherwise, it is set to be
zero as follows:

If (T, >8) then (y >0),

else (y = 0). @)
The learning mechanism of the artificial immune network
in this research has two phases: the immune response
mode and immune tolerant mode. At the immune response
mode, the B-cells and help T-cells grow exponentially. In
the early stage of immune response, the antibody cannot
recognize any antigen; therefore, the function of the help T-
cell is designed to assist the capability of recognition for the
antibody. Antibody is trained to memorize antigen at this
phase. In the soccer robot case, the robot continuously learns
different behavior modes in order to handle an unfamiliar
environment. When np is reduced to be zero, the help T-cell
constrains the growth of the B-cell, and the immune tolerant
mode will start to function. In the immune tolerant mode,
the antibody can recognize an antigen, and the robot has
steady mode and ability to handle all kinds of environmental

conditions it confronts. The calculation of the concentration
of help T-cell in (6) will be changed to

Tn(k+1) = Ty"(k) - A, (8)

where A represents the decay factor. When the concentration
of Ty no longer affects the affinity of antibody, it means
that the antibody can fully recognize all kinds of antigen,
and the learning of the immune system is completed. If
any unexpected circumstance happens, it means that some
new antigens are not yet being recognized by the system.
Therefore, the learning mechanism will go back to the
immune response mode and learn again.

The reward signal acts on the stimulation term of
the triggered antibody’s concentration in (3), while the
suppression term remains unchanged. On the other hand,
the penalty signal increases the concentration of help T-cell
and also enhances the suppression term of the triggered anti-
body’s concentration in (3), while the stimulation term keeps
unchanged. The stimulative and the suppressive affinity of
antibody 7 stimulated by antibody j is defined as

1

mij(k +1) = 1+exp(0.5 = (1 +y)myj(k))

(9)

Figure 4 depicts the concentration of a T-cell during a
simulation process, while the affected concentration of one
antibody is plotted in Figure 5. From the figures, we can see
that the concentration of the antibody is stimulated or sup-
pressed exponentially by the concentration of the T-cell, if an
unexpected circumstance happens. When the concentration
of the antibody is in saturation, the concentration of T-cell
will decay to zero value according to (8).
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FIGURE 5: The concentration of one antibody.

4. Camera Calibration

The control system utilizes a global vision system to supervise
the soccer robots. A procedure with decoupled nonlinear
polynomials is proposed to calibrate the camera of the
global vision system. The methods with coupled nonlinear
polynomials used in the literature [13, 14] will involve com-
putational difficulty. Instead, a second-degree polynomial
is utilized in this paper to model the effect of wide-angle
lens:

R=ag+ar+a?, (10)

where R is the undistorted radius from the pixel of interest
to the center of an image; r is the corresponding distorted
radius by measurement; a; are the intrinsic parameters of
the camera to be determined. Two polynomials are employed
to model the extrinsic parameters caused by the linear and

Ground

FIGURE 6: Point in different levels will be recognized incorrectly.

rotational motion of the camera as follows:

’

X

Y

CiIX+ oy +cxy+cy,

, (11)
Csx +cgy +c7xy + cs,

where x” and y” are the coordinates of the undistorted pixel;
x and y are the corresponding coordinates of the distorted
pixel by measurement; ¢; are the extrinsic parameters of the
camera. The ground and top of the robot are in different
levels, as shown in Figure 6; therefore, the location of a robot
at point B will be recognized incorrectly as the location at
point A. The correct location of the robot can be determined
by

L
l= 4 X (H=h), (12)

where H and h are the heights of the camera and the
robot, respectively; L is the calculated distance by the
method of image processing. As one example, five robots
are placed at five different locations in the soccer field, as
shown in Figure 7. The truth (undistorted) location and
uncalibrated (distorted) location are listed in first and second
rows in Table 2. The coefficients of intrinsic parameters are
calculated as ap = 0.4004, a; = 0.4316, a, = 0.0001; while the
coefficients of extrinsic parameters are ¢; = 1.012, ¢c; =0.0492,
¢3 = —0.0001, ¢4 = —2.8311, ¢5 = —0.0349, ¢c = 1.0153, ¢; =
0.0, cs = 5.149; and the equation for different level point is
determined as [ = 0.94L.

We calculate the root mean squared error (RMSE) for
the image recovered by using three proposed procedures for
camera calibration, namely, wide-angle, camera-motion, and
different level calibrations:

n Y —2)\?
RMSE = S =07 O y)), n =25,

n
(13)

where x and y are the undistorted coordinates; x; and y;
are the distorted coordinates. The results for wide-angle,
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F1GURE 7: Five robots are placed at five different locations.

camera-motion, and different level calibration are listed in
3th-5th rows in Table 2, respectively. Table 2 depicts that
the effect of a combination of wide-angle, camera-motion,
and different-level calibrations will reduce the RMSE from
11.42 cm to 1.27 cm.

5. Simulation Results

In this section, an example of 3-on-3 robot soccer game
is demonstrated by using the FIRA simulator [15]. In the
example, the decision tree is used to decide the role of each
robot, and the AIN is employed to determine what action
each robot should take. The roles of the robots are defined
as striker, fullback, and goalkeeper. The characters of striker
and fullback are differentiated to be an active robot and a
passive robot, respectively, according to the relative position
of robots to the ball. For the active robot, its main purpose
is to chase and shoot the ball. If there is no opponent robot
trying to take over the ball or block the way, the action of an

active robot will be rewarded and keep chasing the ball. For
the passive robot, the objective of the robot action is to assist
the attack.

A command generating algorithm is designed to create a
point-to-point planner motion for the robots. The speeds of
right and left wheels of the soccer robot are calculated as

w 1|—sing cos¢ D X
[wﬂ T [—simp cos ¢ —D} )’(/r)n > (14)

where wgr and w; are the speeds of right and left wheels,
respectively; %, ym, and ¢ are the linear and angular
velocities of the robot; D is the distance from the wheel to
the center of the robot; ¢ is the rotation angle between world
frame xy and robot frame x,, y,, as shown in Figure 8.
Figures 9 and 10 depict the simulation results of an
example by using the FIRA simulator. At the beginning, the
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TaBLE 2: Results of camera calibration.
Robot 0 Robot 1 Robot 2 Robot 3 Robot 4 RMSE
(38.0, 26.0) (38.0, 69.0) (38.0, 152.0) (39.0, 191.0) (39.0,111.0)
Truth location (undistorted) (83.0, 28.0) (83.0, 70.0) (83.0, 152.0) (82.0, 194.0) (83.0, 109.0)
(x,) (144.0, 27.0) (141.0, 66.0) (142.0, 149.0) (144.0, 190.0) (142.0, 107.0) 0.0
(190.0, 24.0) (188.0, 65.0) (189.0, 145.0) (188.0, 184.0) (190.0, 110.0)
(234.0, 25.0) (235.0, 65.0) (235.0, 152.0) (233.0, 192.0) (234.0, 107.0)
(44.2,17.7) (41.2,61.1) (37.2,144.7) (36.7, 183.6) (39.8,102.7)
Uncalibrated (distorted) (87.6,19.9) (85.8,61.5) (81.9, 147.3) (79.2,188.1) (84.5,102.7)
(x5, i) (148.6, 20.4) (146, 60.2) (143.4, 146.0) (142, 187.6) (143.8,103.1) 11.42
(196, 19.5) (194.7, 60.6) (192.5, 142) (190.7, 182.3) (192.9, 105.3)
(239.8, 23.0) (239.8, 62.8) (237.2,105.8) (233.6,191.2) (238, 104.8)
(34.5, 16.5) (32.3,57.2) (27.6, 148.9) (26.7,189.9) (31.3,105.3)
(80.6, 20.0) (79.5, 63.5) (75.4, 150.9) (71.9,193.5) (78.5,105.4)
Wide-angle calibration (143.5,21.1) (140.7,62.6) (138.0,149.0) (136.7,192.2) (138.6, 105.6) 7.03
(192.4,19.5) (190.2, 62.7) (187.8, 145.3) (186.6, 187) (188.1, 108.1)
(238.8,22.1) (237.8, 64.2) (234.9, 155.2) (232.2,197.6) (236.4, 107.6)
(32.8,20.7) (32.7,67.3) (32.0, 155.3) (78.0,199.1) (33.7,111.0)
Wide-angle + camera-motion (79.5,22.7) (80.3, 66.9) (79.8,155.7) (78.0,199.0) (80.9, 109.4)
calibrations (143.1, 21.6) (141.8, 63.8) (142.1, 151.7) (142.3,195.5) (141.2,107.6) 5.41
(192.5, 18.3) (191.6, 62.1) (191.7, 146.1) (191.8, 188.6) (190.8, 108.3)
(239.4,19.3) (239.5, 61.9) (238.9, 154.5) (237.3,197.6) (239.2, 106.2)
(38.0, 25.1) (38.1, 69.4) (37.3, 153.0) (38.2, 193.0) (38.9, 110.9)
Wide-angle + camera-motion (82.4,27.0) (83.1, 69.0) (82.7,153.4) (81.0, 194.5) (83.8,109.4)
+ different-level calibrations (142.8, 25.9) (141.5, 66.1) (142.0, 149.5) (142.0, 191.1) (141.0, 107.6) 1.27
(189.6, 22.9) (188.8, 64.5) (188.9, 144.3) (188.9, 184.6) (188.0, 108.3)
(234.2,23.8) (234.3,64.4) (233.8,152.2) (232.2,193.2) (233.9, 106.3)
Ym the fullback heads forward and assists the attack, and the
goalkeeper retains the action of defending our goal.
Right wheel
Xm

Left wheel

FiGure 8: Top-view sketch of the two-wheel mobile robot.

opponent robots are located on the right half of the field,
and our robots are located on the left half-field. During the
soccer game, the decision tree assigns various roles to our
robots, including the goalkeeper, fullback, and striker. Once
the roles are assigned to the robots, the AIN-based ASM
selects an action for each robot. As shown in Figure 10, the
striker adopts the action of ball chasing and shooting, and

6. Experimental Results

The proposed AIN-based ASM is applied to the small-size
robot soccer game, in which the global coordinates of the
soccer robots are obtained by using an appropriate image
processing method. Knowing the geometric locations of
the ball and robots on the soccer field, the experimental
test is carried out by three major steps. First, according to
the circumstance in the soccer field, a team formation is
chosen for the soccer robot system, and a role is selected for
each individual robot by using decision-tree RSM. Second,
each robot executes an action provided by the AIN-based
ASM to fulfill its role playing. Based on the concepts of
AIN, only three actions are necessary for the robot soccer
game, including ball chasing, opponent blocking, and space
chasing. Table 3 depicts the functions of these actions and the
situation it is used for. Finally, the robot action is performed
by using a point-to-point motion controller.

In the first example, the images shown in Figure 11 are
the top views of robot continuous motion in the soccer
field. The white arrow is placed on the top of the robot
and indicates the motion direction of the robot. The red
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FI1GURE 9: Simulation of AIN-based ASM in 3-on-3 robot soccer game.
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Figure 10: Motion trajectories of the soccer robots.

(dark) mark initially located near the robot represents an
obstacle, while the yellow (light) mark represents the goal
position of the robot. By using the AIN-based ASM, the robot
system avoids the obstacle by turning right to follow a detour (e) ()
and approach the goal.

A 5-on-5 robot soccer game is depicted as another
example of using the AIN-based ASM. Initially, the ball is
located between robots 1, 2, and 3. The decision-tree RSM
assigns robot 3 as an active striker; while robots 1 and 2 are After that, robot 2 is assigned as an active striker and robot 3
assistant robots, as shown in Figures 12(a)-12(b). Robot 3 as an assistant. Robot 2 approaches the ball and pushes it to
approaches the ball and kicks it to the goal, Figure 12(c). the goal, as shown in Figures 12(d)-12(f).

FIGURE 11: Robot avoids the obstacle and detour to the goal.
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FIGURE 12: Experimental results of 5-on-5 soccer game.

7. Conclusion

In this paper, an action selection mechanism based on the
concepts of artificial immune network is proposed for a robot
system playing soccer. The decision-tree method is applied
to the upper level of the strategy planning system, which
can choose a team formation and assign an applicable role
to a robot according to the location of the robot in the
soccer field. After the role is selected, the lower level of the
strategy planning system, the action selection mechanism,
starts to work. Using the concept of immunology, the
action selection mechanism is designed and composed of

TABLE 3: Actions of AIN-based ASM.

When the concentration of ball is the highest, this

Ball chasing ~ action is selected by robot and it will chase toward
the ball.
Robot moves to a point between opponent and
Opponent ball to prevent opponent takes control of the ball.
blocking This action is taken when the concentration of

opponent is the highest.

This action is only used when the concentration
of ball is the highest and under the following
condition: a) opponent is within 5 inches from
robot, b) opponent and ball are in the same
quadrant, and c) opponent is between robot and
ball.

Space chasing

an artificial immune network and a reinforcement learning
mechanism. The concept of antibody in AIN is utilized to
model the occupants surrounding the robot, such as the ball,
opponent robots, and a vacancy. The circumstance of each
quadrant around the robot in the soccer field is analyzed, and
the antibody or the occupant with the highest concentration
is triggered, such that each of our robots can be appointed
to a certain action. The proposed reinforcement learning
mechanism assures that each robot performs the right action
by offering a reward, otherwise a penalty is given. This helps
the antibodies of the AIN-based ASM to learn and memorize
the actions of the robots.

In the application of multirobot soccer game, this
research has implemented 1-on-1, 3-on-3, and 5-on-5 soccer
games, simulated the AIN-based ASM by using the FIRA
simulator, and tested the algorithm on a real soccer field. The
results show that the AIN-based ASM can carry out desirable
performances. Two major contributions of the AIN-based
ASM are as follows. First, the complexity of designing
the robot actions is reduced compared to the methods by
geometry thinking [3-5], as we can see from Tables 1 and
3, the number of the required robot actions is reduced from
eight to three. Second, the AIN-based ASM will not have
the same functionality problem as the geometry thinking
method does in certain geometrical locations of the ball in
the soccer field.
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