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Due to different interface densities and arrangements, the compacted type nanocomposites may
yield even lower thermal conductivity than embedded type nanocomposites. In this paper, the
phonon transport and thermal conductivity in compacted type nanocomposites (nanowires and
nanoparticles) are investigated using a deterministic phonon Boltzmann transport equation solver.
The effects of interface density and characteristic size on the phonon energy transport in
nanocomposites are studied. It is found that the silicon-germanium compacted nanoparticle
composites can have lower value of thermal conductivity than that of compacted nanowire
composites under the same characteristic size (21.6% lower when the characteristic size is 3 nm).
© 2009 American Institute of Physics. [DOI: 10.1063/1.3182803]

I. INTRODUCTION

Recent advances in synthesis, assembly, etching, pro-
cessing, and microanalysis are enabling the routine produc-
tion of well characterized materials with structure of
nanometer-length scale. The feature size of electronic de-
vices in current integrated circuits has become comparable to
or even smaller than the mean free path (MFP) of the energy
carrier and is projected to be much smaller in the near future.
Examples are semiconductor quantum dots and superlattices,
nanocomposites, multilayer coatings, and microelectronic
and optoelectronic devices. Nanoscale structures attracted
significant attention in recent years due to their importance in
a variety of applicauions.l_4

Heat transport in semiconductors and insulators is
mainly by lattice vibration. These vibrations travel within the
medium as waves and can be regarded as pseudoparticles.
This heat carrier is called phonon.5 In many systems of cur-
rent interest, the characteristic length scale of the microstruc-
ture is the same as the MFP of phonon and sometimes com-
parable to the phonon wavelength. This clearly necessitates
an understanding of the nanoscale heat transport beyond that
available at the continuum level, i.e., the Fourier conduction
law.°®

The efficiency of thermoelectric devices can be charac-
terized by the nondimensional thermoelectric figure of merit
ZT=S20T/k, where S is the Seebeck coefficient, o is the
electrical conductivity, k is the thermal conductivity, and T is
the absolute temperature. Recent developments in highly ef-
ficient thermoelectric devices applied nanostructure-based
materials such as Bi,Tes;/Sb,Te; superlattices7 and PbTe/
PbSeTe quantum dot superlattices,8 and the marked increases
in ZT values are mainly contributed by the reduction in pho-
non thermal conductivity. Thermal conductivity reduction is
the major mechanism behind the enhanced figure of merit’
and past studies on nanocomposites show that further reduc-
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tion in thermal conductivity may be achieved due to higher
interface density. Thus, nanocomposites can provide a path-
way to scale up the interface effect that can greatly enhance
the efficiency of thermoelectric devices.

Phonon energy transport in nanocomposite has recently
been studied by several researchers.'*'® Most of these ef-
forts in simulating phonon heat transport are on composites
with nanowires or nanoparticles embedded in a host matrix
material. The host material forms a continuous phase in
which nanowires or nanoparticles are dispersed. A determin-
istic phonon Boltzmann transport equation (BTE) solver was
employed to study the phonon heat transfer and thermal con-
ductivity of embedded nanowire compositeslo"1 and embed-
ded nanoparticle composites.”> The Monte Carlo (MC)
method was also employed to solve for compacted random
nanowire c:omposites14 and embedded nanoparticle
composites.16 Cylindrical nanopore composites are studied
based on analytic solutions of phonon BTE.'>"

Another possible interface arrangement of the two spe-
cies of a nanocomposite is called compacted type composite,
as shown in Fig. 1, where no continuous phase of a single
material is formed. Due to the compacted arrangement of
interfaces, there is no path that phonons can pass through
without being scattered by interfaces. The compacted nano-
wire periodic two-dimensional (2D) composites may yield
even lower thermal conductivity than composites with nano-
wires embedded in a host material at the same interface den-
sity and characteristic size."” The further reduction in thermal
conductivity can be expected for compacted nanoparticle pe-
riodic three-dimensional (3D) composites due to the addi-
tional interface scattering in the 3D structures. In this work,
we study the thermal conductivity and phonon transport both
in compacted 2D nanowire and 3D nanoparticle composites
using a deterministic phonon BTE solver. By directly com-
paring the 2D and 3D compacted nanocomposite structures
based on the same parameters, we can assess more precisely
the benefit of nanoscale effects on thermoelectric efficiency
enhancement.

© 2009 American Institute of Physics
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FIG. 1. (Color online) Compacted nanowire and nanoparticle composites.
(a) Schematic of a compacted nanowire composite. (b) Unit cell of a com-
pacted nanowire composite for the simulation. (¢) Schematic of a compacted
nanoparticle composite. (d) Unit cell of a compacted nanoparticle composite
for the simulation.

Il. THEORETICAL MODEL AND SIMULATION

The heat transport in semiconductors is mainly by
phonons and the phonon transport can be well described by
the phonon BTE as the length scale is much larger than the
phonon coherent length. A phonon gray media approxima-
tion is employed in this study where the average phonon
properties are used to represent the integral behavior of
phonons with different frequency and polarization. The gray
medium approximation is found to be a good approximation
for the interface-scattering dominant problems18 and has
been applied to a wide range of nanostructures.® In this work,
the average phonon MFP and the group velocity are used,
which are obtained by approximating the dispersion relations
of the acoustic phonon branches with simple sine functions
and neglecting the heat transfer contribution of the optical
phonon branches.”” We consider the compacted nanowire
and nanoparticle composites as shown in Fig. 1. Due to the
periodicity of the structure, a unit cell is used to analyze the
nanostructure. The characteristic size L. denotes the width of
the square nanowire or the cubic nanoparticle. The width of
the unit cell is L. The ratio of L to L. is 2, which presents for
equal atomic composition of the two species composites. To
study the phonon heat transfer, a constant temperature differ-
ence is applied at the boundaries in the x direction.

The 3D phonon BTE with the Bhatnagar—Gross—Brook
(BGK) relaxation time model can be formulated as>

al al ol al Ig-1

— 4+ u— +n—+(— =
o TP T T T A

: (1)

where (x,y,z) are the Cartesian coordinates, 7 is time, I is the
phonon intensity, Iy is the equilibrium phonon intensity in
which phonon distribution function assuming the Bose—
Einstein distribution, A is the averaged phonon MFP, and u,
7, and { are the direction cosines of the phonon direction in
the x, y, and z coordinates as shown in Fig. 2. The direction
cosines can be expressed as u=cos 6, mp=sin 6 cos ¢, and
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FIG. 2. (Color online) Phonon direction and direction cosines.

{=sin @sin ¢, where 6 is the polar angle and ¢ is the azi-
muthal angle. The phonon intensity is defined by [/
=2,[¢7v iwfD(w)dw, where f is the phonon distribution
function, subscript p denotes the phonon polarization, v, is
the phonon group velocity in each polarization, w is the pho-
non frequency, w), is the maximum frequency in each polar-
ization, D(w) is the density of state, and # is the Planck
constant divided by 2.

The phonon intensity is defined as the flux of energy in
the direction of phonon propagation per unit area, per unit
solid angle. The left-hand side of Eq. (1) represents the free
streaming of phonons in space and the right-hand side de-
notes the collision term. In the BGK approximation, the col-
lision operator involves simple relaxation to a local equilib-
rium state. The phonon intensity / and the equilibrium
phonon intensity Iy satisfy the conservation constraint. The
equilibrium phonon intensity can be represented by phonon
intensity as

47TQ

where () is the solid angle of the phonon direction.

There are two main mechanisms contributing to thermal
resistances in phonon transfer in nanostructures. One is due
to intrinsic scattering and the other interface scattering. The
intrinsic scatterings including impurity scattering, phonon-
phonon scattering, and phonon-electron scattering are
lumped through the averaged MFP estimated from the ex-
perimental data. When a phonon encounters an interface
formed by different materials, the phonon may experience
specular21 or diffuse” scattering. The type of interface scat-
tering depends on the surface roughness of the interface and
the coefficients for specular reflection are given by Ziman.”
The diffuse mismatch model®* assumes that phonons emerg-
ing from the interface do not really bear any relationship
with their origin. At room temperature, the phonon scattering
event at the interface can be regarded as fully diffuse scat-
tering. Most of the experimental results show that diffuse
scattering dominates phonon transport in nanostructures. In
this work, the interface scattering is assumed to be diffuse. A
detailed balance consideration leads to the following defini-
tion of energy transmissivity for diffuse interface:**

Uyv,

Iy=
Ulvl + U2U2’

(3)
where T, is the phonon transmissivity across the interface
from medium 1 to medium 2, U is the phonon energy den-
sity, and v is the average phonon velocity. The subscripts
represent different media. Under the diffuse mismatch
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model, the relation for transmissivity and reflectivity is T,
=R,;=1-T,;. With the transmissivity and reflectivity given,
the phonon intensity in the outward direction (leaving the
interface) at the interface can be calculated by phonon inten-
sity in the inward direction (incoming to the interface). As an
example, the phonon intensity at interface (x=L,/2, 0=y
=L, 0=z=L) in the unit cell of the compacted nanopar-
ticle composite is used to explain the interface condition.
From the energy balance condition and isotropic scattering
assumption, the phonon intensity in the outward direction
(u>0) at right-hand side of the interface can be expressed as

; [i _& 27 +1 £
> VLM d ) = ul 5 V2 s |dudd
m™Jo Jo

R 2m
21
=1

T Jo

o (Lt
f Ml(?,y,z,p«, ¢)d,ud¢,
-1
4)

where the superscripts + and — indicate the positions on the
right and left sides of the interface, respectively. The phonon
intensity at the left-hand side of the interface, in outward
direction (w<<0), can be formulated correspondingly. The
phonon intensities at other interfaces can be similarly formu-
lated.

For the boundary conditions of the unit cell, the periodic
boundary condition is used due to the periodicity of the
structure. In the planes that are parallel to the heat flow
x-direction, the implementation of periodic boundary condi-
tion is simple. As an example, we consider the boundary
(0=x=L, y=0, 0=z=L) in the unit cell of the com-
pacted nanoparticle composite. The phonon intensity in the
outward direction (7>0) at each point of the boundary is
assigned as

I(x,y=0,2,;, ) =1(x,y = L,z, ., $). (5)

Similar expressions can be given for the boundary (0=x
=L, y=L, 0=z=L) with (#<0) and similarly for the z
=0 and z=L unit cell planes.

In the planes that are normal to the heat flow x direction,
the implementation of periodic boundary condition has to be
corrected due to the existence of a fixed temperature differ-
ence, which caused a distortion in the phonon intensity.lo To
implement the periodic boundary condition, one requires that
the distortion of phonon intensity in each direction at each
point of the boundary x=0 is the same as the distortion in the
corresponding direction at the corresponding point of the x
=L boundary. Thus, for the phonon intensity in the outward
direction (u>0) at the boundary plane (x=0, 0=y
=L, 0=z=L), we set

I(x=0,y,2,,$) = Ig(x=0,y,2) =I(x=L,y,z, &, )
—Ig(x=L.,y,z). (6)
Similarly, one can specify the condition at x=L unit cell
plane.

At the nanoscale, temperature can no longer be defined
in a usual manner and one has to use the effective tempera-
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ture to reflect the local energy density inside the medium.
The equivalent temperature can be expressed with phonon
intensity as

1 1
T= fld =L, (7)
4mCuv J g Cv

where T is equivalent temperature, C is the specific heat of
the material, and v is the phonon velocity.
The heat flux in the x direction can be presented as

4= f I, ®)
Q

A deterministic numerical method based on finite-difference
method in physical coordinates and discrete order method in
angle coordinates for solving the phonon Boltzmann equa-
tion is employed. The advantage of using the deterministic
phonon BTE solver over MC method is that the latter nor-
mally costs much more computer time to get a statistically
reasonable answer. Here in the present direct phonon BTE
solver, the discrete ordinate method and step scheme?*?
with parallel implementationls’26 are employed to solve Eq.
(1). For angular discretization, the total solid angle () is di-
vided into some discrete directions. To achieve high-order
integration accuracy, Gauss-Legendre (GL) quadratures are
used to discretize u(—1~+1) and H(0~2) into certain
points decided by the quadrature rule. The integration over
the solid angle can be calculated by the summation of func-
tion value in each discrete direction ﬁm,n=( Mo P,) multiply-
ing its corresponding weights w,, and @,. The equilibrium
phonon intensity can be represented as

1 1 Ny Ng
IEz_J IdQ:_E Ewmmnlmn’ (9)
m™J 0 T in=1 n=1 '

where the subscripts m and n represent the phonon direc-
tions.

With discrete phonon directions specified, the original
governing equation can be transferred into a set of differen-
tial equations in each phonon direction,

il,, 4, My 1p=1,

M
+ +
ot Mom Jx Nm.n 9z A

071 m,n
dy

+Lnn <. (10)
The above set of equations can be numerically integrated
using the step scheme in space and backward Euler scheme
in time as

s+1 s Is+1 _ s+l
ij.kmn i,jk.m,n 5 i+1,j,kmn ij.k.m,n
m
At Ax
s+1 _ s+l s+1 _ s+l
— i,j+ 1,k,m,n i,j.kmn — i,j,k¥*1,m.n i,j.k,m,n
+ M + gm,n
Ay Az
s s+1
I —
_ ZEijk i,j,k.m,n
= —;;A , (11)

where the superscript s is the time step index, the subscripts
i, j, and k are the indices in x, y, and z coordinates, and m
and n are discrete indices of u and ¢, respectively. At is the
time step size and Ax, Ay, and Az are mesh sizes in x, y, and
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z coordinates. The symbols + in Eq. (11) are decided by the
signs of direction cosines in x, y, and z coordinates, respec-
tively. The phonon direction with u,,>0, 7,,,<0, and ,,
>0 is used as an example. In this case, according to the step
scheme, both symbols F in the second term of Eq. (11)
assume minus sign, the symbols =+ in the third term assume
plus sign, while both symbols =+ in the fourth term assume
minus sign. The formula for other directions can be similarly
defined.

With the phonon intensity 7, , in each direction at time
step s known, the value of phonon equilibrium intensity I}, is
calculated from Eq. (9). Then the phonon intensity 7}/, in
each direction at next time step can be calculated with Eq.
(11). At the location of interface and boundary of the unit
cell, the phonon intensity in outward direction is calculated
by the diffuse interface condition or periodic boundary con-
dition. Special attention should be paid to the arrangement of
materials 1 and 2 inside the unit cell of compacted type
nanocomposite. Because implicit time discretization is used,
the time step size is not limited.”’ This can greatly reduce the
total number of time step needed in a steady state problem.
The procedure is repeated until the steady state is reached.
The steady state solution of phonon intensity 7, , is solved
by iteration over the equilibrium phonon intensity /. The
solution is assumed to be convergent when the maximum
relative difference of the equilibrium phonon intensity be-
tween two iteration steps is less than 107°. The steady state
temperature and heat flux can be calculated by numerically
integrating Egs. (7) and (8) with GL quadratures. With the
similar definition of Fourier law, the effective thermal con-
ductivity can be calculated by k,=gL/AT, where AT is the
temperature difference applied at boundaries in x direction
and the average heat flux g=[[qdydz/L?*. The following di-
mensionless parameters are used in the numerical simulation:

£ X ~ Y Lz
= _7 :_’ Z:_,
L Y L L
A T— TO q
T= , = s 12
AT 1T CAT (12)

where C is the specific heat of germanium and v, is the
sound speed in germanium. The reference temperature 7| is
300 K and the constant temperature difference AT is 1 K.

lll. RESULT AND DISCUSSION

The parameters of silicon (Si) and germanium (Ge) at
temperature 300 K used in the simulations are directly taken
from Yang and Chen.'” The bulk thermal conductivity of
silicon is 150 W/mK and germanium is 60 W/mK. For the
2D compacted nanowire structure, the x directional cosine u
direction is discretized into N,=80 points by GL quadrature
from —1 to +1 and the ¢ direction is discretized into N,
=30 points with GL quadrature from 0 to 7 (not 0 to 27 due
to symmetry). A uniformly spaced Cartesian spatial grid sys-
tem of size N,=150 and N,=150 is used within the square
unit cell. To ensure grid convergence of the solution proce-
dure, a finer mesh system is also used. The maximum rela-
tive difference of the effective thermal conductivity with

J. Appl. Phys. 106, 023528 (2009)

finer mesh N, =200, Ny=200, N,= 120, and N¢=50 is found
to be less than 0.5%. For the 3D compacted nanoparticle
structure, u is discretized into N, =380 points by GL quadra-
ture from —1 to +1 and ¢ is discretized into N,=60 points
with GL quadrature from 0 to 2. A uniformly spaced Car-
tesian spatial grid system of size N,=150, N,=150, and N,
=150 is used in the x, y, and z coordinates within the cubic
unit cell. To ensure the grid convergence of the steady state
solution, we also simulated the same problem with a finer
grid system with N, =200, Ny=200, N,=200, N #=120, and
N4=100. The maximum relative difference of the effective
thermal conductivities between the two grid systems is less
than 0.5%.

Figure 3 shows the steady state temperature and heat
flux distributions within the square unit cell of Si—-Ge com-
pacted nanowire composites with characteristic size (the
width of the wire) of 3 nm. Due to the nature of the present
deterministic phonon BTE solver, the temperature and heat
flux distributions can be clearly obtained. From Figs. 3(a)
and 3(b), temperature overshooting at the interfaces and
around the nanowire corners in embedded nanowire compos-
ites reported by Yang and Chen' no longer appears in com-
pacted nanowire composite. Due to the compact interface
arrangement (phonons cannot pass through without being
scattered) in compacted type nanocomposite, the energy of
phonons cannot accumulate to form the local maximum or
minimum within the medium and the temperature distribu-
tion inside the medium is more uniform. The temperature
distribution is symmetric along the y=L/2 line. The tem-
perature jump as created by the large thermal resistance
across the cross-plane (located at x=0.25 and x=0.75) inter-
face between the silicon and germanium is clearly captured,
as shown in Fig. 3(b). The smaller temperature jump in in-
plane interfaces (located at y=0.25 and y=0.75) is also ob-
tained. The reason for smaller jump is that the phonon heat
transfer is mainly in the x direction (along the applied
temperature-difference direction) and the phonon energy loss
in the y direction is smaller due to fewer phonons moving in
this direction. We can observe that the value of heat flux near
the in-plane interface is lower than other regions [shown in
Fig. 3(c)]. The in-plane interfaces cause restrictions on the
motions of phonons. Also as an example to validate the
present method, the thermal conductivities of Si—-Ge com-
pacted nanowire composites are compared with those ob-
tained by MC method.'” The agreement is excellent and the
relative percentage deviation is less than 3% [shown in Fig.
4(b)].

Figure 5 shows the steady state temperature and heat
flux distribution distributions within the cubic unit cell of
Si—Ge compacted nanoparticle composites with characteris-
tic size (the width of the particle) of 3 nm. From Figs. 5(a)
and 5(b), it is found that temperature overshooting at the
interfaces and around the nanoparticle corners in embedded
nanoparticle compositesls’16 no longer appears in compacted
nanoparticle composites. The temperature distribution is
symmetric with respect to the y=L/2 plane. Again, the tem-
perature jump caused by large thermal resistance across the
cross-plane interface (located at x=0.25 and x=0.75) is
clearly captured as shown in Fig. 5(b). The smaller tempera-
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FIG. 3. (Color online) The silicon-germanium compacted nanowire com-
posite. (a) Temperature distribution within the unit cell. (b) Temperature
distribution along x at y=0.5 and y=1.0. (c) Heat flux distribution within the
unit cell. The width of the nanowire is 3 nm.

ture jump in in-plane interfaces (located at y=0.25, y=0.75,
z=0.25, and z=0.75) is also obtained. The lower value of
heat flux near the in-plane interfaces is observed [shown in
Fig. 5(c)]. In addition, we compare the temperature distribu-
tions of compacted nanowire and nanoparticle composites
and observe that the temperature gradient is larger in the
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FIG. 4. (Color online) Comparison of thermal conductivity of silicon-
germanium compacted nanowire and nanoparticle composites. (a) Effects of
different interface densities. (b) Effects of different characteristic sizes.

nanoparticle structure. The reason is that two more in-plane
interfaces (located at z=0.25 and z=0.75) exist in the nano-
particle composite and the phonon energy is affected by
these two additional interfaces. We compare the heat flux
distributions in compacted nanowire and nanoparticle com-
posites and observe that the maximum and minimum values
are lager in the nanowire composite. These results show that
phonons can pass through the nanowire structure with less
resistance than passing through the nanoparticle structure.
To analyze the phonon heat transfer in compacted type
nanocomposites, the interface density is used to illustrate the
effect of interface scattering. The interface density is defined
as the area of interfaces divided by the volume of the unit
cell. For a characteristic size L., the interface densities of
compacted nanowire and nanoparticle composites are 2/L.
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FIG. 5. (Color online) The silicon-germanium compacted nanoparticle com-
posite. (a) Temperature distribution within the unit cell. (b) Temperature
distribution along x at y=0.5 and y=1.0 in the middle plane of the z coor-
dinate (z=0.5). (c) Heat flux distribution within the unit cell. The width of
the nanoparticle is 3 nm.

and 3/L.. A comparison of thermal conductivities of com-
pacted nanowire and nanoparticle composites for various in-
terface densities is shown in Fig. 4(a). The interface density
used in the phonon BTE simulations is ranging between 1
and 0.01 nm~'. Apparently, the thermal conductivity of the

J. Appl. Phys. 106, 023528 (2009)

nanowire composite is lower than that of the nanoparticle
composite for the same interface density. The interface-
scattering efficiency of nanoparticle structure is lower. The
interface-scattering efficiency is affected by the ratio of
cross-plane interface area to that of in-plane interface. The
interface area is more efficient for phonon scattering by
cross-plane interface.'’ The compacted nanowire composite
contains half of its interface area in the cross-plane direction
and the other half in the in-plane direction, while the com-
pacted nanoparticle composite contains only one-third of its
interface area in the cross-plane direction. Similar observa-
tion for embedded type nanocomposites was discussed by
Jeng et al.'® The effect of interface scattering becomes more
obvious when the percentage of cross-plane interface is
higher. The one-dimensional superlattice structure is the lim-
iting case that all interfaces are cross-plane interface. Due to
more intrinsic scattering is included when interface density is
decreased, the effect of interface scattering becomes less
dominant and the relative difference of thermal conductivity
between nanowire and nanoparticle composites is reduced.
The relative difference in thermal conductivity between
nanowire and nanoparticle is 14.8% lower when interface
density is 1 nm~! and 12.8% lower when interface density is
0.01 nm~!. Although the interface-scattering efficiency is
lower in 3D structure, the characteristic sizes of nanowire
and nanoparticle are different for the same interface density.
The width of the nanoparticle is one and a half times of that
of the nanowire. Apparently, the interface density for com-
pacted nanoparticle composites is 50% more than that of
compacted nanowire composites under the same characteris-
tic size. This could be a desirable property of 3D structure.
For the length scale limit that the current manufacturing
technique can still produce, the nanoparticle structure can
have higher interface density than nanowire structure. Under
the same characteristic size (width of wire or particle), the
thermal conductivities of these two composites are plotted in
Fig. 4(b). The characteristic size used in the phonon BTE
simulation is ranging between 3 and 192 nm. It is observed
that nanoparticle composites can achieve lower value of ther-
mal conductivity than that of nanowire. The higher interface
density of compacted nanoparticle composite is a promising
feature for thermal conductivity reduction. Due to more in-
trinsic scattering can be included as the characteristic size is
increased and the effect of interface scattering becomes less
dominant, consequently the relative difference in thermal
conductivity between compacted nanowire and nanoparticle
composites is reduced. The relative difference in thermal
conductivity is 21.6% lower when the characteristic size is 3
nm and 14.5% lower when characteristic size is 192 nm.

IV. CONCLUSION

We investigated the phonon heat transport and the ther-
mal conductivity in compacted nanowire and nanoparticle
composites for various characteristic sizes and interface den-
sities using a deterministic phonon Boltzmann equation
solver. With carefully tracing the phonon motion, energy
transport in nanostructures with interfaces can be adequately
simulated by the phonon BTE solver. The advantage of com-
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pacted type nanocomposites is clearly delineated due to its
uniform interface arrangement. The thermal conductivity of
the Si—Ge compacted nanoparticle composites can be further
substantially reduced than that of the Si-Ge compacted
nanowire composites at the same characteristic size. Specifi-
cally, when the characteristic size is 3 nm, the thermal con-
ductivity of the Si—-Ge compacted nanoparticle composites is
found to be 21.6% lower than that of the nanowire type. The
3D nanocomposites have the advantage for scaling up larger
interface density that can be very beneficial for enhancing
the thermoelectric figure of merit ZT of thermoelectric de-
vices.
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