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Abstract

In this work we consider the diversity of traveling wave solutions of
the FitzHugh-Nagumo type equations

ut = uxx + f(u, w), wt = εg(u, w),

where f(u, w) = u(u− a(w))(1− u) for some smooth function a(w) and
g(u, w) = u − w. When a(w) crosses zero and one, the corresponding
profile equation possesses special turning points which result in very rich
dynamics. In [26], Liu and Van Vleck examined traveling waves whose
slow orbits lie only on two portions of the slow manifold, and obtained
the existence results by using the geometric singular perturbation theory.
Based on the ideas of their work, we study the co-existence of different
traveling waves whose slow orbits could involve all portions of the slow
manifold. There are more complicated and richer dynamics of traveling
waves than those of [26]. We give a complete classification of all dif-
ferent fronts of traveling waves, and provide an example to support our
theoretical analysis.
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1 Introduction

The purpose of this work is to investigate the existence of traveling wave solu-
tions of FitzHugh-Nagumo type equations{

ut(x, t) = uxx(x, t) + f(u(x, t), w(x, t)),

wt(x, t) = εg(u(x, t), w(x, t)),
(1.1)

where ε > 0, f(u,w) = u(u− a(w))(1− u) for some smooth function a(w) and
g(u,w) = u − w. The prototype of FitzHugh-Nagumo equation is of (1.1) but
with f(u,w) = u(1−u)(u−α)−w and g(u,w) = u−γw for some constants α and
γ, which can be considered as a simplification of the Hodgkin-Huxley equation
that describes the propagation of action potentials in the nerve axon of the
squid, cf. [14]. The dynamics of such specific equations, especially the traveling
wave solutions, have been widely studied in the past, see [8, 15, 17, 19, 22, 31]
and the references therein.

Recently, Liu and Van Vleck [26] considered the co-existence of different
traveling wave fronts of (1.1) by allowing a(w) to cross 0 and 1, then the profile
equations with respect to (1.1) can be reduced as a singularly perturbed system
with turning points. Those special turning points exhibit the so-called delay of
stability loss. Applying the geometric singular perturbation (GSP) theory and
the Exchange Lemma for turning points (cf. [24]), Liu and Van Vleck show the
existence of various types of traveling wave solutions which posses a special set
of turning points. The slow manifold M for such singularly perturbed system
consists of three parts, by M = M0 ∪Ma ∪M1 (see Section 2.1). They studied
traveling wave solutions whose slow orbits lie only on the portions M0 and M1 of
the slow manifold, and gave a complete classification of traveling wave solutions.

Motivated by the work of [26], in this paper we reexamine their results to
the cases of traveling waves of (1.1) which involves all the portions M0,Ma,M1

of the slow manifold. The main difficulties in applying the (GSP) theory to our
problem is to investigate the transversality of invariant manifolds by computing
the Melnikov functions. In [26], the slow orbits lie only on the portions M0

and M1, then the Melnikov functions is not zero obviously. However, due to
the consideration of Ma, the computation of Melnikov functions become more
complicated. Using the exact formulas for the heteroclinic orbits of fast lim-
iting dynamics (see Remark 2.1), we successfully derive the exact formula of
Melnikov functions (first and second order) represented by Beta or Gamma
functions. Thus we can apply the Exchange lemma to track the evolution of
invariant manifolds as they pass the vicinity of the slow manifold. Under the
consideration of Ma, there are more complicated and richer dynamics of trav-
eling wave solutions than those of [26]. In this article, we give a complete
classification of all different fronts of traveling waves.

This paper is organized as follows. In Section 2, we formulate the traveling
profiles equations of equation (1.1) from the viewpoint of dynamical systems,
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which can be treated as a singularly perturbed problem. Under some assump-
tions of a(w), detailed analysis for the non-normal hyperbolicity of slow manifold
(with turning points) are carried out. Then we establish the Exchange lemma
of the slow manifold with (and without) turning points, and illustrate some
admissible conditions to guarantee that the singular orbits can be shadowed
by true orbits even in the presence of turning points. The main theorems are
stated in Section 3. In Section 4, we first investigate the Melnikov function
of connecting orbits to detect the transversality of invariant manifolds. Then
we prove the main theorems by GSP theory. In the last section we provide an
example to support our theoretical analysis.

2 Formulation of GSP problems

In this section, we consider the traveling wave solutions of system (1.1) by
assuming u(x, t) = u(x + ct) = u(ξ) and w(x, t) = w(x + ct) = w(ξ) for
some real constant c > 0, which is the speed of traveling waves. Under such
assumptions, the profile equations of (1.1) yield to{

cu′(ξ) = u′′(ξ) + f(u(ξ), w(ξ)),

cw′(ξ) = εg(u(ξ), w(ξ)).
(2.2)

Introducing v = u′, then (2.2) can be rewritten as
u′(ξ) = v(ξ),

v′(ξ) = cv(ξ)− f(u(ξ), w(ξ)),

cw′(ξ) = εg(u(ξ), w(ξ)).

(2.3)

In terms of the slow variable η := εξ, we have
εu̇(η) = v(η),

εv̇(η) = cv(η)− f(u(η), w(η)),

ẇ(η) = c−1g(u(η), w(η)),

(2.4)

here “ · ” means d
dη

. Systems (2.3) and (2.4) are equivalent which give the stan-
dard singularly perturbed system in fast and slow scales respectively. Assume
that E := {w | w = a(w)} is a non-empty set, then system (2.3) or (2.4) has
equilibria: (0, 0, 0), (1, 0, 1) and (a(w0), 0, w0) with w0 ∈ E. We are interest in
traveling wave solutions related to such equilibria.

The main application of geometric singular perturbation theory to the prob-
lem is to lift limiting singular orbits to traveling wave solutions. In the following
we examine the limiting slow and fast dynamics of (2.4) and (2.3) respectively.
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2.1 Dynamics for the limiting slow system

The limiting slow dynamics is governed by

0 = v, 0 = cv − f(u,w), ẇ = c−1g(u,w). (2.5)

Thus the slow manifold M consists of three parts by M := M0∪Ma∪M1, where

M0 := {u = v = 0}, Ma := {u = a(w), v = 0}, M1 := {u = 1, v = 0}.
It is easy to see that M0 and M1 are invariant with respect to the flow (2.3)
for all ε, and equilibrium (0, 0, 0) or (1, 0, 1) attracts all solutions of (2.5) on
M0 or M1 respectively. If we allow a(w) crossing 0 and 1, then there exists a
special type of turning points on M0 and M1. We will see that the invariance of
M0 and M1 plays a crucial role when we consider the limiting slow orbits pass
through the turning points.

2.2 Dynamics for the limiting fast system

The limiting fast dynamics is governed by

u′ = v, v′ = cv − f(u,w), w′ = 0, (2.6)

According to (2.5), the slow manifold M consists of equilibria of (2.6). From
above equations, we know that each plane {w = const} is invariant, and there
exist three equilibria of system (2.6):

E0 := (0, 0, w) ∈M0, Ea(w) := (a(w), 0, w) ∈Ma and E1 := (1, 0, w) ∈M1.

Let λ±0 (w, c), λ±a (w, c) and λ±1 (w, c), be the linearized eigenvalues of system (2.6)
with respect to E0, Ea and E1 respectively. Then we have

λ±0 (w, c) =
c±√c2 + 4a(w)

2
, (2.7)

λ±a (w, c) =
c±√c2 + 4a(w)(a(w)− 1)

2
, (2.8)

λ±1 (w, c) =
c±√c2 + 4(1− a(w))

2
. (2.9)

If c ≥ 1, then λ±a (w, c) are real. If c < 1 then the sign of above real eigenvalues
with respect to the range of a(w) can be classified in Figure 1.
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2
1 1 +
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Figure 1: Sign of linearized eigenvalues with respect to the range of a(w), where
CPX means that the eigenvalues are conjugate complex numbers in the range
of a(w).

Therefore, all the linearized eigenvalues are real in the region Ω defined by

Ω := {(w, c) ∈ [0, 1]×R+ : a(w) ∈ [−c
2

4
, 1 +

c2

4
] for c > 1; or

a(w) ∈ [−c
2

4
,∞) \ (

1−√1− c2

2
,
1 +
√

1− c2

2
) for c < 1}.

Now we consider the dynamics of (2.6). On each plane {w = const}, the
limiting system is that for a prototype of Nagumo equations with specific cubic
nonlinearity. The existence of heteroclinic orbits on the plane is well understood,
cf. [4]. To classify all the possible heteroclinic orbits of (2.6), we first introduce
the following notations:

a1(c) := max{0, 1−√2c

2
}, a2(c) := min{1, 1 +

√
2c

2
}, a3(c) := 2 +

√
2c;

a4(c) := −1−
√

2c, a5(c) := max{1, 2−
√

2c}, a6(c) := min{0,−1 +
√

2c};
Hi(c) := {w ∈ (0, 1) : a(w) = ai(c), a

′(w) 6= 0}, i = 1, · · · , 6,
G1(c) := {w ∈ (0, 1) : a(w) ≤ a6(c)}, G2(c) := {w ∈ (0, 1) : a(w) ≥ a5(c)},
G3(c) := {w ∈ (0, 1) : 0 > a(w) > a4(c)},
G4(c) := {w ∈ (0, 1) : 1 < a(w) < a3(c)},
G5(c) := {w ∈ (0, 1) : 0 < a(w) < a2(c)},
G6(c) := {w ∈ (0, 1) : 1 > a(w) > a1(c)}.

Furthermore, for any fixed w ∈ [0, 1] we denote r → s to be the heteroclinic orbit
connecting (r, 0, w) to (s, 0, w), where r 6= s and r, s ∈ {0, a(w), 1}. According
to the results of [4] and phase plane analysis, various types of heteroclinic orbits
with respect to different regions of the parameters can be classified in Table 1.

Type of Orbit Admissible Parameter Condition Region
0→ 1 a(w) = a1(c) or a(w) ≤ a6(w) w ∈ H1 ∪G1

1→ 0 a(w) = a2(c) or a(w) ≥ a5(w) w ∈ H2 ∪G2

0→ a(w) a(w) = a3(c) or a4(c) < a(w) < 0 w ∈ H3 ∪G3

1→ a(w) a(w) = a4(c) or 1 < a(w) < a3(c) w ∈ H4 ∪G4

a(w)→ 0 a(w) = a5(c) or 0 < a(w) < a2(c) w ∈ H5 ∪G5

a(w)→ 1 a(w) = a6(c) or a1(c) < a(w) < 1 w ∈ H6 ∪G6

Table 1: Classification of admissible heteroclinic orbits.
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Note that the linearized eigenvalues are real in the region Ω. Throughout this
work, we redefine sets Hi and Gi in Table 1 by Hi∩Ω and Gi∩Ω. With a slight
abusing the notation, we keep the same notations. The regions of Ω, Hi and Gi

are illustrated in Figure 2.

c

a(w)

1

a1(c)

a2(c)

H1

H2

a6(c)

a5(c)

a4(c)

a3(c)

G5

G6

H1 ∩ H6

H2 ∩ H5

G4

G3
H6

H5

G2

G1

H3

H4

G1 ∩G3

G2 ∩G4

G5 ∩G6
1
2

Ω

Ω

Ω

a(w) = 1 +
c2

4

a(w) = −c2

4

a(w) =
1 +
√

1 − c2

2

a(w) =
1 − √1 − c2

2

6

Figure 2: Regions of Ω, Gi and Hi.

Remark 2.1.

(1) As shown in [4], if w = w0 ∈ Hi(c), i = 3, 4, 5, 6, then the exact formulas
for the heteroclinic orbits (u(t;w0), v(t;w0)) of (2.6) can be expressed as
follows:

u(t;w0) =



a(w0)− a(w0)(1 + ea(w0)t/
√

2)−1, if w0 ∈ H3(c);

a(w0) + (1− a(w0))(1 + e(1−a(w0))t/
√

2)−1, if w0 ∈ H4(c);

a(w0)(1 + ea(w0)t/
√

2)−1, if w0 ∈ H5(c);

1− (1− a(w0))(1 + e(1−a(w0))t/
√

2)−1, if w0 ∈ H6(c).

Based on the above formulas, the Melnikov functions (first and second
order) for invariant manifolds of connecting orbits can be derived explicitly
by Beta or Gamma functions, for details see Section 4.
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(2) In [26], they examined traveling waves whose slow orbits lie only on the
portions M0 and M1 of the slow manifold, thus only regions H1, H2, G1, G2

are considered (see dashed line paths of Figure 3). To generalize their work
to traveling waves whose slow orbits lie on all portions of M , we need to
consider some additional regions than those of [26] (see the non-dash path
of Figure 3).

H4

H3

G5 G6

H1 ∩G1

H2 ∩G2G3 G4

H5

H6

a
aa

0 1

2

Figure 3: Admissible heteroclinic orbits with respect to regions.

Next, we investigate the normal hyperbolicity of the slow manifolds. The
normal hyperbolicity of the slow manifold of M0 or M1 is determined by the
eigenvalues λ±0 (w, c) or λ±1 (w, c), respectively. If (0, 0, w) ∈M0 at which a(w) =
0, then λ−0 (w, c) = 0 and the slow manifold M0 loses normal hyperbolicity at
this point. Similarly, the slow manifold M0 loses normal hyperbolicity at points
(1, 0, w) ∈ M1 satisfying a(w) = 1. All such points are called turning points.
Since M0 and M1 are invariant, the existence of turning points on them can
cause the phenomena of delay of stability loss, see [24]. To describe the results
for delay of stability loss, Exchange lemma with turning points and our main
theorems, in this article we assume that the curve u = a(w) crosses u = 0 and
u = 1, and satisfies the following assumption:

(H) there exist (increasing) ordered sets {T i0}pi=1, {T j1}qj=1 ⊆ [0, 1] such that

a(T i0) = 0, a(T j1 ) = 1, a′(T i0) 6= 0, a′(T j1 ) 6= 0,

for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.

By (H), the sets of points {(0, 0, T i0)}pi=1 and {(1, 0, T j1 )}qj=1 are turning points
on the slow manifold M0 and M1 respectively. For the position of equilibria and
turning points, dynamics on the slow manifold and heteroclinic orbit for fast
dynamics, see Figure 4.

From Table 1 and the hyperbolicity of slow manifold for the limiting system
(2.4), we plan to construct singular orbits (unions of slow and fast orbits) as
candidates for limits of traveling wave solutions. Then we can obtain the ex-
istence of traveling wave solutions of (2.2) by applying the geometric singular
perturbation theorem to lift singular orbits to the true orbits.
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u

v

w

M1M0

E0

E1

Ea

Ma

T 1
0

T 2
0

T 1
1

T 2
1

Γ

M−
0

M−
0

M−
1

M−
1

4

Figure 4: Equilibria, turning points, dynamics on the slow manifold and het-
eroclinic orbit Γ of the fast dynamics which connects E0 and (1, 0, 0) when
a(0) = a1(c) or a(0) ≤ a6(0). The red segments M−

0,1 on M0,1 are defined by
M−

0 = {(0, 0, w) ∈M0| λ−0 (w, c) < 0} andM−
1 = {(1, 0, w) ∈M1| λ−1 (w, c) < 0}.

2.3 Delay of stability loss and Exchange lemmas

In this section, we recall and reformulate the results in [24, 26] about the delay
of stability loss and Exchange lemma for turning points. For any fixed c > 0,
let us denote

M−
0 := {(0, 0, w) ∈M0|λ−0 (w, c) < 0} and M−

1 := {(1, 0, w) ∈M1|λ−1 (w, c) < 0}.
If the above sets are non-empty, then we define two maps P0 and P1 on such
sets as following.

(P0) Let P0 : M−
0 → M0 be defined by P0(0, 0, w) =

{
(0, 0, w), if w exists,
(0, 0, 0), otherwise,

where w ∈ (0, w) is the first value such that

∫ w

w

λ−0 (η, c)

g(0, η)
dη = 0.

(P1) Let P1 : M−
1 → M1 be defined by P1(1, 0, w) =

{
(1, 0, w), if w exists,
(1, 0, 1), otherwise,

where w ∈ (w, 1) is the first value such that

∫ w

w

λ−1 (η, c)

g(1, η)
dη = 0.

Based on the above two maps, Liu and Van Vleck [26] reformulated the Ex-
change lemma on M0 and M1 for system (2.3) with an extra equation c′ = 0,
that is

u′(ξ) = v, v′(ξ) = cv − f(u,w), w′(ξ) = εc−1g(u,w), c′ = 0. (2.10)
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To guarantee the existence of unstable manifold W u
0 (K) and center manifold

W c
0 (K) for any set K ⊂M0 ∪M1, we restrict c belonging to the following set

S := {c > 0 : a(w) ∈ [−c
2

4
, 1 +

c2

4
] for all w ∈ [0, 1])}.

Denote

M δ
1 (w) := {(1, 0, w̄) ∈M1 : w̄ ∈ (w − δ, w + δ)},

M δ
0 (w) := {(0, 0, w̄) ∈M0 : w̄ ∈ (w − δ, w + δ)},

M δ
a(w) := {(a(w̄), 0, w̄) ∈Ma : w̄ ∈ (w − δ, w + δ)},

for any small δ > 0 and any w ∈ [0, 1]. The Exchange lemma for M1 with
turning points is stated as follows.

Proposition 2.2. (Exchange lemma with Turning point, cf. [24, 26]) Let M ε

be a two-dimensional invariant manifold of system (2.10) which is smooth in ε.
For ε = 0, suppose that M0 intersects W c

0 (M1 × (c1, c2)) transversally. Let N
be the intersection. Then dim N=1. Suppose that ω(N) = {(1, 0, w1, c

∗)} and
let w2 ∈ (w1, 1) be any number. We have

(1) If w2 < P1(w1), then for ε > 0 small, a portion of M ε will approach
(1, 0, w1, c

∗), follow the slow orbit from (1, 0, w1, c
∗) to (1, 0, w2, c

∗), leave
the vicinity of M1 × (c1, c2), and upon leaving, it is C1 O(ε)-close to the
unstable manifold W u(M δ

1 (w2) × {c∗}) for some δ > 0 independent of ε
(see Figure 5).

(2) If w2 = P1(w1) * {T 1
1 , T

2
1 , ..., T

q
1 }, then for ε > 0 small, a portion of

M ε will approach (1, 0, w1, c
∗), follow the slow orbit from (1, 0, w1, c

∗) to
(1, 0, w2, c

∗), leave the vicinity of M1 × (c1, c2), and upon leaving, it is C1

O(ε)-close to the center-unstable manifold W cu(1, 0, w2, c
∗) (see Figure 6).

(3) If w2 > P1(w1), then for ε > 0 small, there is no portion of M ε that
approaches (1, 0, w1, c

∗), follows the slow orbit from (1, 0, w1, c
∗), leave

the vicinity of M1 in a neighborhood of (1, 0, w2, c
∗).

For singular orbits passing no turning point, we use the following Exchange
lemma without turning points.

Proposition 2.3. (Exchange lemma without Turning point, cf. [20, 23, 29]) Let
M ε be a two-dimensional invariant manifold of system (2.10) which is smooth
in ε. For ε = 0, suppose that M0 intersects W c

0 (Ma×{c∗}) transversally. Let N
be the intersection. Then dim N=1. Suppose that ω(N) = {(a(w1), 0, w1, c

∗)}.
Let w2 be any number such that a(w) 6= 0 or 1, for all w between w1 and w2.
then for ε > 0 small, a portion of M ε will approach (a(w1), 0, w1, c

∗), follow
the slow orbit from (a(w1), 0, w1, c

∗) to (a(w2), 0, w2, c
∗), leave the vicinity of

Ma × {c∗}, and upon leaving, it is C1 O(ε)-close to the unstable manifold
W u(M δ

a(w2)× {c∗}) for some δ > 0 independent of ε.
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(w, c)

W u(M0 × Cδ(c
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W u(M1 × Cδ(c
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E0
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Mε

M1 × Cδ(c
∗)
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W c(M1 × Cδ(c
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∗)

(w2 + δ, c∗)

(w2, c
∗)

(w2 − δ, c∗)

(w1, c
∗)

5

Figure 5: Part (1) of Proposition 2.2. In this graph, we denote Cδ(c) := (c −
δ, c+ δ) for some δ > 0 and identify the (w, c)-plane with the vertical axis.

u

v

(w, c)

W u(M0 × Cδ(c
∗))

W u(M1 × Cδ(c
∗))

E0

M0 × Cδ(c
∗)

Mε

Mε

M1 × Cδ(c
∗)

W c(M0 × Cδ(c
∗))

W c(M1 × Cδ(c
∗))

N

1

(w2, c
∗)

(w1, c
∗)

6

Figure 6: Part (2) of Proposition 2.2. In this graph, we denote Cδ(c) := (c −
δ, c+ δ) for some δ > 0 and identify the (w, c)-plane with the vertical axis.
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2.4 Admissible conditions for singular orbits

In view of the results of Exchange lemma with turning points, not all singular
orbits are shadowed by true orbits. To guarantee the shadowing property, we
introduce some admissible conditions for the construction of singular orbits.

Let w = (w1, w2, ..., wn) with wi ∈ [0, 1] and s = (s1, s2, ..., sn+1) with s1 = 1,
si ∈ {0, a, 1}, si 6= si+1 and sn+1 ∈ {0, 1}. For any two words w and s, we denote
the singular orbit starting from 0 to sn+1 by 0→ s1 → ...→ sn+1 such that the
local path si → si+1 (part of the orbit from si to si+1) occurring at the plane
w = wi. Since the manifold Ma does not persist for all ε > 0, the Exchange
lemma can not be applied to our problem directly. Therefore, we only focus
on the cases with w ∈ (wi−1, wi), a(w) > 1 if wi ∈ H5(c∗), and a(w) < 0 if
wi ∈ H6(c∗). It could be seen that the singular orbit on the manifold Ma will
not pass the turning point.

In the following we say that w is s-admissible with respect to some c∗ > 0 if

wi ∈ H1(c∗) ∪G1(c∗) \ {T 1
0 , T

2
0 , ..., T

p
0 }, when sisi+1 = 01,

wi ∈ H2(c∗) ∪G2(c∗) \ {T 1
1 , T

2
1 , ..., T

q
1 }, when sisi+1 = 10,

wi ∈ H3(c∗) ∪G3(c∗) \ {T 1
0 , T

2
0 , ..., T

p
0 }, when sisi+1 = 0a,

wi ∈ H4(c∗) ∪G4(c∗) \ {T 1
1 , T

2
1 , ..., T

q
1 }, when sisi+1 = 1a,

wi ∈ H5(c∗), when sisi+1 = a0,
wi ∈ H6(c∗), when sisi+1 = a1,

(2.11)

for i = 1, · · · , n and the following conditions (A1)∼(A3) hold:

(A1) P1(0) > w1 and

{
a(w) < 1,∀w ∈ [wn, 1], if sn+1 = 1,
a(w) > 0,∀w ∈ [0, wn], if sn+1 = 0;

(A2) For si = 0, wi−1 > wi and

P0(wi−1)

{
< wi, when wi ∈ H1(c∗) ∪H3(c∗),
= wi, when wi ∈ G1(c∗) ∪G3(c∗) \ {T 1

0 , T
2
0 , ..., T

p
0 };

(A3) For si = 1, wi−1 < wi and

P1(wi−1)

{
> wi, when wi ∈ H2(c∗) ∪H4(c∗),
= wi, when wi ∈ G2(c∗) ∪G4(c∗) \ {T 1

1 , T
2
1 , ..., T

q
1 }.

Furthermore, we say that a word w = (w1, w2, ..., wn) is admissible with respect
to c∗ if there is a word s = (s1, s2, ..., sn+1) with s1 = 1, si ∈ {0, a, 1}, si 6= si+1

and sn+1 ∈ {0, 1}, such that w is s-admissible with respect to c∗.

3 Main results

According to the Exchange lemma and the admissible conditions defined in
previous section, we state the main theorems in this section and prove them in
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next section. For a description of the statement of our main results, we give the
following definition.

Definition 3.1. Let O be a singular orbit for some fixed c∗ > 0. The singular
orbit O is “weakly shadowed” if for any neighborhood U of the singular orbit,
O, there is an ε0 > 0 such that, for all 0 < ε ≤ ε0, there is a true orbit O(ε) ∈ U
of system (2.3) with c = c(ε) and (O(ε), c(ε)) → (O, c∗) as ε → 0 with respect
to the Hausdorff distance of sets. Furthermore, if c(ε) = c∗ for all 0 < ε ≤ ε0,
then we say the singular orbit O is “strongly shadowed”.

First, we consider the traveling wave solutions connecting (0,0,0) to (1,0,1).
From Table 1, we know that such kind of traveling wave solutions exist only
if s1 = 1 or s1 = a(0). If s1 = 1 then it is required that λ−1 (0; c) < 0 and
λ−1 (1; c) < 0 to guarantee the first and last connection. It is easy to see that
these two conditions are equivalent to a(0) < 1 and a(1) < 1 respectively. In
addition, it could be seen that the structures of traveling wave solutions are
dramatically different for different sign of a(0). Therefore, we will consider two
situations a(0) > 0 and a(0) < 0 separately.

If a(0) > 0, then there exists a unique c∗ with a1(c∗) = a(0) (in fact c∗ =
(1−2a(0))/

√
2) such that system (2.6) has a heteroclinic orbit connecting from

(0,0,0) to (1,0,0) approaching (0,0,0) backward along the eigenvector associated
to λ+

0 (0, c∗).

Theorem 3.2. Assume that 0 < a(0) < 1, a(1) < 1 and c∗ ∈ S is the unique
value such that a1(c∗) = a(0).

(1) If w = (w1, w2, ..., wn) is admissible with respect to c∗, then the associated
singular orbit is weakly shadowed.

(2) If w = (w1, w2, ..., wn) is not admissible with respect to c∗, then the asso-
ciated singular orbit is not weakly shadowed.

If a(0) ≤ 0, from Table 1, system (2.6) possess a heteroclinic orbit connecting
from (0,0,0) to (1, 0, 0) only if a(0) ≤ a6(c), or equivalent to c ∈ Λ := {c : c ≥
(1 + a(0))/

√
2}.

Theorem 3.3. Assume that a(0) < 0, a(1) < 1 and c∗ ∈ Λ ∩ S.

(1) If w = (w1, w2, ..., wn) is admissible with respect to c∗, then the associated
singular orbit is strongly shadowed.

(2) If w = (w1, w2, ..., wn) is not admissible with respect to c∗, then the asso-
ciated singular orbit is not weakly shadowed.

Next, we consider the traveling wave solutions connecting (0,0,0) to (0,0,0),
i.e. traveling pulse solutions. By Table 1, we know that such kind of traveling
wave solutions exist only if s1 = 1 or s1 = a(0). If s1 = 1, then it is required

12



that λ−1 (0; c) < 0 and λ−0 (0; c) < 0 to guarantee the first and last connection.
Both conditions are equivalent to 0 < a(0) < 1. If 0 < a(0) < 1 then there
exists a unique c∗ with a1(c∗) = a(0) (in fact c∗ = (1 − 2a(0))/

√
2) such that

system (2.6) has a heteroclinic orbit from (0,0,0) to (1,0,0) approaching (0,0,0)
backward along the eigenvector associated to λ+

0 (0, c∗).

Theorem 3.4. Assume that 0 < a(0) < 1 and c∗ ∈ S is the unique value such
that a1(c∗) = a(0).

(1) If w = (w1, w2, ..., wn) is admissible with respect to c∗, then the associated
singular orbit is weakly shadowed.

(2) If w = (w1, w2, ..., wn) is not admissible with respect to c∗, then the asso-
ciated singular orbit is not weakly shadowed.

Remark 3.5. Theorems 3.2∼3.4 present results on traveling fronts from (0, 0, 0)
to (1, 0, 1), and traveling pulses to (0, 0, 0). Following the similar arguments, the
existence of traveling waves involving the equilibria (a(w0), 0, w0) for w0 ∈ E can
also be investigated in the same way.

4 Proof of the main results

To prove the main results in this section, we first detect the transversality of
invariant manifolds for connecting orbits by investigating the Melnikov function.

4.1 Melnikov function and transversality of manifolds

First, we recall the results for the formula of Melnikov function, [5, 16, 20, 27].

Lemma 4.1. Consider the plane system:

y′ = R0(y) + ε̄R1(y, ε̄), (4.12)

where ε̄ ≥ 0 and R0, R1 ∈ Cr with r ≥ 2. Suppose that y1
0 and y2

0 are two
different hyperbolic saddle points of (4.12)|ε̄=0, and there exists a heteroclinic
orbit y0(t) of (4.12)|ε̄=0 connecting from y1

0 to y2
0. Then the Melnikov function

of (4.12) is

M(y0) =

∫ ∞
−∞

e−
∫ t
0 σ(s)dsD(t)dt (4.13)

where σ(t) = tr ∂R0

∂y
(y0(t)) and D(t) = R0(y0(t)) ∧R1(y0(t), 0).

According to formula (4.13), we can compute the Melnikov function of sys-
tem (2.6) in the following.

Lemma 4.2. Suppose, for some c0 and w0, system (2.6) has a heteroclinic orbit
Γ := r(t;w0) = (u0(t;w0), v0(t;w0)).
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(1) For fixed w = w0 and varying c, the Melnikov function with respect to the
heteroclinic orbit Γ is given by

M(c0) =

∫ ∞
−∞

e−c0tv2
0(t;w0)dt.

In particular, M(c0) 6= 0.

(2) For fixed c = c0 and varying w, the Melnikov function is given by

M(w0) = a′(w0)

∫ ∞
−∞

e−c0tv0(t;w0)u0(t;w0)(1− u0(t;w0))dt. (4.14)

Proof. (1) For fixed w = w0, let F (u, v; c) be the vector field of system (2.6),
i.e., F (u, v; c) = (v, cv − u(u − a(w0)(1 − u))) and define Fc(u, v; c) := (0, v).
Applying Lemma 4.1 by taking ε̄ = c, the Melnikov function is

M(c0) =

∫ ∞
−∞

e−
∫ t
0 trDF (r(s;w0);c0)ds (F (r(t;w0); c0) ∧ Fc(r(t;w0); c0)) dt

=

∫ ∞
−∞

e−c0tv2
0(t;w0)dt 6= 0.

(2) For fixed c = c0, we have F (u, v;w) = (v, c0v−u(u− a(w)(1−u))). Denote
Fw(u, v;w) := (0, u(1 − u)a′(w)). Applying Lemma 4.1 by taking ε̄ = w, the
Melnikov function is

M(w0) =

∫ ∞
−∞

e−
∫ t
0 trDF (r(s;w0);w0)ds (F (r(t;w0);w0) ∧ Fw(r(t;w0);w0)) dt

= a′(w0)

∫ ∞
−∞

e−c0tv0(t;w0)u0(t;w0)(1− u0(t;w0))dt.

The proof is complete.

Based on the results of Lemma 4.2, we now compute the first order Melnikov
function of system (2.6) when w varies in different parameter regions.

Lemma 4.3. Assume that a′(w0) 6= 0, then M(w0) 6= 0 for any c0 ∈ (0, 1/
√

2)
and w0 ∈ Hi(c0), i = 1. · · · 6.

Proof. (1) If w0 ∈ H1(c0) ∪H2(c0) then u0(t;w0) ∈ (0, 1) for all t. By Lemma
4.2, we have

M(w0) = a′(w0)

∫ ∞
−∞

e−c0tv0(t;w0)u0(t;w0)(1− u0(t;w0))dt 6= 0.

(2) If w0 ∈ H5(c0) then a(w0) = 2 − √2c0 ∈ (1, 2). According to Remark 2.1,
the heteroclinic orbit (u0(t;w0), v0(t;w0)) can be represented explicitly in the
following:

u0(t;w0) = a(w0)(1 + ea(w0)t/
√

2)−1 and v0(t;w0) = u′0(t;w0).
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Thus

e−c0t = (a(w0)− u0(t;w0))`u−`0 (t;w0), where 0 < ` := 1− 2

a(w0)
< 1/2.

We can compute equation (4.14) by

M(w0)

a′(w0)
=

∫ 0

a(w0)

u1−`(a(w0)− u)`(1− u)du

=

∫ a(w0)

0

u2−`(a(w0)− u)`du−
∫ a(w0)

0

u1−`(a(w0)− u)`du

= a3(w0)

∫ 1

0

t2−`(1− t)`dt− a2(w0)

∫ 1

0

t1−`(1− t)`dt
= a3(w0)B(1 + `, 3− `)− a2(w0)B(1 + `, 2− `)
= a3(w0) (Γ(1 + `)Γ(3− `)/Γ(4))− a2(w0) (Γ(1 + `)Γ(2− `)/Γ(3))

= a2(w0)(a(w0)− 1)Γ(1 + `)Γ(2− `)/Γ(4) > 0,

where B(x, y) and Γ(x) are the Beta function and the Gamma function respec-
tively. Note that B(x, y) = Γ(x)Γ(y)/Γ(x+ y).

(3) If w0 ∈ H3(c0) then a(w0) = 2 +
√

2c0 ∈ (2, 3). Similar to the proof of part
(2), the heteroclinic orbit (u0(t;w0), v0(t;w0)) satisfies

u0(t;w0) = a(w0)− a(w0)(1 + ea(w0)t/
√

2)−1,

e−c0t = (a(w0)− u0(t;w0))`u0(t;w0)−`, where 0 < ` < 1/3.

After simple computation, we can obtain

M(w0) = a′(w0)a2(w0)(1− a(w0))Γ(1 + `)Γ(2− `)/Γ(4) < 0.

(4) Similarly, if w0 ∈ H4(c0) then a(w0) = −1 − √2c0 ∈ (−2,−1) and the
heteroclinic orbit (u0(t;w0), v0(t;w0)) satisfies

u0(t;w0) = a(w0) + (1− a(w0))(1 + e(1−a(w0))t/
√

2)−1,

e−c0t = (u0(t;w0)− a(w0))γ(1− u0(t;w0))−γ,

where γ := 1− 2(1− a(w0))−1. Therefore 0 < γ < 1/3 and

M(w0) = −a′(w0)a(w0)(1− a(w0))2Γ(1 + γ)Γ(2− γ)/Γ(4) > 0.

(5) Finally, if w0 ∈ H6(c0) then a(w0) = −1 +
√

2c0 ∈ (−1, 0) and the hetero-
clinic orbit (u0(t;w0), v0(t;w0)) satisfies

u0(t;w0) = 1− (1− a(w0))(1 + e(1−a(w0))t/
√

2)−1,

e−c0t = (u0(t;w0)− a(w0))γ(1− u0(t;w0))−γ,

where −1 < γ < 0. Then we have

M(w0) = a′(w0)a(w0)(1− a(w0))2Γ(1 + γ)Γ(2− γ)/Γ(4) < 0.

The proof is complete.
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However, if a′(w0) = 0 in Lemma 4.3 thenM(w0) = 0. Therefore we need to
compute the higher order term of Melnikov function to detect the transversality
of the invariant manifolds. In the following we only investigate the second-order
term of Melnikov function M2(w0).

Lemma 4.4. Suppose, for some small c0 and w0, a′(w0) = 0 and system (2.6)
has a heteroclinic orbit Γ0 := (u0(t;w0), v0(t;w0)). For fixed c = c0 and varying
parameter w, the second order Melnikov function is given by

M2(w0) = a′′(w0)

∫ ∞
−∞

e−c0tv0(t;w0)u0(t;w0)(1− u0(t;w0))dt.

Proof. Without lost of generality, we may assume w0 = 0. For such fixed w
near w0, let us write the system (2.6) in the following vector form

d

dt

(
u(t;w)
v(t;w)

)
=

(
v(t;w)

c0v(t;w)− u(t;w)(1− u(t;w))(u(t;w)− a(w))

)
(4.15)

= R0(r(t;w)) +R1(r(t;w))w +R2(r(t;w))w2 +O(w3),

where r(t;w) := (u(t;w), v(t;w))T ,

R0(r(t;w)) =

(
v(t;w)

c0v(t;w) + u(t;w)3 − (a(0) + 1))u(t;w)2 + a(0)u(t;w)

)
,

R1(r(t;w)) =

(
0

a′(0)(u(t;w)− u2(t;w)))

)
,

R2(r(t;w)) =

(
0

a′′(0)(u(t;w)− u2(t;w))/2

)
.

As w = 0, system (2.6) has a heteroclinic orbit r(t;w) connecting two equi-
libria, E1

0 and E2
0 . Let L be a line segment transversal to r(t; 0) at r(0; 0).

For sufficiently small w, there exists a unique bounded solution ru(t;w) for
t ≤ 0 such that ru(t;w) in the unstable manifold of one equilibrium E1

w and
ru(0;w) ∈ L. For t ≤ 0, let us define

zu(t) :=
∂

∂w
ru(t;w)|w=0, 4u(t) := zu(t) ∧R0(ru(t; 0)),

yu(t) :=
∂2

∂2w
ru(t;w)|w=0, 2u(t) := yu(t) ∧R0(ru(t; 0)).

Differentiating equation (4.15) with respect to w, we have

d

dt

∂

∂w
ru(t;w) =

∂R0

∂r
(ru(t;w))

∂

∂w
ru(t;w) +

∂R1

∂r
(ru(t;w))

∂

∂w
ru(t;w)w +R1(ru(t;w))

+
∂R2

∂r
(ru(t;w))

∂

∂w
ru(t;w)w2 + 2R2(ru(t;w))w +O(w2).

16



Thus

d

dt
yu(t) =

∂R0

∂r
(ru(t; 0))yu(t) + (

∂

∂w

∂R0

∂r
(ru(t;w))|w=0)zu(t)

+2
∂R1

∂r
(ru(t; 0))zu(t) + 2R2(ru(t; 0)),

d

dt
2u(t) = (

d

dt
yu(t)) ∧R0(ru(t; 0)) + yu(t) ∧ (

∂R0

∂r
(ru(t; 0))R0(ru(t; 0)))

= tr
∂R0

∂r
2u(t) + 2R2 ∧R0 + (

∂

∂w

∂R0

∂r
(ru(t;w))|w=0)zu(t) ∧R0(ru(t; 0))

+2
∂R1

∂r
(ru(t; 0))zu(t) ∧R0(ru(t; 0))

= σ(t)2u(t) +D2(t),

where σ(t) = tr ∂R0

∂r
and

D2(t) = v0u0(1− u0)a′′(0) + 2v0[3u0 − a(0)− 1](
∂u

∂w
|w=0)2 = v0u0(1− u0)a′′(0),

since ∂u
∂w
|w=0 = ∂u

∂a
a′(0) = 0. Our purpose is to compute 2u(0). By the variation

of constant formula,

2u(t) = e
∫ t
0 σ(τ)dτ

{
2u(0) +

∫ t

0

e−
∫ τ
0 σ(s)dsD2(τ)dτ

}
, for t < 0.

Since
lim
t→−∞

e−
∫ t
0 σ(τ)dτ2u(t) = 0,

we have

2u(0) =

∫ 0

−∞
e−

∫ τ
0 σ(s)dsD2(τ)dτ.

Similarly, there exists a unique bounded solution rs(t;w) for t ≥ 0 such that
rs(t;w) in the unstable manifold of the other equilibrium E2

w and rs(0;w) ∈ L.
For t ≥ 0, let us define

ys(t) :=
∂2

∂2w
rs(t;w)|w=0 and 2s(t) := ys(t) ∧R0(rs(t; 0)).

By the similar computation, we have

2s(0) =

∫ 0

∞
e−

∫ τ
0 σ(s)dsD2(τ)dτ.

Hence

M2(0) = 2u(0)−2s(0) = a′′(0)

∫ ∞
−∞

e−c0tv0(t)u0(t)(1− u0(t))dt.

The proof is complete.
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By the proof of Lemma 4.3 and Lemma 4.4, we have the following corollary.

Corollary 4.5. Under the same assumptions as stated in Lemma 4.4, if a′′(w0) 6=
0, then M2(w0) 6= 0 for any c0 ∈ (0, 1/

√
2) and w0 ∈ Hi(c0), i = 1. · · · 6.

For more higher order terms of Melnikov function, the computation is similar
but more complicated. In the following we only state the general result, and
skip the proof.

Lemma 4.6. Suppose, for some small c0 and w0, a(i)(w0) = 0 for all 1 ≤ i < k,
where k is a given positive integer, and system (2.6) has a heteroclinic orbit
Γ0 := (u0(t;w0), v0(t;w0)). For fixed c = c0 and varying parameter w, the kth
order Melnikov function is given by

Mk(w0) = a(k)(w0)

∫ ∞
−∞

e−c0tv0(t;w0)u0(t;w0)(1− u0(t;w0))dt.

As a consequence of previous lemmas and corollary, we have the following
conclusions for the transversality of invariant manifolds.

Lemma 4.7. Let M t N be in the sense that manifolds M and N intersect
transversally, and Cδ(c) := (c− δ, c+ δ).

(1) Consider system (2.6) with c = c0 ∈ (0, 1/
√

2). The transversality of
various invariant manifolds of (2.6) along Γ(w) are illustrated in Table 2.

Region of w transversality of manifolds along Γ(w)
w ∈ H1(c0) W u

0 (M δ
0 (w)) t W c

0 (M δ
1 (w))

w ∈ H2(c0) W u
0 (M δ

1 (w)) t W c
0 (M δ

0 (w))
w ∈ H3(c0) W u

0 (M δ
a(w)) t W c

0 (M δ
0 (w))

w ∈ H4(c0) W u
0 (M δ

1 (w)) t W c
0 (M δ

a(w))
w ∈ H5(c0) W u

0 (M δ
a(w)) t W c

0 (M δ
0 (w))

w ∈ H6(c0) W u
0 (M δ

a(w)) t W c
0 (M δ

1 (w))
w ∈ G1(c0) W cu

0 (0, 0, w) t W c
0 (M δ

1 (w))
w ∈ G2(c0) W cu

0 (1, 0, w) t W c
0 (M δ

0 (w))
w ∈ G3(c0) W cu

0 (0, 0, w) t W c
0 (M δ

a(w))
w ∈ G4(c0) W cu

0 (1, 0, w) t W c
0 (M δ

a(w))

Table 2: Transversalities of manifolds W c
0 (M δ

0,1,a(w)), W u
0 (M δ

0,1,a(w)),
W cu

0 (0, 0, w) and W cu
0 (1, 0, w).

(2) Consider (2.10) with c = c0 ∈ (0, 1/
√

2). The transversality of various
invariant manifolds of (2.10) along Γ(w)×{c0} are illustrated in Table 3.
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Region of w transversality of manifolds along Γ(w)× {c0}
w ∈ H1(c0) W u

0 (M δ
0 (w))× {c0} t W c

0 (M δ
1 (w)× Cδ(c0))

w ∈ H2(c0) W u
0 (M δ

1 (w))× {c0} t W c
0 (M δ

0 (w)× Cδ(c0))
w ∈ H3(c0) W u

0 (M δ
0 (w)× {c0}) t W c

0 (M δ
a(w)× Cδ(c0))

w ∈ H4(c0) W u
0 (M δ

1 (w))× {c0} t W c
0 (M δ

a(w)× Cδ(c0))
w ∈ H5(c0) W u

0 (M δ
a(w)× {c0}) t W c

0 (M δ
0 (w)× Cδ(c0))

w ∈ H6(c0) W u
0 (M δ

a(w))× {c0} t W c
0 (M δ

1 (w)× Cδ(c0))
w ∈ G1(c0) W cu

0 (0, 0, w, c0) t W c
0 (M δ

1 (w)× Cδ(c0))
w ∈ G2(c0) W cu

0 (1, 0, w, c0) t W c
0 (M δ

0 (w)× Cδ(c0))
w ∈ G3(c0) W cu

0 (0, 0, w, c0) t W c
0 (M δ

a(w)× Cδ(c0))
w ∈ G4(c0) W cu

0 (1, 0, w, c0) t W c
0 (M δ

a(w)× Cδ(c0))

Table 3: Transversalities of manifolds W c
0 (M δ

0,1,a(w)× Cδ(c0)),
W u

0 (M δ
0,1,a(w))× {c0}, W cu

0 (0, 0, w, c0) and W cu
0 (1, 0, w, c0).

4.2 Proof of the theorems

Now we begin the proof of the main theorems.

Proof of Theorem 3.2.

We only prove the first part of the theorem. The proof for the second part
of the theorem is similar to the proof of Theorem 2.3 of [26] and omitted.

Assume that w = (w1, ..., wn) is s-admissible with respect to c∗, where s =

(s1, ..., sn+1). We first claim that the singular local orbit 0
w=0−−→ 1

w=w1−−−→ s2 is
weakly shadowed by a true local orbit.

According to Table 1 and the assumption a(0) = a1(c∗), we know that
0 ∈ H1(c∗) and there exists a singular local orbit 0 −→ 1 at w = 0. For
the following local path 1 → s2, the admissible conditions lead to s2 = 0 or
a. Therefore, there exists a singular local orbit 1 −→ s2 at w = w1 if w1 ∈
H2(c∗) ∪ G2(c∗) or H4(c∗) ∪ G4(c∗) (in fact, w1 ∈ H2(c∗) or H4(c∗)). Take
M0 = W u

0 ((0, 0, 0)× Cδ(c∗)). According to Lemma 4.7, we have

M0 t W c
0 (M δ

1 (0)× Cδ(c∗)).

Let N0 be their intersection. Since the phase space of system (2.10) is R4

and dimensions of M0 and W c
0 (M δ

1 (0) × Cδ(c∗)) are 2 and 3 respectively, then
dimN0 = 2 + 3 − 4 = 1. We now apply the Exchange lemma 2.2 to the
vicinity of the slow manifold M1 × Cδ(c∗) along the slow orbit from (1, 0, 0, c∗)
to (1, 0, w1, c

∗). Taking M ε = W u
ε ((0, 0, 0) × Cδ(c∗)) be such that M ε → M0

as ε→ 0. By condition (A1) and part (1) of Lemma 2.2, a portion M ε
p0

of M ε

will proceed near the singular orbit and leave the vicinity of slow orbit close
to W u

ε (M δ
1 (w1)× Cδ(c∗)). Note that dimW u

0 (M δ
1 (w1)× Cδ(c∗)) = 3. Thus, the

singular orbit 0
w=0−−→ 1

w=w1−−−→ s2 is weakly shadowed by a true orbit.
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Next, we claim that the singular local orbit 0
w=0−−→ 1

w=w1−−−→ s2
w=w2−−−→ s3 is

weakly shadowed by a true local orbit. Two cases for s2 = 0 or a are considered.
For the case s2 = 0, a portion M ε

p1
of W u

ε ((a(w1), 0, w1) × Cδ(c∗)) will proceed
near the singular orbit and leave the vicinity of slow orbit close to W u

ε ((s3, 0)×
(w2−δ, w2 +δ)×Cδ(c∗)) or W cu

ε ((s3, 0)×{w2}×{c∗}). The details of proof can
be found in [26] by using the Exchange lemma with turning point (Lemma 2.2)
and omitted. For the case s2 = a, the admissible conditions imply s3 = 1 or 0.
Thus there exists a singular local orbit s2 −→ s3 at w = w2 if w2 ∈ H5(c∗) or
H6(c∗). From the admissible condition (A4), there is no turning point between
w1 and w2. It is also easy to see that W u

0 ((1, 0)× (w1− δ, w1 + δ)× (Cδ(c
∗)) and

W c
0 ((a(w1), 0)×(w1−δ, w1+δ)×Cδ(c∗)) intersect transversally. Then, by Lemma

2.3, a portion M ε
p1

of W u
ε ((a(w1), 0)×(w1−δ, w1 +δ)×Cδ(c∗)) will proceed near

the singular orbit and leave the vicinity of slow orbit close to W u
ε ((s3, 0)×(w2−

δ, w2 + δ) × Cδ(c∗)). Note that dimW u
0 (M δ

1 (w1) × Cδ(c∗)) =dimW cu
0 ((s3, 0) ×

{w2} × Cδ(c∗)) = 3.

According to the above discussions, we can conclude inductively that the

singular local orbit 0
w=0−−→ 1

w=w1−−−→ · · · w=wn−1−−−−−→ sn is weakly shadowed by a true
local orbit. Generally, for 2 < i < (n+ 1), we consider the following two cases.

(1) Assume that there exists a turning point between wi−1 and wi. By
Lemma 2.2, a portion M ε

pi−1
of W u

ε ((si, 0, wi−1)× Cδ(c∗)) will proceed near the
singular orbit and leave the vicinity of slow orbit close to W u

ε ((si+1, 0)× (wi −
δ, wi + δ)× Cδ(c∗)) or W cu

ε ((si+1, 0, wi)× Cδ(c∗)).
(2) Assume that there is no turning point between wi−1 and wi. By Lemma

2.3, a portion M ε
pi−1

of W u
ε ((si, 0, wi−1)× Cδ(c∗)) will leave the vicinity of slow

orbit close to W u
ε ((si+1, 0)× (wi − δ, wi + δ)× Cδ(c∗)).

Furthermore, we have dimW u
0 ((si+1, 0) × (wi − δ, wi + δ) × Cδ(c

∗)) = 3 and
dimW cu

0 ((si+1, 0, wi)× Cδ(c∗)) = 3.

Finally, we prove that the true orbits obtained by above arguments are C1

O(ε)-close to the unstable manifold W u
0 ((sn+1, 0, wn)×Cδ(c∗)). Since sn+1 = 1,

the admissible conditions lead to wn ∈ H1(c∗) ∪ G1(c∗) or H6(c∗). Thus,
there exists a singular local orbit sn −→ 1 at w = wn. By condition (A1),
we have a(w) < 1 for all w ∈ [wn, 1] and the singular orbit will approach
to (1, 0, 1) as time goes infinity. Moreover, W u

0 ((sn, 0, wn) × {c∗}) intersects
W c

0 (M δ
1 (wn) × Cδ(c∗)) transversally. As a result, the true orbit will approach

a neighborhood of (1, 0, 1, c∗), near the singular orbit and C1 O(ε)-close to the
unstable manifold W u

0 ((sn+1, 0, wn)×Cδ(c∗)). The proof of the theorem is com-
plete.

Proof of Theorem 3.3.

Let w = (w1, ..., wn) is s-admissible for c = c∗ and s = (s1, ..., sn+1). We first

claim that the singular local orbit 0
w=0−−→ 1

w=w1−−−→ s2 is strongly shadowed by a
true orbit.
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According to Table 1 and the assumption a(0) ≤ a6(c∗), we know that 0 ∈
G1(c∗) and there exists a singular local orbit 0 −→ 1 at w = 0. For the following
local path 1 → s2, the admissible conditions lead to s2 = 0 or a. Therefore,
there exists a singular local orbit 1 −→ s2 at w = w1 if w1 ∈ H2(c∗) ∪ G2(c∗)
or H4(c∗) ∪ G4(c∗) (in fact, w1 ∈ H2(c∗) or H4(c∗)). Take M0 = W u

0 (0, 0, 0).
According to Lemma 4.7, we have

M0 t W c
0{M δ

1 (0)}.

Let N0 be their intersection. Since the phase space of system (2.3) is R3 and
both dimensions of M0 and W c

0 (M δ
1 (0)) are 2, then dimN0 = 2 + 2− 3 = 1. We

now apply Exchange lemma 2.2 to the vicinity of the slow manifold M1 along
the slow orbit from (1, 0, 0) to (1, 0, w1). Taking M ε = W u

ε ((0, 0, 0)) be such
that M ε → M0 as ε → 0. By condition (A1) and part (1) of Lemma 2.2, a
portion M ε

p0
of M ε will proceed near the singular orbit and leave the vicinity

of slow orbit close to W u
ε (M δ

1 (w1)). Note that dimW u
0 (M δ

1 (w1)) = 2. Thus, the

singular orbit 0
w=0−−→ 1

w=w1−−−→ s2 is strongly shadowed by a true orbit.

Next, we claim that the singular local orbit 0
w=0−−→ 1

w=w1−−−→ s2
w=w2−−−→ s3 is

strongly shadowed by a true local orbit. Two cases for s2 = 0 or a are considered.
For the case s2 = 0, a portion M ε

p1
of W u

ε ((a(w1), 0, w1)) will proceed near the
singular orbit and leave the vicinity of slow orbit close to W u

ε ((s3, 0) × (w2 −
δ, w2 + δ)) or W cu

ε ((s3, 0) × {w2}). The details of proof can be found in [26]
by using the Exchange lemma with turning point (Lemma 2.2) and omitted.
For the case s2 = a, the admissible conditions imply s3 = 1 or 0. Thus there
exists a singular local orbit s2 −→ s3 at w = w2 if w2 ∈ H5(c∗) or H6(c∗). From
the admissible condition (A4), there is no turning point between w1 and w2.
It is also easy to see that W u

0 ((1, 0) × (w1 − δ, w1 + δ)) and W c
0 ((a(w1), 0) ×

(w1 − δ, w1 + δ)) intersect transversally. Then, by Lemma 2.3, a portion M ε
p1

of W u
ε ((a(w1), 0) × (w1 − δ, w1 + δ)) will proceed near the singular orbit and

leave the vicinity of slow orbit close to W u
ε ((s3, 0)× (w2− δ, w2 + δ)). Note that

dimW u
0 (M δ

1 (w1)) =dimW cu
0 ((s3, 0)× {w2}) = 2.

According to the above discussions, we can conclude inductively that the

singular local orbit 0
w=0−−→ 1

w=w1−−−→ · · · w=wn−1−−−−−→ sn is strongly shadowed by a
true local orbit. Generally, for 2 < i < (n + 1), we consider the following two
cases.

(1) Assume that there exists a turning point between wi−1 and wi. By
Lemma 2.2, a portion M ε

pi−1
of W u

ε ((si, 0, wi−1)) will proceed near the singular
orbit and leave the vicinity of slow orbit close to W u

ε ((si+1, 0)× (wi− δ, wi + δ))
or W cu

ε ((si+1, 0, wi)).

(2) Assume that there is no turning point between wi−1 and wi. By Lemma
2.3, a portion M ε

pi−1
of W u

ε ((si, 0, wi−1)) will leave the vicinity of slow orbit close
to W u

ε ((si+1, 0)× (wi − δ, wi + δ)).
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Furthermore, we have dimW u
0 ((si+1, 0)×(wi−δ, wi+δ)) = dimW cu

0 ((si+1, 0, wi)) =
2.

Finally, we prove that the true orbits obtained by above arguments are C1

O(ε)-close to the unstable manifold W u
0 ((sn+1, 0, wn)). Since sn+1 = 1, the ad-

missible conditions lead to wn ∈ H1(c∗) ∪ G1(c∗) or H6(c∗). Thus, there exists
a singular local orbit sn −→ 1 at w = wn. By condition (A1), we have a(w) < 1
for all w ∈ [wn, 1] and the singular orbit will approach to (1, 0, 1) as time goes
infinity. Moreover, W u

0 ((sn, 0, wn)) intersects W c
0 (M δ

1 (wn)) transversally. As a
result, the true orbit will approach a neighborhood of (1, 0, 1), near the singular
orbit and C1 O(ε)-close to the unstable manifold W u

0 ((sn+1, 0, wn)). The proof
of the theorem is complete.

The results of Theorem 3.4 can also be proved in the same way and omitted.

5 Examples

In this section we provide an example to support our main results. Note that
H6∩∂Ω at c = 2

√
3−2
√

2. Assume that c ∈ S∩(2
√

3−2
√

2, 1/
√

2), 0 < ε < 1/4
and δ ≥ 0 be fixed numbers. Then a6(c) < 0 < a1(c) < a2(c) < 1. Let us define
a(w) on [0, 1] by

a(w) =



(α− a2(c)) exp{ (w−1)4

(w−1)4−(1/4)4
}+ a2(c) + δ, if w ∈ [3

4
, 1],

(a2(c)− ε) exp{ (w−(3/4))4

(w−(3/4))4−ε4}+ ε+ δ, if w ∈ [3
4
− ε, 3

4
],

ε exp{ (w+ε−(3/4))4

(w+ε−(3/4))4−((1/4)−ε)4}+ δ, if w ∈ [1
2
, 3

4
− ε],

β(1− exp{ (w−(1/2))4

(w−(1/2))4−(1/2)4
}) + δ, if w ∈ [0, 1

2
],

where α ∈ (a2(c), 1) and β ∈ (−c2/4, a6(c)). It is not difficult to verify that
a(w) is a monotonic increasing C2 function on [0, 1].

If δ = 0, then a(3/4) = a2(c), a(1/2) = 0 and there exist wL < 1/2 < wR <
3/4 such that a(wL) = a6(c) and a(wR) = a1(c), see the left part of Figure .
According to Table 1, there exists orbits of (2.5) connecting from a to 1, 1 to
0 and 0 to 1 at levels w = wL, w = 3/4, and w = wR respectively. Now we
estimate the following integrals:

I1 :=

∫ wL

1
2

λ−0 (η; c)

g(0, η)
dη =

∫ wL

1
2

√
c2 − 4a(η) + c

2η
dη > 0;

I2 :=

∫ 1
2

3
4
−ε

λ−0 (η; c)

g(0, η)
dη =

∫ 1
2

3
4
−ε

√
c2 + 4a(η)− c

2η
dη > K1ε;

I3 :=

∫ 3
4
−ε

3
4

λ−0 (η; c)

g(0, η)
dη =

∫ 3
4
−ε

3
4

√
c2 + 4a(η)− c

2η
dη > K2ε,
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where K1 and K2 are negative constants. Since I1 is independent of ε, if ε is
small enough then ∫ wL

3
4

λ−0 (η; c)

g(0, η)
dη = I1 + I2 + I3 > 0.

Thus there exist w̄ ∈ (wL, 1/2) such that∫ w̄

3
4

λ−0 (η; c)

g(0, η)
dη = 0,

and orbit of (2.5) connecting from 0 to a at level w = w̄. Since a(1/2) = 0
and a′(1/2) = 0, w = 1/2 is a degenerate turning point such that Theorem 3.3
can not be applied directly to obtain the traveling wave solutions. To avoid the
degeneracy of turning point, in the following we consider the case of a(w) but
with δ > 0.

0

replacemen

a(w)

w

αβ

wR

wL

1/2

1

1a2(c)a1(c)a6(c)−c2/4

3/4

3/4− ε

7

0

replacemen

a(w)

w

a(1)a(0)

w01

wa1

w0

1

1a2(c)a1(c)a6(c)−c2/4

w10

8

Figure 7: Graph of a(w) with δ = 0 (left part) and δ > 0 (right part).

For δ > 0, it is obvious that the graph of a(w) is a shift of left part of Figure
7 , see the right part of Figure 7. By continuity, if δ is small enough then there
exists wa1 < w0a < w0 < w01 < w10 such that

(1) a(1) ∈ (a2(c), 1) and a(0) ∈ (−c2/4, a6(c));

(2) a(wa1) = a6(c), a(w0) = 0, a′(w0) 6= 0, a(w01) = a1(c) and a(w10) = a2(c);

(3)

∫ wa1

w10

λ−0 (η; c)

g(0, η)
dη > 0 and

∫ w0a

w10

λ−0 (η; c)

g(0, η)
dη = 0.

Thus there exist orbits of (2.5) connecting from a to 1, 0 to a, 0 to 1 and 1
to 0 at levels w = wa1, w = w0a, w = w01, and w = w10 respectively. Since
a′(w0) 6= 0, by the admissible conditions, the word w = (w10, w0a, wa1, w10, w01)
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is s-admissible with respect to c with s = (1, 0, a, 1, 0, 1). Furthermore, by
repeating the local paths, the singular orbits along the path

01
H2−→ 01 · · · 01︸ ︷︷ ︸

n1 01s

H2−→ 0a1 · · · 0a1︸ ︷︷ ︸
n2 0a1s

H2−→ 01 · · · 01︸ ︷︷ ︸
n3 01s

, n1, n2, n3 ∈ Z+ ∪ {0},

or any copy of the such path can be weakly shadowed by true orbits. Since all
ni are arbitrary, by Theorem 3.3, such kind of a(w) with small ε > 0 and δ > 0
provide us the multiplicity of traveling wave solutions.

Acknowledgement. The authors would like to thank Professor Weishi Liu for
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