
An Efficient Initialization Scheme for the Self-organizing
Feature Map Algorithm

Mu-Chun Su, Ta-Kang Liu and Hsiao-Te Chang
Department of Electrical Engineering, Tamkang University, Taiwan, R.O.C.

E-mail address: muchun@ee.tku.edu.tw

Abstract
It is often reported in the technique literature that the
success of the self-organizing feature map formation is
critically dependent on the initial weights and the selection
of main parameters of the algorithm, namely, the learning-
rate parameter and the neighborhood function. In this paper,
we propose an efficient initialization scheme to construct an
initial map. We then use the self-organizing feature map
algorithm to make small subsequent adjustments so as to
improve the accuracy of the initial map. Two data sets are
tested to illustrate the performance of the proposed method.

I. Introduction

Recently, numerous technical reports have been written
about successll applications of the self-organizing feature
map algorithm developed by Kohonen [l]. These
applications widely range from simulations used for the
purpose of understanding and modeling of computational
maps in the brain to subsystems for engineering
applications such as cluster analysis, motor control, speech
recognition, vector quantization, and adaptive equalization.
Kohonen et ul provided partial review [2].
It is often reported in the literature the success of map

formation is critically dependent on the initial weights and
the selection of the main parameters of the algorithm,
namely, the learning-rate parameter and the neighbodmod
function. Moreover, the accuracy of the map depends on the
number of iterations of the SOM algorithm. A rule of
thumb is that, for good statistical accuracy, the number of
iterations should be at least 500 times large than the number
of array neurons [3]. Note that although the SOM algorithm
is simple computationally, 100,OOO iterations are not
uncommon.
Ritter and Schulter [4] have shown that on average (for

small leaming rate) the SOM algorithm decreases a cost
function associated with the Kohonen's feature-mapping
model until the network reaches a local minimum. That is,
it has problems with getting stuck in non-optimum states.
Since the initialization strongly affects the ultimate
solution, it is better not to initialize the weights of the
neural amy at small random values. In this paper, we
propose an efficient initialization scheme for the SOM
algorithm. The development of the initialization scheme

was motivated not only by the above mathematical analysis
but also by a biological assumption. It is now hard to
believe that the unsupervised learning mechanism is solely
responsible for the retinotopic maps found biologically
because it can not reproduce the experimental phenomena
of regeneration after damage. Current theories involve
some degree of chemoaffinity, in which growing axons
carry chemical markers that help to define appropriate
target sites. A degree of softwiring by unsupervised
learning is then invoked to reline the map [5]. Therefore,
we believe that it will be a good idea to first construct a
good initial map according to our proposed initialization
scheme and then use the SOM algorithm to refine the map.
This paper is organized into 5 sections. In the following
section we will shortly describe the SOM algorithm. The
initialization scheme is then discussed in Section 3. Two
data sets are utilized to demonstrate the effectiveness of the
scheme. The simulation results are given in Section 4.
Finally, Section 5 concludes the paper.

II. Self-Organizing Feature Map Algorithm

The principal goal of self-organizing feature maps is to
transform patterns of arbitrary dimensionality into the
responses of one- or two-dimensional arrays of neurons,
and to perform this transform adaptively in a topological
ordered fashion. The transformation makes topological
neighborhood relationship geometrically explicit in low-
dimensional feature maps.

The training algorithm proposed by Kohonen for forming
an SOM is summarized as follows

Step 1: Initialization: Choose random values for the initial
weights ~ ~ (0) .

Step 2: Winner Finding: Find the winning neuron j' at
time k, using the minimumdistance Euclidean criterion:
j*=arg m j n ~ ~ (k) - ~ , ~ j = l , . . . , N*. (1)

where ~k)=[~(k),--.,x,(~)]' represents the k" input

pattern, N'is the total number of neurons, and 11.11
indicates the Euclidean norm.

O-7803-5529-6/99/$10.00 0 1999 IEEE 1906

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:16:56 EDT from IEEE Xplore. Restrictions apply.

Step 3: Weights Updating: Adjust the weights of the
winner and its neighbors, using the following rule:

where q(R) is a positive constant and Nj.(k) is the

topological neighborhood set of the winner neuron j* at
time k. It should be emphasized that the success of the map
fornation is critically dependent on how the main
parameters (i.e. q(R) and N j - (k)) are selected, initial
values of weight vectors, and the number of iterations.

III. Initialization Scheme

As we know that the initialization strongly affects the
ultimate map, however, the weights of the neural array to
be trained are typically initialized at small random values.
To counteract the initialization problem, a conventional
approach is to restart the training procedure with other
random weights. Then another run of the SOM algorithm
has to be completed. The price paid for this simple trial-
and-error method is we have to waste substantial
computational resources since a large number of iterations
are usually needed for the SOM algorithm to solve the
problem. Instead of randomly initializing the weights of the
network, we propose a simple straight5orward initialization
scheme to solve the problem. Consider Fig. 1, which
depicts a two-dimensional neural array of size NxN. The
basic ideal is to find a large enough hypercube to cover all
the training patterns and then to squeeze the hypercube into
a plan. The scheme is described as follows:

Step 1: Initialization of the neurons on the four comers:
We first select a pair of input patterns whose interpattern

distance is the largest one among the training set. The
coordinates of the two patterns are used to initialize the
weights of the neurons on the lower left corner and the
upper right comer (ie. I V ~ , ~ and gla), respectively.
From the remaining training patterns, the coordinates of the
pattern which is M e s t to the two selected patterns is then
used to initialized the weight vector of the neuron on the
upper left comer (i.e. gl,l). The initial weight vector of the

neuron on the lower right mer (i.e.) is set to be the
coordinates of the pattern which is M e s t to the previously
selected three patterns (i.e. IV~,~ , E~,, , and glJ) .

Step 2: Initialization of the neurons on the four edges:

according to the following equations:
We initialize the weights of the neurons on the four edges

(i - l) + ~ ~ + , for j = 2 , - - , N - l WNJ =- ENS -EN.l
N - 1 -

=-W j - 1 N - j
-1 -N,N +=!!!"'I

The idea is simple. Since two points form a line in the input
space, we just uniformly partition the line into N-1
segments and then use the coordinates of the ending points
of the segments to initialize the weights of the neurons.

Step 3: Initialization of the remaining neurons:
We initialize the remaining neurons from top to bottom,

and from left to right. If we change the order to be from left
to right and from top to bottom, the initialization effect will
be the same. It is very easy to prove this. The pseudo-code
description of the initialization scheme for the remaining
neurons is given as follows:

Begin
For i from 2 to N-1
Begin
Forj from2toN-1
Begin

j - 1 N- j
W. - -- N - 1 Ei, + E-1.1

End;
End;

End;
End;

One may ask why we do not directly partition the input
space into NxN hypercubes and then use the coordinates of
the centers of the hypercubes to initialize the weights of the
network. A direct result is that an initial map constructed by
the direct method will tend to undersample high probability
regions and oversample low probability ones. As a result,
we will probably need more iterations to refine the map if
we start out from such an initial map instead of an initial
map consated by our proposed method. This can be
illustrated by Fig. 2.

1907

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:16:56 EDT from IEEE Xplore. Restrictions apply.

IV. Simulation Results

We use two data sets to test the proposed initialization
scheme.
Example 1: 2-D artificial data set

We illustrate the behavior of the SOFM algorithm
incorporated with the proposed initialization scheme by
using computer simulations to study a network with 215
neurons, anmged in the form of a 2dimensional array with
15 rows and 15 columns. The network was trained by the
artificial data set shown in Fig. 3. Fig. 4 and Fig. 5 show the
resulting maps constructed by the random initialization
scheme and our initialization scheme, respectively.
Obviously, in the case of our initialization scheme, the
mesh remains untangled and quickly adapts in detail. On
the other hand, in the case of the random initialization
scheme, the mesh first tangled and then tried to unfold
itself. Unfortunately, even if we used more iterations to
continue the training process the incorrect topological
ordering was not eliminated.

Example 2: Iris data set

The Iris data set has three subsets (i.e. Iris Setosa, Iris
Versicolor, and Iris Virginical), two of that are overlapping.
The Iris data are in a four-dimensional space and there are
total 150 patterns in the data set. A network with 15x15
neurons was trained by the Iris data set. Since it is not
possible to visualize a 4-D mesh we decide to provide
“calibrated maps” so that one may easily validate whether
the resulting maps are topologically ordered or not. A map
is calibrated if the neurons of the network are labeled
according to their responses to specific hown input
vectors. Throughout our simulations such labeling was
achieved by so-called “minimum distance method” (i.e. a
neuron is labeled to class m if its nearest neighbor
belonging to class m.) The resulting calibrated maps are
shown in Figs. 6-7. Again, a topologically ordered map can
be CoIlStNcted more quickly and correctly by our
initialization scheme than the random one.

V. Conclusions

In this paper, an efficiently initialization scheme for the
SOM algorithm is proposed. From the simulation results,
we find that it is better to umstruct a good initial map and
then to use the unsupervised learning to make small
subsequent adjustments.

References

[2] T. Kohonen, E. Oja, 0. Simula, A. Visa, and J. Kangas,”
Engineering application of the self-organizing map,”
Proceedings of the IEEE, vol. 84, no. 10, pp. 1358-1383, 1996.

of the IEEE, vol. 78, no. 9, pp. 1464-1480, 1990.
[4] H. fitter and K. Schulter, “Kohonen‘s self-organizing maps:

exploring their computational capabilities,” in IEEE Int. Conf.
on Neural Networks, vol. 1, pp. 109-1 16, San Diego, 1988.

[SI J. Hertz, A. Krogh, and R G. Palmer, Introduction to The
Theory of Neural Computation, Addison-Wesley Publishing
Company, 1991.

[3] T. Kohonen, “Tbe self-organizing feature map,” proceedin gs

Fig.1 The arraugement of an MxN neural array.

(4 (b)
Fig2 The difference between the random initialization

scheme and our initialization scheme.

Fig. 3 The 579 artificial data pomts.
[l] T. Kohonen, self-orgmrization and Associative Memory, 3rd

ed. New York, Berlin: Springer-Verlag, 1989.

1908

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:16:56 EDT from IEEE Xplore. Restrictions apply.

ln l t lr l -1-t Dlt. V l h : 57S.tlt
5.1

4
E
i

I

a

-1.1

a.c

s
j
a

e

- l . t

5.t

6
5
i
a
I

E

-1 .1

l h 1’1 d-1- ..O a,

(a) Initial map

1trrr.1- : 10 Dltr V I I I : 579.txt

m 1.1 d1-10. .O a

(b) After 10 iterations

Itrrrtlm : 1- Dltr r11r I n..txt

l h 1.9 d-1- ..O 5 ,

(c) Alter 100 iterations

Fig. 4 The learning procedure using the random
initialization scheme.

5 . C

6

f
a
I

e

-1.g

5.t

s
1
U .
e

-1 .1

5.1

s
1
m .
I

e

-1.

. .
!
3
I
t .
5

I
5.0 l h 1’s d f i m l a -z.0

(a) Initial map

l h 1.- d-1- ..o 5

@)After 1 iteration

1.0 T h 1’9 d-l- 5 ,

(c) After 10 iterations

s
i
0

1 z

s
1 .
1 z

Fig. 5 The learning procedure using our initialization
scheme.

1909

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:16:56 EDT from IEEE Xplore. Restrictions apply.

(a)The initial map

1 1 1 1 3 3 3 3 3 3 2 2 2 2 2
1 1 1 1 3 3 3 3 3 3 2 2 2 2 2
1 1 1 1 3 3 3 3 3 3 2 2 2 2 2
1 1 1 1 3 3 3 3 3 3 2 2 2 2 2
1 1 1 1 3 3 3 3 3 3 2 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2
1 1 1 1 3 3 3 3 3 3 3 2 2 2 2 i

3 3 3 3 3
3 3 3 3 3
2 2 3 3 3
2 2 2 2 2 3 2 2 2 2 3

2 2 2 3 3 2 + 3

3 3 3 3 3 3 3 3 2 2
3 3 3 3 3 3 2 3 2 2
3 3 3 3 3 3 2 2 2 2
3 3 3 3 3 2 2 2 2 2
3 3 3 3 3 2 2 2 2 2
3 3 3 3 2 2 2 2 2 2
3 3 3 3 2 2 2 2 2 2 Y

3 3 3 3

(a) After 10 iterations

3 3 3 2 3 3 3 3 3 3 2 2 2 2 2
3 3 3 3 3 3 1 1 1 3 3 2 2 2 2
3 3 3 3 3 1 1 1 1 1 1 3 3 2 2 -A 3 3 3 3 1 1 1 1 1 1 1 1 3 3 3

(c) After 100 iterations

Fig. 6 ne maps -hd by the initialization Fig. 7 The maps umstructed by our initialization scheme.
scheme.

1910

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:16:56 EDT from IEEE Xplore. Restrictions apply.

