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Abstract 
It is often reported in the technique literature that the 
success of the self-organizing feature map formation is 
critically dependent on the initial weights and the selection 
of main parameters of the algorithm, namely, the learning- 
rate parameter and the neighborhood function. In this paper, 
we propose an efficient initialization scheme to construct an 
initial map. We then use the self-organizing feature map 
algorithm to make small subsequent adjustments so as to 
improve the accuracy of the initial map. Two data sets are 
tested to illustrate the performance of the proposed method. 

I. Introduction 

Recently, numerous technical reports have been written 
about successll applications of the self-organizing feature 
map algorithm developed by Kohonen [l]. These 
applications widely range from simulations used for the 
purpose of understanding and modeling of computational 
maps in the brain to subsystems for engineering 
applications such as cluster analysis, motor control, speech 
recognition, vector quantization, and adaptive equalization. 
Kohonen et ul provided partial review [2]. 
It is often reported in the literature the success of map 

formation is critically dependent on the initial weights and 
the selection of the main parameters of the algorithm, 
namely, the learning-rate parameter and the neighbodmod 
function. Moreover, the accuracy of the map depends on the 
number of iterations of the SOM algorithm. A rule of 
thumb is that, for good statistical accuracy, the number of 
iterations should be at least 500 times large than the number 
of array neurons [3]. Note that although the SOM algorithm 
is simple computationally, 100,OOO iterations are not 
uncommon. 
Ritter and Schulter [4] have shown that on average (for 

small leaming rate) the SOM algorithm decreases a cost 
function associated with the Kohonen's feature-mapping 
model until the network reaches a local minimum. That is, 
it has problems with getting stuck in non-optimum states. 
Since the initialization strongly affects the ultimate 
solution, it is better not to initialize the weights of the 
neural amy at small random values. In this paper, we 
propose an efficient initialization scheme for the SOM 
algorithm. The development of the initialization scheme 

was motivated not only by the above mathematical analysis 
but also by a biological assumption. It is now hard to 
believe that the unsupervised learning mechanism is solely 
responsible for the retinotopic maps found biologically 
because it can not reproduce the experimental phenomena 
of regeneration after damage. Current theories involve 
some degree of chemoaffinity, in which growing axons 
carry chemical markers that help to define appropriate 
target sites. A degree of softwiring by unsupervised 
learning is then invoked to reline the map [5]. Therefore, 
we believe that it will be a good idea to first construct a 
good initial map according to our proposed initialization 
scheme and then use the SOM algorithm to refine the map. 
This paper is organized into 5 sections. In the following 
section we will shortly describe the SOM algorithm. The 
initialization scheme is then discussed in Section 3. Two 
data sets are utilized to demonstrate the effectiveness of the 
scheme. The simulation results are given in Section 4. 
Finally, Section 5 concludes the paper. 

II. Self-Organizing Feature Map Algorithm 

The principal goal of self-organizing feature maps is to 
transform patterns of arbitrary dimensionality into the 
responses of one- or two-dimensional arrays of neurons, 
and to perform this transform adaptively in a topological 
ordered fashion. The transformation makes topological 
neighborhood relationship geometrically explicit in low- 
dimensional feature maps. 

The training algorithm proposed by Kohonen for forming 
an SOM is summarized as follows 

Step 1: Initialization: Choose random values for the initial 
weights ~ ~ ( 0 ) .  

Step 2: Winner Finding: Find the winning neuron j' at 
time k, using the minimumdistance Euclidean criterion: 
j*=arg m j n ~ ~ ( k ) - ~ , ~ j = l , . . . ,  N*. (1) 

where ~k)=[~(k),--.,x,(~)]' represents the k" input 

pattern, N'is the total number of neurons, and 11.11 
indicates the Euclidean norm. 
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Step 3: Weights Updating: Adjust the weights of the 
winner and its neighbors, using the following rule: 

where q(R) is a positive constant and Nj.(k) is the 

topological neighborhood set of the winner neuron j*  at 
time k. It should be emphasized that the success of the map 
fornation is critically dependent on how the main 
parameters (i.e. q(R) and N j - ( k ) )  are selected, initial 
values of weight vectors, and the number of iterations. 

III. Initialization Scheme 

As we know that the initialization strongly affects the 
ultimate map, however, the weights of the neural array to 
be trained are typically initialized at small random values. 
To counteract the initialization problem, a conventional 
approach is to restart the training procedure with other 
random weights. Then another run of the SOM algorithm 
has to be completed. The price paid for this simple trial- 
and-error method is we have to waste substantial 
computational resources since a large number of iterations 
are usually needed for the SOM algorithm to solve the 
problem. Instead of randomly initializing the weights of the 
network, we propose a simple straight5orward initialization 
scheme to solve the problem. Consider Fig. 1, which 
depicts a two-dimensional neural array of size NxN. The 
basic ideal is to find a large enough hypercube to cover all 
the training patterns and then to squeeze the hypercube into 
a plan. The scheme is described as follows: 

Step 1: Initialization of the neurons on the four comers: 
We first select a pair of input patterns whose interpattern 

distance is the largest one among the training set. The 
coordinates of the two patterns are used to initialize the 
weights of the neurons on the lower left corner and the 
upper right comer (ie. I V ~ , ~  and gla), respectively. 
From the remaining training patterns, the coordinates of the 
pattern which is M e s t  to the two selected patterns is then 
used to initialized the weight vector of the neuron on the 
upper left comer (i.e. gl,l ). The initial weight vector of the 

neuron on the lower right mer (i.e. ) is set to be the 
coordinates of the pattern which is M e s t  to the previously 
selected three patterns (i.e. IV~,~ , E~,, , and glJ) .  

Step 2: Initialization of the neurons on the four edges: 

according to the following equations: 
We initialize the weights of the neurons on the four edges 

( i - l ) + ~ ~ + ,  for j = 2 , - - , N - l  WNJ =- ENS -EN.l 
N - 1  - 

=-W j - 1  N - j  
-1 -N,N +=!!!"'I 

The idea is simple. Since two points form a line in the input 
space, we just uniformly partition the line into N-1 
segments and then use the coordinates of the ending points 
of the segments to initialize the weights of the neurons. 

Step 3: Initialization of the remaining neurons: 
We initialize the remaining neurons from top to bottom, 

and from left to right. If we change the order to be from left 
to right and from top to bottom, the initialization effect will 
be the same. It is very easy to prove this. The pseudo-code 
description of the initialization scheme for the remaining 
neurons is given as follows: 

Begin 
For i from 2 to N-1 
Begin 
Forj from2toN-1 
Begin 

j - 1  N-  j 
W. - -- N - 1 Ei, + E-1.1 

End; 
End; 

End; 
End; 

One may ask why we do not directly partition the input 
space into NxN hypercubes and then use the coordinates of 
the centers of the hypercubes to initialize the weights of the 
network. A direct result is that an initial map constructed by 
the direct method will tend to undersample high probability 
regions and oversample low probability ones. As a result, 
we will probably need more iterations to refine the map if 
we start out from such an initial map instead of an initial 
map consated by our proposed method. This can be 
illustrated by Fig. 2. 
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IV. Simulation Results 

We use two data sets to test the proposed initialization 
scheme. 
Example 1: 2-D artificial data set 

We illustrate the behavior of the SOFM algorithm 
incorporated with the proposed initialization scheme by 
using computer simulations to study a network with 215 
neurons, anmged in the form of a 2dimensional array with 
15 rows and 15 columns. The network was trained by the 
artificial data set shown in Fig. 3. Fig. 4 and Fig. 5 show the 
resulting maps constructed by the random initialization 
scheme and our initialization scheme, respectively. 
Obviously, in the case of our initialization scheme, the 
mesh remains untangled and quickly adapts in detail. On 
the other hand, in the case of the random initialization 
scheme, the mesh first tangled and then tried to unfold 
itself. Unfortunately, even if we used more iterations to 
continue the training process the incorrect topological 
ordering was not eliminated. 

Example 2: Iris data set 

The Iris data set has three subsets (i.e. Iris Setosa, Iris 
Versicolor, and Iris Virginical), two of that are overlapping. 
The Iris data are in a four-dimensional space and there are 
total 150 patterns in the data set. A network with 15x15 
neurons was trained by the Iris data set. Since it is not 
possible to visualize a 4-D mesh we decide to provide 
“calibrated maps” so that one may easily validate whether 
the resulting maps are topologically ordered or not. A map 
is calibrated if the neurons of the network are labeled 
according to their responses to specific hown input 
vectors. Throughout our simulations such labeling was 
achieved by so-called “minimum distance method” (i.e. a 
neuron is labeled to class m if its nearest neighbor 
belonging to class m.) The resulting calibrated maps are 
shown in Figs. 6-7. Again, a topologically ordered map can 
be CoIlStNcted more quickly and correctly by our 
initialization scheme than the random one. 

V. Conclusions 

In this paper, an efficiently initialization scheme for the 
SOM algorithm is proposed. From the simulation results, 
we find that it is better to umstruct a good initial map and 
then to use the unsupervised learning to make small 
subsequent adjustments. 
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Fig. 5 The learning procedure using our initialization 
scheme. 
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(a)The initial map 
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Fig. 6 ne maps -hd by the initialization Fig. 7 The maps umstructed by our initialization scheme. 
scheme. 
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