
An Efficient Mechanism for Debugging RTL Description

Jiann-Chyi Rau, Yi-Yuan Chang and Chia-Hung Lin

Department of Electrical Engineering, Tamkang University

151, Ying-Chuan Rd. Tamsui, Taipei Hsien 251, Taiwan, R.O.C

{jcrau , yychang, chlin}@ee.tku.edu.tw

Abstract

In this paper, an efficient algorithm to diagnose design

errors in RTL description is proposed. The diagnosis

algorithm exploits the hierarchy available in RTL designs

to locate design errors. Using data-path to reduce the

number of error candidates and ensure that true errors are

included in. According to the estimated probability, the

most suspected error candidates would be reported first in

the display. The advantages of the proposed method are

simple and available.

1. Introduction

The speed and complexity of digital circuits has

increased rapidly. Designers have responded by designing

at higher levels of abstraction. The increasing complexity

of VLSI circuit designs, debugging /diagnosis represents

an important cost in design development.

Much of the previous work on error diagnosis has

primarily been targeted at the gate and lower levels of

design. Traditionally, in the problem of design error

diagnosis, the implementation is often represented as

lower level (gate level) circuits and the specification is

defined as higher level (RTL) circuits. However, most

design activity presently takes place at the RTL and it is

difficult to relate errors at the RTL to errors at a lower

level. In fact, a relatively simple error at the RTL may

translate into extremely complex errors at a lower level.

Hence, it is critical to address the diagnosis problem at the

RTL.

In modern design process, most design errors occur in

the early stage of describing the functional behavior of a

design in HDLs and tracing the code manually often

performs design error diagnosis at this stage. However, for

modern designs with thousands of lines of HDL code,

debugging such circuits manually is a difficult task.

Therefore automatic design error diagnosis techniques for

HDL designs are proposed [1][2][3]. In [1], Vamsi

Boppana et al exploits hierarchy available in RTL design

to locate design errors and the information from the

simulation of Xlists to capture the effects of design errors

within components of RTL designs. However, the number

of the error candidates may still be too large for designers

to debug.

The paper is organized as follows. Section 2

introduces the data-path and data-path digraph. Section 3

gives the work overview, describes the reduction of error

candidates and estimates the probability of correctness for

each potential error candidate. Finally, the experimental

results in section 4 and the conclusions in section 5.

2. Data-path

The architecture of data paths treated in this paper is

based on a multiplexed data path architecture [7], can

regard such a data-path as a concatenation of hardware

elements and lines. A hardware element is an operational

module (OP), a primary input (PI), a primary output (PO),

a register (Reg), a multiplexor (MUX). An operation

module is a combinational circuit and includes no register.

Values enter into a hardware element through its input

ports, and exit through its output port. Each line connects

between one input port of a hard ware element and one

output port of another. Further, using a data-path digraph

to represent structure of a data-path [4]. Fig. 1 illustrates a

data-path and its data-path digraph. Be careful of the

dotted line represent the MUX’s decision.

OP OP

Reg
MUX

PI1 PI2 PI3 PI4

PO1 PO2

dec

PI1 PI2 PI3 PI4

PO1 PO2

dec

(a) a data path (b) a data path digraph

Figure 1. A data-path and its data-path digraph

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on March 24,2010 at 02:09:12 EDT from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225191489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3. Work Overview

User must support something as follows:

Systhesisable HDL description.

Expected values of all POs.

Efficient test patterns the can detect erroneous

statements.

Give a systhesisable digital HDL coding, which is

given as the expected values of all POs and registers at all

clock cycles, and test patterns that can demonstrate

erroneous effects. The approaches use data-path to check

the simulation values of all POs in each clock cycle. If

mismatches between the simulation values and the

expected values, we take the faulty HDL coding as inputs

and output the set of error candidates in an order, which is

form the most suspected one to the most innocent one in

data-path. If not, must continue the simulation and the

error checking until run off the test pattern. The data flow

is shown Fig. 2.

3.1 Identification Error Space

In this section, we will show find the error space in

this thesis. All statements in the error space are potential

error sources and may cause design errors. Because the

error space is used to help designers identify errors in the

design and correct them, the true error sources should be

included in the error space. Therefore, the primary

concern while finding the error space is to ensure that true

error sources are included in it. If we have tried our best

but still cannot judge whether the statement is erroneous

or not, we prefer to keep this statement in the error space

to avoid losing any possible error source. In other words,

to make sure that the true error sources are included in the

error space is much more important than the size of the

error space for an effective error diagnosis.

Our goal is using data-path to minimize the size of

error space and ensuring true errors are included in. The

reduction of error space can be very helpful because its

size directly corresponds to the efforts of debugging.

Although the size is not the first concern for an error

space, we will still try to make it as small as possible. The

smaller error space means less efforts to find the design

errors and would be more helpful to designers. There are

four steps of our approach as follows:

1. Draw the data-path for the circuit under debugging.

2. During simulation, for mismatched PO’s, backtracing

from the PO to PI.

3. Remove PI’s with unchanged values.

4. For incomplete OP’s and make up it’s input sources.

start

Test

patterns

any error

occurs ?

more

patterns ?

end

systhesisable

HDL

coding

behavioral

model

error space
collect

executed

debugging

priority

yes

no

yes

no

Figure 2. A data flow

In order to explain the above-mentioned four steps

more clearly, this paper use the Verilog code shown in

Fig. 3 as an example. In Fig. 3 the code is correct design

that designers expect. But for some reasons, the statement

S3 is written incorrectly and becomes “r1 = PI1 & PI2;”

in original coding. Because the simulation values and the

expect values are not corresponding so have an error

occurs at PO1 at 30ns. The simulation values and the

expect values of POs are shown in Fig. 4.

module com (PI1,PI2,PI3,PI4,PI5,PO1,PO2,PO3);

output PO1,PO2,PO3;

input PI1,PI2,PI3,PI4,PI5;

assign se11 = PI2 ^ PI5; //S1

assign sel2 = PI1 & PI4; //S2

assign r1 = PI1 | PI2; //S3

assign r2 = PI4 & PI5; //S4

assign PO3 = r2 ^ PI5; //S5

assign PO2 = (sel2)? PO1 : r2; //even2,dec2

always @(sel1 or r1 or PI3) //even1

begin

if (sel1) //dec1

PO1 = r1; //S6

else

PO1 =PI3; //S7

end

endmodule

Figure 3. Verilog HDL coding

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on March 24,2010 at 02:09:12 EDT from IEEE Xplore. Restrictions apply.

Figure 4. The waveform of Fig.3 coding

Step 1: Draw the whole data-path shown in Fig. 5. There

are five OPs and two MUXs in the whole data-path.

Step 2: Search for mismatches PO, and backtracing form

PO to PI. In Fig.4, the PO1 is an error occurs. So we can

search out mismatches primary output and error candidates

shown in Fig.6.

PI1 PI2 PI3 PI4 PI5

PO1 PO2 PO3

S1S2 S3 S4

S5

S6 S7

dec1

dec2

even1

even2

PI1 PI2 PI3 PI4 PI5

PO1

S1 S3

even1
dec1

S6 S7

Figure 6. Error occurring of PO1Figure 5. Whole data path

Step 3: Executed statements of error occurring clock

cycle, in which an error appears for the first time to search

for variation PI. In Fig. 4, the simulation value and the

expected value are not corresponding, so have an error

occurs at PO1 at 30ns. At time=30ns, the value change of

PI1 and PI2. The corresponding values of PIs will remove

in data-path show in Fig. 7. The step keeps two OPs and

one MUX in the data-path.

Step 4: Search for incomplete OPs and make up it in data-

path. In Fig. 7, the S1 is incomplete OP, so make up it.

Finally, the final data-path is show in Fig.8.

PI1 PI2 PI3 PI4 PI5

PO1

S1 S3

even1
dec1

S6

Figure 7. Remove corresponding

values of PIs

PI1 PI2 PI3 PI4 PI5

PO1

S1 S3

even1
dec1

S6

Figure 8. Final data path at PO1

In this example, the set of statements {even1,dec1,S1,

S6,S3} is our error space at PO1 (Fig. 8.).The same as

above, the simulation values and the expect values are not

corresponding at PO2 at 35ns, so the set of statements

{even2,dec2,S2,even1,dec1,S1,S6,S3} is error space at

PO2.

PI1 PI2 PI3 PI4 PI5

PO2

S1S2 S3

S6

dec1

dec2

even1

even2

Figure 9. Final data-path at PO2.

3.2 Debugging Priority

In this section use a scheme to display the statements

in error space with a priority, such that the most suspected

statements are reported first. By estimating the probability

of correctness for all statements in error space, debugging

priority can be calculated for debugging purpose.

We continue the example shown in Fig. 3. We find

that error-occurring clock cycle is from time=25ns to

time=35ns, and have tow error space at PO1 and PO2.

First error space of PO1 is {even1,dec1,S1,S6,S3}.

Second error space of PO2 is

{even1,dec1,S1,S6,S3,even2,dec2, S2}. According to the

Fig.2 in Chapter 3, have one step is “collect executed”.

This is mainly of collect execution statistics of each error

space at simulation times. Then, the statistics result

calculations show in Fig.10. A statement with fewer score

is displayed first for its high probability to be erroneous.

(1)S3 assign r1 = PI1 & PI2;

(1)S6 assign PO1 = r1;

(2)even1 always @(sel1 or r1 or PI3)

(2)dec1 if (sel1) ... else ...

(2)S1 assign sel1 = PI2 ^ PI5;

(3)even2,

 dec2 assign PO2=(sel2)?PO1:r2;

(3)S2 assign sel2=PI1&PI4;

Priority

High

Low

Figure 10. The calculation with priority

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on March 24,2010 at 02:09:12 EDT from IEEE Xplore. Restrictions apply.

In the above example, users can see the error statement

not only in the error space but also displayed in the

priority (1) show in Fig. 10. Therefore, although the

number of statements in the error space is eight, users can

find their design error at the priority (1) in the display.

This paper’s method for quick and correct to find design

error is practicable.

4. Experimental Results

In this section, we will show the experimental result on

four designs written in Verilog coding. Table 1 shows the

characteristics of these design circuit. Columns “#Line”,

“#PI”, “#PO”, “#MUX” and “#OP” denote the numbers of

lines in the HDL, PIs, POs, MUXs and operational

modules respectively. The design CM42 is SIS standard

benchmark circuit. The design EXM1 is small

combinational circuit. The design AVG_4bit is a design

for 4bit average value production. The design PCPU is a

simple 16-bit pipelined CPU.

Table 1. Circuit characteristics

Circuit
#PI #PO #MUX #OP#Line

AVG_4bit 91 4

2 2 465 5

1 0 11

CM42 52 4 10 0 13

Whole data path

EXM1

PCPU 159 2 1 6 18

Table 2 show is experimental results. The column

“#total cases” is error-occurring the number of time. The

number of statements in error space is recorded in the

column “#Error space Max/Min”. In the column “#Case”,

we report the number of case that the true erroneous

appears for each period in the display list of error space.

Table 2. Results of the design error diagnosis

Circuit #PI

Max/Min

#total

cases

AVG_4bit

10 4/4 1/1 2/1 4/3

10 4/4 1/1

4/2

11/11

CM42 10 4/3 2/1 0/0

~30

%

Final data path #Error

space
Max/Min

10/4

0/0

#PO

Max/Min

#MUX

Max/Min

#OP

Max/Min

EXM1

PCPU 10 1/12/2 5/3 6/3

11/11

#Case

30%

~

3/2 10 0

13/8

8 2

6 4

8 2

According to this paper proposed diagnosis method. In

Table 2, our method cans estimation of the probability of

correctness for each potential error candidate is accurate.

5. Conclusion

In this paper, an effective algorithm for hierarchically

diagnosing RTL circuits is proposed. For the error

candidates use simple data-path to search for some

impossible statements in HDL coding. The estimation of

the probability of correctness for each potential error

candidates in error space is conducted by data-path.

Finally, our goal is to minimize the size of error space and

the true design errors are always included in. Additionally,

we plan to display the statements in error space with a

simple priority such that users can quick find their design

error in HDL coding.

6. References

[1] V. Boppana, I. Ghosh, R. Mukherjee, J. Jain and M. Fujita,

“Hierarchical error diagnosis targeting RTL circuit”, In Intl.

Conference on VLSI Design, 2000, PP.436-411.

[2] M. Khalil, Y. Traon, and C. Robach, “Towards an

Automatic Diagnosis for High-level Validation”, In

proceeding Intl. Test Conference, 1998, pp. 1010-1018.

[3] T.Y. Jiang, C.N. Jimmy, and J.Y. Jou, “Effective Error

Diagnosis for RTL Designs in HDLs”, VLSI/CAD

Symposium, 2002, pp. 187-190.

[4] H. Wada, T. Masuzawa, K. K. Saluja, and H. Fujiwara,

“Design for strong testability of RTL data paths to provide

complete fault efficiency”, In proceeding Intl. Conference on

VLSI Design, 2000, pp 300-305.

[5] T. Masuzawa, M. Izutsu, H. wada, and H. Fujiwara, “Single-

control testability of RTL data paths for BIST”, In proc.

Ninth Asian Test Symposium, 2000, pp.210-215.

[6] K. Yamaguchi, H. Wada, T. Masuzawa, and H. Fujiwara, “A

BIST Method Based on Concurrent Single-Control

Testability of RTL Data Paths”, In proc. Tenth Asian Test

Symposium, 2001, pp.313-318.

[7] Petra Michel, Ulrich Lauther and Peter Duzy, ”The synthesis

approach to digital system design”, Kluwer academic

publishers-group, Dordrecht, 1992.

[8] D. W. Hoffmann and T. Kropf, ”Efficient Design error

correction of digital circuits”, in Intl. Conference on

Computer Design,2000, pp.465-472.

[9] V. Boppana, R. Mukherjee, J. Jain, M. Fujita, and P.

Bollineni, “Multiple Error Diagnosis Based on Xlists”, in

Proc. Design Automation Conf., June 1999, pp.660-665.

Proceedings of The 3rd IEEE International Workshop on System-on-Chip
for Real-Time Applications ISBN 0-7695-1929-6/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on March 24,2010 at 02:09:12 EDT from IEEE Xplore. Restrictions apply.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

