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Abstract

In this paper, an efficient algorithm to diagnose design 

errors in RTL description is proposed. The diagnosis 

algorithm exploits the hierarchy available in RTL designs 

to locate design errors. Using data-path to reduce the 

number of error candidates and ensure that true errors are 

included in. According to the estimated probability, the 

most suspected error candidates would be reported first in 

the display. The advantages of the proposed method are 

simple and available. 

1. Introduction 

The speed and complexity of digital circuits has 

increased rapidly. Designers have responded by designing 

at higher levels of abstraction. The increasing complexity 

of VLSI circuit designs, debugging /diagnosis represents 

an important cost in design development. 

Much of the previous work on error diagnosis has 

primarily been targeted at the gate and lower levels of 

design. Traditionally, in the problem of design error 

diagnosis, the implementation is often represented as 

lower level (gate level) circuits and the specification is 

defined as higher level (RTL) circuits. However, most 

design activity presently takes place at the RTL and it is 

difficult to relate errors at the RTL to errors at a lower 

level. In fact, a relatively simple error at the RTL may 

translate into extremely complex errors at a lower level. 

Hence, it is critical to address the diagnosis problem at the 

RTL.

In modern design process, most design errors occur in 

the early stage of describing the functional behavior of a 

design in HDLs and tracing the code manually often 

performs design error diagnosis at this stage. However, for 

modern designs with thousands of lines of HDL code, 

debugging such circuits manually is a difficult task. 

Therefore automatic design error diagnosis techniques for 

HDL designs are proposed [1][2][3]. In [1], Vamsi 

Boppana et al exploits hierarchy available in RTL design 

to locate design errors and the information from the 

simulation of Xlists to capture the effects of design errors 

within components of RTL designs. However, the number 

of the error candidates may still be too large for designers 

to debug.  

The paper is organized as follows. Section 2 

introduces the data-path and data-path digraph. Section 3 

gives the work overview, describes the reduction of error 

candidates and estimates the probability of correctness for 

each potential error candidate. Finally, the experimental 

results in section 4 and the conclusions in section 5. 

2. Data-path 

The architecture of data paths treated in this paper is 

based on a multiplexed data path architecture [7], can 

regard such a data-path as a concatenation of hardware 

elements and lines. A hardware element is an operational 

module (OP), a primary input (PI), a primary output (PO), 

a register (Reg), a multiplexor (MUX). An operation 

module is a combinational circuit and includes no register. 

Values enter into a hardware element through its input 

ports, and exit through its output port. Each line connects 

between one input port of a hard ware element and one 

output port of another. Further, using a data-path digraph

to represent structure of a data-path [4]. Fig. 1 illustrates a 

data-path and its data-path digraph. Be careful of the 

dotted line represent the MUX’s decision.
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Figure 1. A data-path and its data-path digraph
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3. Work Overview 

User must support something as follows: 

Systhesisable HDL description. 

Expected values of all POs. 

Efficient test patterns the can detect erroneous 

statements. 

Give a systhesisable digital HDL coding, which is 

given as the expected values of all POs and registers at all 

clock cycles, and test patterns that can demonstrate 

erroneous effects. The approaches use data-path to check 

the simulation values of all POs in each clock cycle. If 

mismatches between the simulation values and the 

expected values, we take the faulty HDL coding as inputs 

and output the set of error candidates in an order, which is 

form the most suspected one to the most innocent one in 

data-path. If not, must continue the simulation and the 

error checking until run off the test pattern. The data flow 

is shown Fig. 2. 

3.1 Identification Error Space 

In this section, we will show find the error space in 

this thesis. All statements in the error space are potential 

error sources and may cause design errors. Because the 

error space is used to help designers identify errors in the 

design and correct them, the true error sources should be 

included in the error space.  Therefore, the primary 

concern while finding the error space is to ensure that true 

error sources are included in it. If we have tried our best 

but still cannot judge whether the statement is erroneous 

or not, we prefer to keep this statement in the error space 

to avoid losing any possible error source. In other words, 

to make sure that the true error sources are included in the 

error space is much more important than the size of the 

error space for an effective error diagnosis. 

Our goal is using data-path to minimize the size of 

error space and ensuring true errors are included in. The 

reduction of error space can be very helpful because its 

size directly corresponds to the efforts of debugging. 

Although the size is not the first concern for an error 

space, we will still try to make it as small as possible. The 

smaller error space means less efforts to find the design 

errors and would be more helpful to designers. There are 

four steps of our approach as follows: 

1. Draw the data-path for the circuit under debugging. 

2. During simulation, for mismatched PO’s, backtracing 

from the PO to PI.

3. Remove PI’s with unchanged values.

4. For incomplete OP’s and make up it’s input sources.
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Figure 2. A data flow 

In order to explain the above-mentioned four steps 

more clearly, this paper use the Verilog code shown in 

Fig. 3 as an example. In Fig. 3 the code is correct design 

that designers expect. But for some reasons, the statement 

S3 is written incorrectly and becomes “r1 = PI1 & PI2;”

in original coding. Because the simulation values and the 

expect values are not corresponding so have an error 

occurs at PO1 at 30ns. The simulation values and the 

expect values of POs are shown in Fig. 4. 

module com (PI1,PI2,PI3,PI4,PI5,PO1,PO2,PO3);

output PO1,PO2,PO3;

input PI1,PI2,PI3,PI4,PI5;

assign se11 = PI2 ^ PI5; //S1

assign sel2 = PI1 & PI4; //S2

assign r1 = PI1 | PI2; //S3

assign r2 = PI4 & PI5; //S4

assign PO3 = r2 ^ PI5; //S5

assign PO2 = (sel2)? PO1 : r2; //even2,dec2

always @(sel1 or r1 or PI3) //even1

begin

if (sel1) //dec1

PO1 = r1; //S6

else

PO1 =PI3; //S7

end

endmodule

Figure 3. Verilog HDL coding
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Figure 4. The waveform of Fig.3 coding

Step 1: Draw the whole data-path shown in Fig. 5. There 

are five OPs and two MUXs in the whole data-path. 

Step 2: Search for mismatches PO, and backtracing form 

PO to PI. In Fig.4, the PO1 is an error occurs. So we can 

search out mismatches primary output and error candidates 

shown in Fig.6. 
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Figure 6. Error occurring of PO1Figure 5. Whole data path

Step 3: Executed statements of error occurring clock 

cycle, in which an error appears for the first time to search 

for variation PI. In Fig. 4, the simulation value and the 

expected value are not corresponding, so have an error 

occurs at PO1 at 30ns. At time=30ns, the value change of 

PI1 and PI2. The corresponding values of PIs will remove 

in data-path show in Fig. 7. The step keeps two OPs and 

one MUX in the data-path. 

Step 4: Search for incomplete OPs and make up it in data-

path. In Fig. 7, the S1 is incomplete OP, so make up it. 

Finally, the final data-path is show in Fig.8. 
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Figure 7. Remove corresponding

values of PIs
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Figure 8. Final data path at PO1

In this example, the set of statements {even1,dec1,S1, 

S6,S3} is our error space at PO1 (Fig. 8.).The same as 

above, the simulation values and the expect values are not 

corresponding at PO2 at 35ns, so the set of statements 

{even2,dec2,S2,even1,dec1,S1,S6,S3} is error space at 

PO2.

PI1 PI2 PI3 PI4 PI5

PO2

S1S2 S3

S6

dec1
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even1

even2

Figure 9. Final data-path at PO2. 

3.2 Debugging Priority 

In this section use a scheme to display the statements 

in error space with a priority, such that the most suspected 

statements are reported first. By estimating the probability 

of correctness for all statements in error space, debugging 

priority can be calculated for debugging purpose. 

We continue the example shown in Fig. 3. We find 

that error-occurring clock cycle is from time=25ns to 

time=35ns, and have tow error space at PO1 and PO2. 

First error space of PO1 is {even1,dec1,S1,S6,S3}. 

Second error space of PO2 is 

{even1,dec1,S1,S6,S3,even2,dec2, S2}. According to the 

Fig.2 in Chapter 3, have one step is “collect executed”. 

This is mainly of collect execution statistics of each error 

space at simulation times. Then, the statistics result 

calculations show in Fig.10. A statement with fewer score 

is displayed first for its high probability to be erroneous.

(1)S3     assign   r1 = PI1 & PI2;

(1)S6     assign   PO1 = r1;

(2)even1    always @(sel1 or r1 or PI3)

(2)dec1      if (sel1) ... else ...

(2)S1     assign   sel1 = PI2 ^ PI5;

(3)even2,

     dec2     assign   PO2=(sel2)?PO1:r2;

(3)S2          assign  sel2=PI1&PI4;

Priority

High

Low

Figure 10. The calculation with priority
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In the above example, users can see the error statement 

not only in the error space but also displayed in the 

priority (1) show in Fig. 10. Therefore, although the 

number of statements in the error space is eight, users can 

find their design error at the priority (1) in the display. 

This paper’s method for quick and correct to find design 

error is practicable. 

4. Experimental Results 

In this section, we will show the experimental result on 

four designs written in Verilog coding. Table 1 shows the 

characteristics of these design circuit. Columns “#Line”, 

“#PI”, “#PO”, “#MUX” and “#OP” denote the numbers of 

lines in the HDL, PIs, POs, MUXs and operational 

modules respectively. The design CM42 is SIS standard 

benchmark circuit. The design EXM1 is small 

combinational circuit. The design AVG_4bit is a design 

for 4bit average value production. The design PCPU is a 

simple 16-bit pipelined CPU. 

Table 1. Circuit characteristics 

Circuit
#PI #PO #MUX #OP#Line

AVG_4bit 91 4

2 2 465 5

1 0 11

CM42 52 4 10 0 13

Whole data path

EXM1

PCPU 159 2 1 6 18

Table 2 show is experimental results. The column 

“#total cases” is error-occurring the number of time. The 

number of statements in error space is recorded in the 

column “#Error space Max/Min”. In the column “#Case”, 

we report the number of case that the true erroneous 

appears for each period in the display list of error space.

Table 2. Results of the design error diagnosis 

Circuit #PI

Max/Min

#total

cases

AVG_4bit

10 4/4 1/1 2/1 4/3

10 4/4 1/1

4/2

11/11

CM42 10 4/3 2/1 0/0

~30

%

Final data path #Error

space
Max/Min

10/4

0/0

#PO

Max/Min

#MUX

Max/Min

#OP

Max/Min

EXM1

PCPU 10 1/12/2 5/3 6/3

11/11

#Case

30%

~

3/2 10 0

13/8

8 2

6 4

8 2

According to this paper proposed diagnosis method. In 

Table 2, our method cans estimation of the probability of 

correctness for each potential error candidate is accurate.

5. Conclusion 

In this paper, an effective algorithm for hierarchically 

diagnosing RTL circuits is proposed. For the error 

candidates use simple data-path to search for some 

impossible statements in HDL coding. The estimation of 

the probability of correctness for each potential error 

candidates in error space is conducted by data-path. 

Finally, our goal is to minimize the size of error space and 

the true design errors are always included in. Additionally, 

we plan to display the statements in error space with a 

simple priority such that users can quick find their design 

error in HDL coding. 
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