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Abstract 
In the traditional form of the self-organizing feature map 
@ O M )  algorithm, the criterion for stopping training is 
either to terminate the training procedure when no 
noticeable changes in the feature map are observed or to 
stop training when the number of iterations reaches a 
prespecijk number. Unfortunately, there is no guarantee 
that the final map will be the most successfir1 0.e. 
topologically ordered) map of the whole maps formed 
during the training procedure. In this paper we propose 
an efJicient method for measuring the &gee  of topologv 
preservation. Based on the method we apply genetic 
algorithms (GAS) in two stages to form a topologically 
ordered feature map. We then use a special method to 
interprete an SOFA4 formed by the proposed genetic- 
algorithm-based method to estimate the number and the 
locations of clusters from a multidimensional data set 
without labeling information. Two data sets are used to 
illustrate the performance of the proposed methods. 

1. Introduction 
Cluster analysis is one of the basic tools for exploring 

the underlying structure of a given data set and is being 
applied in a wide variety of engineering and scientific 
disciplines. Cluster seeking is very experiment-oriented in 
the sense that clustering algorithms that can deal with all 
situations are not yet available. Extensive and good 
overview of clustering algorithms can be found in [1]-[2]. 
The performance of most clustering algorithms is greatly 
influenced by the number of clusters which can not always 
be defined a priori, the choice of initial cluster centroids, 
and the geometrical properties (e.g. shapes and 
distributions) of the data. Generally, there are two 
approaches to specifying the number of clusters. The first 
approach involves increasing the number of clusters, 
computing some certain performance measures in each 
run, until partition into optimal number of clusters is 
obtained [3]-[4]. This approach requires extensive 
computation. The second approach focuses on finding a 
good projecbon algonthm which maps a set of multi- 
dimensional patterns onto a two-dimensional space so as 
to allow one to cluster data directly by eyes [5]-[7]. The 

price paid for the possibility of visual examination of 
clusters is that we can not automate the specification of 
clusters. Besides, projection algorithms are usually 
expensive to use. 

Lately neural networks, for example, competitive 
learning networks [8], adaptive resonance theory (ART) 
networks [9]-[lo], and self-organizing feature map 
(SOFM) networks [ 111 also often have been used to cluster 
data. One problem associated with competitive learning 
networks is the number of neurons should be prespecified 
by the user, however, if the prespecified number of 
neurons does not match the real number of clusters of a 
data set the clustering results will be unacceptable. One 
way of preventing this is to have a finite (br intinite) 
supply of neurons, but not use them until needed. The 
ART-based networks behavior in just this way. However, 
the performance of the networks is highly dependent on a 
“vigilance parameter” which is prespecified by the user. If 
the value of the parameter is small the similarity condition 
is easier to meet, resulting in a coarse categorization. It 
means the number of the resulting clusters is small and the 
sizes of the clusters are large. On the other hand, if the 
value of the parameter is chosen to be close to 1, many 
finely divided clusters are formed. As for the SOFM 
network, the principal goal of the SOFM algorithm 
developed by Kohonen [ll] is to convert patterns of 
arbitrary dimensionality into the response of one- or two- 
dimensional arrays of neurons, and to perform this 
transformation adaptively in a topological ordered fashion. 
The transformation makes topological neighborhood 
relationship geometrically explicit in lowdimensional 
feature map, therefore, an SOFM usually acts as a 
preprocessor to either extract features from a given data 
set or allow one to visually metric-topological 
relationships of input patterns. It should be emphasized 
that the interpretation of a formed feature map is not as 
straightforward as it appears to be. In fact, a trained map 
has to be calibrated by supervised labeling of array 
neurons in response to a specific known vector from the 
training set. Such labeling is usually achieved by the so- 
called “voting method” @.e. a neuron is labeled class k if it 
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responds to input patterns belonging to class k as a 
majority within the whole data set). After this we are then 
able to analyze the topological meaning of the labeled map. 
As we can see, if category idormation is not available, the 
inspection of the map does not reveal any information 
about the clustering characteristics of the data, In fact, the 
absence of category labels distinguishes cluster analysis 
from pattern recognition (and discriminate analysis), 
therefore, an unlabeled S O W  is not of much help in 
cluster analysis. 

In [12], we have proposed a method of interpreting an 
unlabeled SOFM so as to provide us with clustering 
information. However, the performance of the method 
highly depends on whether the topological neighborhood 
relationship of the data set can be preserved in a SOFM. 
The success of feature map formation is critically 
dependent on how the main parameters of the algorithm, 
namely, the learning rate and the neighborhood function 
are selected. Unfortunately, they are usually determined by 
a process of trial and error. Moreover, the criterion for 
stopping training is usually either to terminate the training 
procedure when no noticeable changes in the feature map 
are observed or to stop training when the number of 
iterations reaches a prespecified number. As a result, there 
is no guarantee that the final map will be the most 
successful one. This motivated us to apply genetic 
algorithm in a two-stage procedure to search a 
topologically ordered feature map. In the first stage, we try 
to select N 2  (the size of the network to be trained) 
samples to most represent the population of the data set 
which contains A4 samples ( M 2 N 2  ). We then enter the 
second stage to arrange the N 2  selected samples into the 
N 2  neural array in a topologically ordered fashion. Of 
course, we have to define a fitness function which reflects 
the degree of topology preservation. Various qualitative 
and quantitative methods for characterizing the degree of 
topology preservation have been proposed [13]-[14]. Each 
has its advantages and disadvantages. In this paper, we 
give a new and efficient measure for q u a n w g  topology 
preservation. This new measure is especially applicable to 
the method of interpreting an unlabeled SOFMS. A 
vanishing value of the proposed measure indicates a 
perfect neighborhood preservation; positive values 
indicate violations of neighborhood relations. 

The remaining of the paper is organized as follows. 
The next section briefly introduces the characteristics of 
SOFMs and the method of extracting clustering 
information from a trained SOFM. We then present the 
method of applying GAs to form a topologically ordered 
SOFM in Section 3. Simulation results of two data sets are 

provided in Section 4. Finally, a few concluding remarks 
are given to conclude this paper. 

2. Interpretation of a Trained S 
The principal goal of self-organizing feature maps is 

to transform patterns of arbitrary dimensionality into the 
responses of one- or two-dimensional arrays of neurons, 
and to perform this transform adaptively in a topological 
ordered fashion. The transformaton makes topological 
neighborhood relationship geometrically explicit in low- 
dimensional feature maps. The essential constituents of 
SOFMs are as follows [ 111 : 

0 an array of neurons that compute simple output 
functions of incoming inputs of arbitrary 
dimensionality, 
a mechanism for selecting the neuron with the 
largest output, 

an adaptive mechanism that updates the weights of 
the selected neuron and its neighbors. 

The training algorithm proposed by Kohonen for forming 
an SOFM is summarized as follows : 
Step 1: Initialization: Choose random values for the 
initial weights E, (0) . 
Step 2: Winner Finding: Find the winning neuron j '  at 
time k, using the minimum-distance Euclidean criterion: 

where gk) =[q(k),-. .,xn(k)IT represents the kth input 
pattern, and 11 11 indicates the Euclidean norm. 
Step 3: Updating: Adjust the weights of the winner and 
its neighbors, using the following rule: 

where ~ ( k )  is a positive constant and N J . ( k )  is the 

topological neighborhood set of the winner neuron j* at 
time k. It should be emphasized that the success of the 
map formation is critically dependent on how the main 
parameters (i.e. ~ ( k )  and N j . ( k ) )  are selected, initial 

values of weight vectors, and the number of iterations. 
As mentioned, if no category information is available, 

the inspection of the map does not reveal any information 
about the clustering characteristics of the data set. From 
our previous work [12], we proposed a method to interpret 
an unlabeled SOFM so as to provide us with information 
of both the number of clusters and the locations of the 
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cluster centroids. The method is given as follows: 
(1) Map forming : The whole training data set is used to 
form a SOFM. 
(2) Response accumulation : The responses of each 
neuron are accumulated according to the following 
eqUati0IlS: 

where M denotes the total number of training patterns. 
(3) Peak searching : We can view the accumulaM 
responses of the neurons as an N x N digital image. The 
digital image is a matrix whose row and column indices 
identify a neuron in the array and the corresponding 
matrix element value identifying the gray level at that 
point is proportional to the value of the accumulated 
response of the corresponding neuron. The image provides 
a global structure of the given data set. Pixels with 
relatively brighter gray levels are the potential centroids of 
clusters. A 3 x 3 mask can be used to automate the 
specification of such pixels. We scan the image pixel by 
pixel, from top to bottom and from left to right. Let po 
denote the pixel at any step in the scanning process and let 
p,;- ,ps  be the 8-neighbors of p o .  A peak exists at the 
pixel po if the following condition is satisfied: 

(5 )  

We have to point out that actually we can find out neurons 
whose accumulated response are greater than their 8- 
neighbors directly from the accumulated responses 
without transforming them into a digital image. The 
reason for doing this transformation is that the 
transformed image may help us to just@ the estimates and 
even to correct the estimates. 

3. GA-Based Algorithm for Self-organizing 
Feature Maps 

The Kohonen algorithm is a well established learning 
rule for S O W  and can be easily implemented. However, 
the selection of the main parameters and the stopping 
criterion show a substantial impact on the results produced 
by the SOFM algorithm. In addition, fitter and Schulten 
have shown that on average the Kohonen rule decreases 
the value of a cost function associated with the rule until 
we reach a local minimum [MI. These motivated us to 
propose a method based on GAs to form a feature map. 
GAS are derivative-free stochastic optimization methods 

based loosely on the concepts of natural selection and 
evolutionary processes. GAS are less likely to get trapped 
in local minima, which inevitably are present in any 
gradient-based optimization application. In GAS, the 
search for an optimal solution is achieved through the 
manipulation of a population of string structures known as 
chromosomes. Each chromosome is a simple coding of a 
potential solution to the problem domain and is assigned a 
“jitness score” according to how good the solution to the 
problem it is. Instead of a possible (trial) solution, GAS 
usually work on a population of possible solutions which is 
then evolved repeatedly toward a new population using 
genetic operators such as reproduction, crossover, and 
mutation. After a number of generations, the population 
contains chromosomes with better fitness values; this is 
analogous to Darwinian models of evolution by random 
mutation and natural selection. 

Our object is to form a topologically ordered feature 
map, therefore, the fitness function that associates a 
performance value with each chromosome should reflect 
the degree of the neighborhood preservation of the 
resulting feature map. As mentioned, various qualitative 
and quantitative method for measuring the presemtion or 
violation of neighborhood relations have been proposed 
[13]-[14]. Each approach has its own considerations. 
Since our goal is to extract clustering information from an 
unlabeled feature map, a new topology measure serving 
for this particular application is proposed here. Let A, 

denote the set contains the 8-neighbors of neuron m. A 
feature map is topologically ordered if the following 
condition is satisfied : 

2 

where j ( m )  = ci = [r4,rJ is the 

2 

1=1 
plane position vector of neuron k, and Ir, - r,, I is the 
planar distance between neuron k and neuron i. We now 
deline Vas the measure for measwing the degree of the 
violation of neighborhood relations. The definition is 
given as follows : 

where S,,, is referred to as the set containing neurons 
which violate the aforementioned condition with respect to 
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neuron m. The term, 1 - exp<-llr_l - r, Ir), is a scaling 
factor which increases as the planar distance between 
neuron i and neuron m decreases. While V =  0 indicates a 
perfect neighborhood preservation, positive values of V 
indicate violations of neighborhood relations. We use an 
example shown in Fig. 1 to illustrate the effectiveness of 
the measure. They are two maps of a square input space 
onto a 5 x 5 neural array. Clearly, the map with Y = 0, 
shown in Fig. l(a). is more topologically ordered than the 
map (with V >  0), shown in Fig. le). 

]Enstead of directly applying GAS to search a 
topologically ordered feature map, we solve the problem in 
two stages. The reason is very obvious and straightforward. 
If we directly encode a possible solution into a string and 
then expect GAS to lind out an acceptable solution for us, 
the evolutionary process will take a very long time to 
converge because the solution space is too huge. In the 
first stage, we try to select N’ data points out of the 
training set containing M data points so that these N~ 
data points can represent the whole data set in the sense 
that the covariance matrices of these two sets (the selected 
N 2  data points and the ori@ M data points) are as 
similar as possible. We encode a possible solution into a 
M-bit binary string containing only N 1 ‘s and (A4 - N) 
0’s. Each bit with value 1 represents the corresponding 
data point should be selected and vice versa. It should be 
emphasized that the traditional one-point or two-point 
crossover operators and mutation operator can not be 
applied directly in the evolutionary process because the 
constraint that the resultant chromosomes should contain 
exactly N‘ 1‘s. ~n this paper we employ a crossover 
operator similar to the partially matched crossover (PMX) 
[16] to replace the traditional crossover operators. As for 
the mutation operator, if the number of 1’s in the mutated 
chromosome is not equal to N 2 ,  we have to randomly 
alter another bit until the number of 1‘s is equal to N Z  . 
After we have selected N’ data points, we enter the 
second stage where we try to arrange these N 2  data points 
into an N x N neural array so as to form a topologically 
ordered map. At this time, the genetic representations of 
mal solutions are in the form of integer numbers. We use 
the topology measure V as the fitness function for the 
problem. In our simulations, we have examined two 
merent representation. The first option is illustrated by 
Fig. 2(a). In this representation, the neurons are indexed 
from row to row in the order of 1 to N 2  . The sequence 
means that the second data point is assigned to be the 
synaptic weight vector of the neuron on the top left comer 
of the N x N neural array and so on. The second option is 

illustrated by Fig. 2(b). Obviously, it tell us that the fifth 
data point is assigned to be the synaptic weight vector of 
the neuron on the right bottom corner of the neural array. 
Each representation has its advantages and disadvantages. 
The good news concerning the first representation is that 
we can directly employ a simple crossover operation 
similar to the PMX to undergo the crossover process. The 
bad news is that it does not preserve the 2-D neighbooring 
information since it uses a one-dimensional representation. 
As a result, we usually can not find an acceptable solution 
in just a few generations. The second representation 
maintains the 2-D neighbooring information but simple 
crossover operator is not applicable. Therefore, we 
designed a special 2-D crossover operator for the second 
representation. The details of the crossover procedure can 
not be given here because of the space limitation. The 
basic idea was inspired by Grefenstette et al. [lq. The 
crossover operator constructs only one offspring from two 
parents. For each neuron on the inner (N-2) x (N-2) neural 
arrays of the parents, we compute the inner summation of m. (7). The computed values of the 2 x (N-2) x (N-2) 
neurons are sorted. In the increasing order, we then copy 
the whole 3 x 3 block containing the neuron with the 
smallest computed value and its 8-neighbors to the 
offspring in the way from top to bottom and from left to 
right. Note that the condition that each integer (e.g. from 1 
to N 2 )  can only appear once must be hold. If the 
condition is violated we just randomly choose an integer 
from the set containing integers which have not yet been 
used to replace the integer. Finally, if the measure V for 
the resultant map is not equal to zero, we may then use the 
simple competitive learning algorithm to fine tune the 
map. This fine-tuning procedure usually converges very 
fast since we start from a very good initial map. 

4. Computer Simulations 
Two data sets are used to illustrate the effectiveness of 

the proposed methods. The artificial data set contains 579 
2-dimensional data points. We chose this 2-D data set as 
the first example for two reasons. First the visual 
inspection can help us to qualitatively check the degree of 
preservation of neighborhood relations; second we can 
easily see the peaks of the transformed 2-D digital image 
correspond to the centers of the real clusters of the data set. 
The second data set is the well-known Iris data set which 
contains 150 $-dimensional data points. Since the data 
points are 4-dimensional we can not cluster the data 
directly by eye, therefore, it can be used to illustrate the 
effectiveness of our method. 

Example 1 : Artificial Data Set 
In order to test the performance of the proposed 
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methods, we generated a mixture of spherical and 
ellipsoidal clusters as shown in Fig. 3. In our simulations, 
a 5 x 5 network was trained to form a topological feature 
map. In each stage, the population size is 1000 and the 
evolutionary generations are 100. The value of the 
measure Vdecrease from 59.98 to 9.88. Table 1 tabulates 
the accumulated responses of the neural array. The 
transformed 2-D image is shown in Fig. 4. For a more 
distinct illustration, we flip the gray levels such that 
darker regions represent peaks instead of valleys and the 
gray levels are quantized to be 3 levels. We can easily find 
there are three peaks (i.e. three clusters) either by eye or by 
using the 3 x 3 mask to scan the image. 

Example 2 : Iris Data Set 
The Iris data set has three subsets (i.e. Iris Setosa, Iris 

Versicolor, and Iris Virginica), two of which are 
overlapping. The Iris data set are in a 4-dimensional space 
and each subset contains 50 patterns. The size of the 
network used in the simulations is still 5 x 5. The value of 
the measure V decrease from 69.75 to 7.63. Table 2 
tabulates the accumulated responses of the neural array. 
The transformed 2-D digital image is given in Fig. 6. 
Obviously, there are three peaks in the image, therefore, 
there exist three clusters in the Iris data set. 

5. Conclusions 
In this paper we propose a method of applying GAS to 

form an SOFM and then use a special method to interpret 
an unlabeled map so as to provide estimates of the number 
and the locations of clusters from a data set. In order to 
accelerate the searching procedure, we adopt a two-stage 
training procedure. If the value of the measure V for the 
resultant map found by the GAS is not very small or equal 
to zero, we suggest to use the simple competitive learning 
algoritbm to fine tune the map. The simulation results 
demonstrate the effectiveness of the proposed methods. 
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Figure 4. The transformed 2-D digital image of the 
artificial data set. ( a >  ( b  1 

Figure 1. Illustrateion of neighborhood relations. (a) 
perfect neighborhood preservation; (b) violation of 

2 1 1  

neighborhood preservation. 

4 * * *  5 

1.01443 
1.02544 
1.00248 

Figure 5. The transformed 2-D digital image of the Iris 
data set. 

( a >  

1.00003 1.00091 1.00005 1.00000 
1.13882 1.00674 1.04979 1.00091 
2.00098 1.00248 1.00684 1.00000 

Table 1. The accumulated responses of the artificial 

(b 1 
Figure 2. Two representations for the second stage of 

r mechansim. (a) one-dimensional case; (b) 
on case. 

x2 

.., I 0.' 

. .  _ .  - .. . . .  * I 

-0,s 

i.0 .:I .:r a:* *:. r:. 
XI 

data set contains 579 two- 

Table 2. The accumulated responses of the Iris data set 
in the 5 x 5 neural arrav. 

1.135511 1.000191 1.608471 1.006861 1.01832 
1.274161 1.470691 1.OOOOOl 1.327371 1.00000 
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