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Abstract — The realization of the linear
defuzzified output of the fuzzy controller 1is
discussed in this paper. Using the mixed fuzzy
logics to evaluate the fuzzy control rule, we
that the defuzzified

appropriate cholce of each component can be

show output by

precisely equivalent to a linear function of

the inputs to the fuzzy controller.

1. INTRODUCTION

There are some papers discussing the output
of fuzzy controller in a few situations. For
(4],
defined a linear fuzzy controller with two

the case of two Inputs the authors
fuzzy control inputs and evaluated the fuzzy
control rules using different kinds of fuzzy
logic operators. The camparison of the
consequences for cholce of Zadeh, probability
They

fuzzy

and Lukasiewicz logic has been made.
this

controller for certain t-norm and t-conorm

investigated the output of
operators, but only the special case of three

fuzzy numbers employed to fuzzify each
controller input is discussed.

In this paper, the realization of the linear
defuzzified output of the fuzzy controller by
appropriate choice of each component of the
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fuzzy controller is discussed. This paper is
organized as follows: The fuzzy controller
with simplified fuzzy reasoning method is
described in Section II. The
defuzzified output of the fuzzy controller is
discussed in Section III.

numbers of

linear
In there, arbitrary
triangular fuzzy numbers are
employed to fuzzify the linguistic variables
rules.

in fuzzy control Using three mixed

fuzzy logics, we show that it can be precisely
equivalent to a linear function of all the
inputs to the fuzzy controller. Finally, we

make a brief conclusion in Section 1V.

II. STATES DESCRIPTIONS

The fuzzy control rules with two input fuzzy
varlables is described by

R

a,p’ If x is Al and y is BJ

then u is C

1, 9) iel, jeJ (1)

where x, y, u stand for input or output

linguistic variables and I={-m, -+, m},
J={-n, -++,n} denote the index sets. A“ Bf
Cf(hj) are fuzzy sets characterized by
membership functions Al(x):Xelo,ll. Bj(y):
Y»[0,1], C (u):U>[0,1] corresponding to

£(1,))

the universe discourse of X, Y, U,



respectively. f(i,J) denotes a constant index
function which decldes a lingulstic value of
u.

The (1)

translated into a three dimensional relation R

fuzzy implication in can be
defined on the Cartesian product of universe
XxYxU as

R= U R
1, 1,3

In there, the (i, Jj)-th rule can be described
by a fuzzy relation R

XxYxU as

9 on a universe of

R = (Al and BJ) +C

(1,5 f£(1,))

and its membership function can be expressed

by

(u)]

(x,y,u) = F[A‘(x), Bj(yl. Cf“'j)

R(!.j)

where T denotes the t-norm operator [1]. So
the membership function of the overall fuzzy

relation R is

R(x,y,u) = C R X,y¥,u
(x,y,u) <hj)( y,u)
i€l
J€J
= € TI[A (x), B , C u)]
[A,G), B(y), C,\
1€
je

where € denotes the t-conorm operator.
If the inputs x and y take the fuzzy sets A’
and B’,

can be calculated from antecedents A’, B’

respectively, the output fuzzy set C’
and
fuzzy relation R by compositional rule of

inferences as follows:

C’ = (A" and B’)eR

where o denotes the sup-t-norm composition.
Explicitly,

consequence C’ is

the membership function of the

C’ (u) = sup T[A’ (x), B’ (y), R(x,y,u)l

x€EX
ye€Y

= sup {T[A’(x), B’(y),

vl
€ {TIA (x),B (y),C . | (WI}]}
i&}
Theoretical and experimental studies have
indicated that some t-operators may work

better than others in some situations [1]. In

this paper, three t-norm and one t-conorm

operators for evaluation of the fuzzy control
rules are considered:
(a) Zadeh AND operator:
T(a,b) = ZAND(a,b) = min(a,b)
(b) Probability AND operator:

T(a,b) = PAND(a,b) = a*b

(c) Lukasiewicz AND operator:

T(a,b) = LAND(a,b) = max(0, (a+b)-1)

(d) Lukasiewicz OR operator:
C€(a,b) = LOR(a,b) = min(1, a+b)

where a and b are grades of membership of an

object in fuzzy sets. We can represent C’(u)

as

C’ (u)= C T{sup T[A'(x),A‘(x)].

i€ x€X
j€
sup T(B’ (y), Bj(y)], Cf(hj)(u)}
ye€Y
In actual applications the 1inputs of the

It can be

realized by a process called fuzzification,

controller are some crisp datas.

which simply considers the input fuzzy sets A’

and B' to be singletons, i.e.,
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»
1 if x = x

A’ (x) = {
0 otherwise
and
1 ify-s=
B’ (y) = {
0 otherwise
so that
[ ]
sup T[A’ (x), A‘(x)] = Al(x )
x€X
and
L
sup T(B’ (y), B (y)I] =B (y)
J
yE€Y
Therefore

(u)} (2)

C’'(u)=C F[A (x ),B (y ), Cf“,,)

1&

We may defuzzify the output fuzzy set C' into
a scalar output by computing its fuzzy
centroid. In this paper, we consider a simple

form of output fuzzy sets, where the output

fuzzy sets C are considered as distinct

£(1, )

output fuzzy singletons [2], 1i.e.,

1 if u=£(1,))

C (u) = {
£, 0 otherwise
Therefore
» »
T[A(x ),B(y )] ifu=f£(1,3)
C’'(u) = {
0 otherwise
So the representative point of C’ takes the
form
m n - »
z Z f(4,3) TIA (x ), B (y )]
L i J (3)
n n » »
IE-m j§-n I[A‘(x ), Bj(y )]
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We find that the defuzzified
concerned directly with the definition of

output is

linguistic membership functions and the type

of t-norm operators which are discussed below.

III. MAIN RESULTS

If the triangular fuzzy number is chosen for

each linguistic variable as:

1-|x-1|, 1if|x-1i}s1

A‘(x) = iel (4)
0, otherwise
l-]y-JI, 1f|y-J|sl

B’(y) = JeJ (5)
0, otherwise

*
Given a value for x in [-m,m} and a value

» L] *
for y 1in [-n,n], we can represent x and y
as
-
X = 1'+s, (oss<1) (6)
»
y = J'+p, (o=p<1) 7)
where i’ and j' are integers. We know that

only two of the membership functions A (x ),
B (y ) may be positive and that is when 1 i’,

1 +1 and J=j', J’'+1. We obtain
1-s, 1i={'
Ai(1’+s) = s, 1=1'+1 (0ss<1) (8)
0, otherwise
1'P. J=J'
BJ(J’+p) = P,  J=i'+1 (0=p<1) (9)
0, otherwise

Therefore there are only four rules fired in
the set of complete control rules:



: A nd y is B
R(P.J,) If x is ,» andy 3

then u is f(1i',3")

R(P.J’olf If xis A, andy is By’1

then u is f(i’, 3" +1)

R(v’i’j,): If xis A,  andyls BJ,
then u is f(1’+1,3")
R(Voa,y+1): If x 1s Av+1 and y is By+1
then u is f(i’+1, J'+1)
The defuzzified algorithm (3) «can be
represented by
1041 J041 . .
s (Ey, £ TIA (x ), B (y )]
u= (10)
1°¢1 J° 41 - .
1§|' j§j’ I[Ai(x ), Bj(y )]

Now, we have the following theorem:

Theorem 1:

Suppose the triangular fuzzy numbers (4) and
(S) are wused to define the
variables x and y in the fuzzy controller with

linguistic

the rule base:

R(hj): If x is Ax and y is Bj
then u is f(i, j)=a-1+b-]J, iel, jeJ
Let
- » * 11)
Moo = T1A, (x ), B, (y)] (
»* »
Vo = Ta[A1'+1(x ), BJ,(y )} (12)
» »
Vo = Ts[Ag'(x ), BJ,*l(y )] (13)
» »
W, =TlA,, (x), B, (y)] (14)

» " .
For any inputs x =1"+s and y =)’ +p, 1if we use

T,, Fz’ Fs

' and T‘ operators for the AND

clauses of rule R(1',5"), R(1’+1,5"),
R(i’,j’+1) and R(1’+1, j’+1), respectively to
determine Woo! Yoo Yorr Y, such that

w_tW W W =1 and

00 10 01 11
a-s+b'p, then the defuzzified output is

w +b- +(a+b)'w =
a-w, +bew (a+b)-w

Proof:

For x‘=i’+s and y'=J'+p, if we use Il
operator for the AND clauses of rule R(i’,J'),
Tz operator for the AND clauses of rules
R(1’+1, §'), 13 operator for the AND clauses of
rules R(1’, j’+1), and T‘ operator for the AND
clauses of rule R(i’+1, j’+1), the defuzzified

output (10) is

a‘w__+b'w_ +(a+b)-
10 oy (3tD) W

W +tW_ W W
00 10 01 11

11

u=a-l" +>bj +

So if w + w1 + W + W = 1 and

00 0 o1 11
a°wlo+b-w°l+(a+b)-w11=a-s+b-p. the defuzzified

output becomes
* -
u=ax + by

This completes the proof. Q.E.D.
Remark 1:

When there are some rules with the same
consequence f(i,j), we can combine they with

one and the formula (3) can be rewritted by

* ®
z t - LOR F[Al(x ), B (y )]
t=£(1,J) t ]
_ €1, e
u-= 3 *
z LOR T[Al(x ), B (y )]
t=£(1, ) t )
1€I, j€J

Under this situation, we can also derive the

same result of Theorem 1.
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From (11), (12), (13) and (14), we see that

values “bo’ "10’ w°1 and wu are
determined by the choice of the logical AND

Tz, Ts

these

operators Ft, respectively.

Basded on this,

and 14,
we now evaluate the rules

using the appropriate t-norm

following
that w6°+w10+w01+w11=1 and

a-w1°+b-wb1+(a+b]-w11=a-s+b-p. First,
the 2Zadeh AND 1logic for the Tl
operators and the Lukasiewicz AND logic for
the Tz and ]5 Next, we |use
Lukasiewicz AND 1logic for the Fl and V‘

operators and Zadeh AND logic for the Tz and

operators such
we use

and 14

operators.

Ta operators. Finally, we use probability AND
loglc for the T operators of the fired rules.
We have the following theorem:

Theorem 2:

Suppose the triangular fuzzy numbers (4) and
(5) are define the
variables x and y in the fuzzy controller with
the rule base:

used to linguistic

R If x is A‘ and y is B

a,p’ 3

then u is a-i+b-j, iel, jeJ.

* »
For any inputs x =i'+s and y =j'+p, if we use

T, T, T
1 2 3

clauses of

and 14 operators for the AND
R(1',3"), R(1'+1,3'),
R(1’,J'+1) and R(1'+1, J"+1), respectively and
the following three cases of the appropriate

rule

operators are chosen as
(Case 1): Tl=T4=2AND, T2=13=LAND,
(Case 2): Ti=T‘=LAND. T2=F3=ZAND, and
(Case 3): T,=T_=T_=PAND,

then the defuzzified output is

Proof:

Substituting the results of (8) and (9) into

the three cases, we have:
In Case 1, since the logic operators are

chosed as TI=T‘=ZAND and Tz-Ts=LAND. from

(11), (12), (13) and (14), we obtain
1-s if szp
Voo = min(l-s, 1-p) =« 1-p if s<p
s-p if s2p
Wo = max(0, s-p) = o o s<p
0 if szp
W, = max(0, p-s) = { p-s if s<p
p if s2p
W, =minls,p) =0 o e

In Case 2, since the operators are chosed as

Tl=T‘=LAND and F2=T3=ZAND, from (11), (12),
(13) and (14), we get
Yoo = LAND(1-s, 1-p) = max(0, 1-s-p) (15)
Yio = ZAND(s, 1-p) = min(s, 1-p) (16)
Vo, = 2AND(1-s,p) = min(1-s,p) 17)
Wiy = LAND(s,p) = max(0, s+p-1) (18)
From Figure 1, we can partition the unit

square into eight regions as follows:
(a) Os 1-p< s=< 1-ss ps

(b) 0s 1-ps 1-s< ss ps

(c) 0= 1-s< 1-p=< ps s=

(d) 0s 1-ss ps 1-ps s=
(e) 0s ps 1-ss ss 1-ps

(f) Os ps ss 1-s< 1-ps
(g) 0s ss ps 1-ps 1-ss%

e o T T T = N TS S N
. M

(h) 0< ss 1-ps ps 1-ss

From (15), (16), (17), (18) we can easily list

the values of Woor ¥ Yo and L for these

10’
eight regions as follows:

<Regions a,b,c,d>

wb°=0. w1°=1-p, w°1=1—s, w11=s+p-1;
<Regions e, f, g, h>
Woo=17S7P, W TS, W =p,  w, =0.
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P 2
(0,1) (1,1)
a b
h c
g d
f e
(0,0) (1,0) s

Figure 1. Partition of the unit square
into eight regions.

So we obtain

0 if s+p=l
w ={
00 1-s-p if s+p<1
1-p if s+pzl
w_={
10 s if s+p<i
1-s if s+pz1
Y590 © { P if s+p<i
s+p-1 if s+pzl
Y © { 0 if s+p<i
In Case 3, since the operators are chosed as
Ti=Tz=Ta=T4=PAND. from (11), (12), (13) and
(14), we get
Yoo = PAND(1-s,1-p) = 1-s-p+sp
Vo = PAND(s, 1-p) = s(1-p)
Yoy = PAND(1-s,p) = (1-s)p
w, = PAND(s,p) = sp

We see Yo' Y100 Yo and wu in the three

cases all satisfy that w°°+w1°+w01*ull=l and
a'wio+b‘wb]*(a+b)-wlI-a~s+b-p. From Theorem 1,
we have the result. Q.E.D.
IV. Conclusion

In this paper, the fuzzy controller with a

simplified method is
considered. We have shown that the defuzzified

output of the fuzzy controller can be
precisely equivalent to a linear function of

fuzzy reasoning

all the inputs to the fuzzy controller by
using three mixed fuzzy operators. In there,
arbitrary numbers of triangular fuzzy numbers
the

control

are employed to fuzzify linguistic

which
generalize the investigation only on the the

variables in fuzzy rules
special number of fuzzy numbers for each fuzzy
input (3,4,6]. The result also indicates that
the the

special cases of the fuzzy controllers.

linear nonfuzzy controllers are
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