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Abstract Often a major difficulty in the design of expert 
systems is the process of acquiring the requisite knowl- 
edge in the form of production rules. This paper presen? 
a novel class of neural netwadss which am trained m 
such a way that they provide an appealing soktiw to 
the problem of knowledge acquisitkm. "he value of the 
network parametem, after saftkient saining, am! then uti- 
lized to generate plmluction rule on the basis of prese- 
lected meaningful coordinates. Futbere, the paper pro- 
vides a mathematical framework for achieving " a b l e  
geae~mpropertlcsviaanappropriatetFpiniad~ 
rithm (supervised decisiondincted karrrtng) with a struc- 
turn that provides acceptable lurowledgc represen- 
of the data. The concepts and methods pnsented in the 
paper are illustrated tlmugb one practical example fnm 
medical diagnasis. 

1. INTRODUCTION 

N e d  networks are attracting a lot of intemt in the sci- 
entific community because of their dynamical nanne: robust- 
ness, capability of generalization and fault tolerance. Neural 
networks have alnxdy proven useful in low level information 
processing (e.g. signal analysis). An area where neural net- 
works find exciting applications is in medicine in cases where 
statistical methods can not be used such as when incomplete, 
or insufficient amoant of data. In medical diagnose, clinicians 
make a series of inferences about the nature of the physio- 
logical abnormality derived from existing observations (e.g. 
historical data, physical 6ndings. and routine laboratory tests). 
There are diagnostic processes which are guided by precom- 
piled production rules. In such cases the use of rule-Wed 
expert systems is helpful. 

Rule-based expert systems are rather practical develop- 
ment in the artificial intelligence (AI) field They are based 
on the premise that expert knowledge can be encapsulated in 
a set of IF."I'HEN., statements. Traditionally, the design 
of rule-based expert systems involves a process of interac- 
tion between a domain expert and a knowledge engineer who 
formalizes the expert's howledge as inference rules and en- 
codes it in a computer. However, there are several dificulties 
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in obtaining an adequate set of d e s  from human experts. 
Experts may not know, or may be unable to articulate, what 
knowledge they actuany use in solving their problems. Of- 
ten, the development of an expert system is time<onsuming. 
Thus, the process of building an expert system requires much 
effm Another impmint problems is that it is difficult to 
de" whether the knowledge base is " c t ,  "istent 
and/or incomple&. one way to alleviate uleseprob~s is to 
use machine learning to automafe the pmcess a€ knowledge 
acquisifion [l]. 

An appealing aspect of neural networks is that they can 
inductively acquire concepts from examples. A set of labeled 
examples is provided to the neural networks ftjr lmining. Af- 
ter the process of training, the network can classify inexperi- 
enced pattems. Training pwdlae is accomplished by appro- 
priately modifying its &justable weights so that the training 
data is more cmectly classified. N d  networks have shown 
promise in classification and diagnostic tasks. Nevertheless, 
there are srill some obstacles lying in the combination of neu- 
ral networks and expert systems: 1) lengthy training time: 2) 
no systematic way to set up a good network topology; and 3) 
mculty in inteqteting trained networks [2]. The mculty 
in intqmting, in physiological meaningful ways, mined net- 
works is one of the &rurtest problem of neural netwolks. A 
neural network can not justify its response on the bases of 
explicit rules or logical reasoning pmess.  lhis featwe is 
particularly importand in nledicine where medical experts re 
quire W e d  justification for any diagnosis, whether it issues 
from nature or artificial inteuigeme 

There have been several aaempts to ovetcome these 
problems. One approach is to interpret or extfact rules from a 
mined backpropagation networks [3]. other researchers fo- 
cused on refining coarse knowledgebase by adjusting weights 
of neural networks [41,[51. Sestito and Dillon [61 and Good- 
man, Higgins and Miller [7] considered problems of exmt-  
ing rules that relate to a set of binary (or discrete) feaMe 
variables. However, there are rules which can not be ex- 
tracted by such algorithms. In this paper, an akhitezture and 
algorithm of neural networks is discussed that insures the ex- 
traction of all applicable d e s .  Our approach is based on a ' 

new concept of utilizing "intermediate rules", by which the 
final decision rules are represented. Specifically, intemedi- 
ate rules are represented in the form of a hyperspherical type 
description. A final decision rule is ~ e n t e d  as a disjunc- 
tion of intermediate rules. The training algorithm resula in 
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a two-layer hypaspherical composite neural network shown 
in Fig. 1. Each intermediate rule corresponds to a distinct 
node. An important feature is that the final newal network is 
reqtliRd.tO l m  correctly all training data. 

II. REPRESENTATIONS AND PROPERTIES 

Knowledge representation in expert systems must be as 
clear to human users as possible. The knowledge of a trained 
backpropagation network lies in its inter-node weights [8], 
in this respect, it differs fium the high level repmentation 
obtajned through tmditional knowledge acquisition methods. 

The corrs t~~t ion of a debased expert system involves 
the jmcess of acquiring the production rules. The production 
rufea are often represented as “F-condition THEN act’. 
BxAq”gation networks do not always a h e  to this type of 
repres~Rtation. A suitable class are hyperspherical composite 
networks because production rules can be easily extracted 
Erom them. The symbolic representation of a hyperspherical 
neural aode is shown in Fig. 2 and it is described by the 
foIlowing equations, 

n 

net(X) = d2 - c (2: - c,)2 
i= 1 

and 

Out (X)  = f ( n e t (  X)) (2) 

Whete 
1 i f 2 2 0  
0 i f x < O ’  

q, and d E R are adjustable weights, R is the set of real 
number, n is the dimensionality of input variables, z, E R, X 
is an ncomponent column vecta of zi and O t d ( X )  : It” ---t 

(0, P) is an output function of a hyperspherical wud ntde. 

X I  X I  

Fig. 1 A two-layer hyperspherical crwnposite neural network 

Xl.” xi... xn 

Fig. 2 A hyperspherical mural node 

According to (1) & (2). we know the network outputs 
one only under the following condition: 

n 

(4) 
i= l  

Then the classification knowledge can ht: described in the 
form of a production rule. The if-fhen rule comesponds to the 
following statement 

‘1‘11 EN Oiit = I .  

The domain defined by ( 5 )  is ;UI n-dimensional hypcrsphcrc. 
DeClaris imd Su have &)ne considerable works with this clrws 
of qu;i&itic junction neural-type networks [9]. The decision 
region formed by a n d  node with quadratic junctions is 
in yencfiil a hypcllisoid whose <axes may be oblique with 
respct to the iua of the input space in n-dimensicmal spluc. 
Use of ;I nondiagonal covariance matrix allows each gewrnl 
hypmllipsoid U, tilt in the direction of the maximum clata 
spread. However, the inclusion of correlation coefficients for 
each general hypedipsoid increases the numbers of p,u;un- 
eters. The class of neural nodes studied in this piwr uses 
consmined quadratic junctions-a W-oll hctwccn the flex- 
ibility of hyperellipsoids and the number of plu;unctcrs. 

at.rerisric*. it may be ndt x~equate to use ;I simple ci:rssific;ltion 
rule represented ;IS a hypersphere to solve all pattem recog- 
nition problems. Dispersion chancteristic of &ita 1e;ids to 
;UI existencc of many distinct clusters in input spacc. A rei- 

songable idea of clustering clata would be in the fonn of ;I 

hyperspherical or hypercllipsoidal “cluster“ of plittcms. I n  
this way 8 complex conccpt is rcprcscnted ;is itrrc*r-nrc-ilitrrc* 
c*onc.eyls explicitely extracted by the set o f  hylwsphcrcs. la 
the two-layer neunl network configuration ;IS showti io FiK. 
1. input variables we assigned input ncdcs, inlcriiirtli:itc coti- 

cepts itre assigned hidden nodes (rule ncnhs). ; i t ~ l  t k  itidircctl 
concept (final Classification decision rulc) is ;ic;signrti :in OIII- 

put node. Each hidden ncxk: is conncctcd. with wciglrt v ; h c  

()Wing to characteristics Of data. such C l i ~ / ~ , d i ) t ~  (‘hur- 
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1.0, to the output node. The output node is just a hard lim- 
iter. The network outputs one whenever there exists one hid- 
den node whose output is one. Fig. 3 illustrates decision 
regions formed by hyperspherical composite ne& networks. 
Therefore, if there are k hidden nodes, a decision rule can be 
repented as 

T H E N  output = 1,  
... 

T H E N  output = 1. 

1II. TRAINING ALGORITHM FOR HYPERSPHERICAL 
C O M P O S " E U R A L m 0 R K s  

Fig. 4 shows the algorithm called supervised decision- 

posite neural networks. Here, we apply the idea of inductive 
machine learning into the training procedure of the class of 
hyperspherical composite neural networks. In setting up the 
network topology, this algorithm generates a two-layer feed- 
forward network in a sequential manner by adding hidden 
nodes as need. After the training procedure, all training pat- 
terns are correctly recognized. At the same time the decision 
rule can be easily extracted. The algorithm is based on 'a 
concept of division of the domain of inputs into appropriate 
subsets. 

directed learning algorithm for training hyperSpherical C O ~ -  

s m u m ~ e  I OP DECIS'oN I DECISION ReGlON I REGION 

ARBITRARY 

(UNIONOFTHE 
HYPERSPHEReS) 

Fig. 3 Decision regions formed by 
hyperspherical composite neural networks 
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Fig. 4 Flowchart of the training algorithm 
for hyperspherical composite neural networks 

Often inputs (features) are measured on different units. 
For instances, in medical diagnostic process, data are de- 
rived from nature existing observations such as historical data, 
physical findings, and routine laboratory tests. Therefore, 
patterns need to be normalized so that no single input over- 
whelms data merely because of scale. The method of normal- 
ization used in this paper is that data have been normalized to 
zero mean and unit variance in each direction. Thus, a hyper- 
sphere in normalized input space is indeed a hyperellipsoid 
in original input space as shown followed 

n 

"I i= l  

i = l  "i 

where mi and ui are mean value and squared variance of xi, 
and xi' is the normalized input. 
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In this training algorithm, we want to find a set of 
hyperspheres which cover all patterns belonging to the same 
categories. To begin with, mining patterns are divided into 
two sets: 1) aposirive class from which we want to e x m t  
(induce) the concept and 2) a negafive class which provides 
counterexamples with respect to the concept. Then a seed 
pattem X' is used as the basis of an initial concept (the seed 
pattem is any one chosen from the positive class). Then 
weights are initialized in the following manner: 

d(0)  = . b  6 is a small positive number. (8) 

Next we use all counterexamples to prevent overgeneraliza- 
tion (the induced concept should not be so general as to in- 
clude any of counterexamples) fonned by the initialimion 
of weights. The following step is to fetch the next positive 
p a "  and to generalize the initial concept to include the 
new positive pattern. This process involves growing the orig- 
inal hypersphere to make it larger to include the new positive 
pattem. The size and position of the p " t  hypersphere is 
adapted from a better knowledge of the local distribution of 
positive paaerns falling inside the present hypersphere. The 
way of computing a new center and radius is shown as fol- 
lows: 

/ I n  \ 

2 

and 
I ,  

where 6 ,  a small positive number, is the control parameter 
which decides the d e p  of generalization conrributed by a 
positive pattern. ARer the process of generalhation, again 
we use counterexamples to validate the size of the expanded 
hypersphere. Here let us assume X' is the nearest counterex- 
ample to the center of the original hypersphere (i.e. at time 
t). l?len 

and 

Fig. 5 Process of leaming in 
hyperspherical composite neural networks 

I ,  

648 

Fig. 5 illustrates this process of learning. This process is 
repeated for all the remaining positive pattems. 

Here, we want to point out that during the process of 
preventing overgeneralization, a most important consideration 
is that whenever we shrink the expanded hypersphere (at 
time t+l) in order to exclude counmxamples, the shrunk 
hypersphere should include the original hypersphere (at time 
t). This criteria can guarantee that at least one positive pattem 
(e.g. seed pattern) is carrectly recognized after the training 
procedure. In other wotds, it prevents the new leaming from 
washing away the memories of prior learning. Thus if there 
exists any unrecognized positive pattern, another hidden node 
is self-generated and the pn>cess of learning is repeated again 
and again until all positive patems are recognized correctly. 
In the worst case, the number of the hidden nodes is equal to 
the number of positive patterns, however, if the data clusters 
well, the number of hidden nodes will be as small as possible. 

A multi-output system can always be separated into a 
group of single-output systems. Therefore, we may break 
down a large training task into pieces of small tasks. Finally, 
each hidden node is associated with a value, V, representing 
the total number of positive examples explained (covered) 
by the respective intermediate concept. The V-value may 
be interpreted as a measure of its representativeness of the 
intermediate concept as a concept description. 

The RCE ndtworks also adopt the representation of hy- 
perspheres [lo]. During its training procedure, each new pat- 
tern that is not correctly recognized results in the creation of a 
new hypersphere whose center is defined by the new pattem. 
Misclassifications reduce the size of the created hyperspheres, 
but they are not moved, nor deleted. Thus the number of hy- 
perspheres created by the RCE networks does not reflect the 
number of underlying clusters of data. Nevertheless, in our 
training algorithm, we do attempt to minimize the number of 
hyperspheres in normalized input space. On the other hand. 
a popular choice for choosing radial basis units for the ra- 
dial basis function (RBF) networks is the K-means algorithm 
[ l l l ,  1121. It require the number of units be predetermined. 
nevertheless. this predetermined number may not the right 
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number of clusters. Our algorithm provides another choice 
for training RBF networks. 

Phases 

IV. EXAMPLE: A MEDICAL DIAGNOSIS EXPERT NETWORK 

Train Test #ofrules Compression 
Rate 

Diabetes mellitus is one of the major non-communicable 
chronic diseases and as such it constitutes a major medical 
challenge. Diabetes is a syndrome involving both metabolic 
and vascular abnormalities. It results in a range of compli- 
cations which affect circulatory systems, eyes, and nerves. 
There are two primary categories of diabetes mellitus: type 
1-insulin dependent diabetes mellitus (IDDM); and type 
II-non-insulin dependent diabetes mellitus (NIDDM) 1131. 
The pathogenesis of IDDM is well understood, but, little 
progress has been made in discovering the mechanisms which 
trigger NIDDM. In hopes of discovering a method of early 
detection of future NIDDM onset, and ultimately, a means to 
delay or avert the onset of this catastrophic metabolic disor- 
der, Hansen and Bodkin [14] are studying its pathogenesis in 
Rhesus monkeys. Cunently, nine phases of progmsion have 
been identified in the development of the type 11 diabetes mel- 
litus. These phases are identified by fluctuations in various 
measurements taken on the monkeys. Unfortunately, these 
relationships are rather complex and difficult to be described 
by human experts. Lin [ 153 used a multilayer backpmpga- 
tion network to classify the data in order to decide on which 
phase the monkey is. The result was satisfactory. However, 
the classification knowledge can not be articulated as com- 
prehensible diagnosis rules so its use is rather limited. We 
shall use hyperspherical composite neural networks to elicit 
the knowledge required to identify the phases on the basis of 
physiological variable. 

In collaboration with Hamsen we used data from 42 
monkeys which had been followed through the come of 
various phases of diabetes mellitus. The set of physiological 
variables used for phase identification is as follows: 

1. age (C,,)-monkey's age (years), 
2. wgt (C,)-monkey's weight (kg), 
3. 
4. 
5.  gpr (C,,)-glucose disappearance rate. 

The above five measurements, age, wgt, fpg, fpi, and gdr, 
were used as physiological coordinates in our expert system. 
479 observations were used in our training algorithm. All of 
the data entries contain five parameters and the corresponding 
diabetes phase classification identified by experts. Because 
there are low numbers of data points per phases, it was 
decided to partition the complete data set in a 90%/10% ratio 
for training and testing, respectively. This partitioning was 
felt to be good compromise between having training pattems 
to fully described the decision regions during training and 
having enough patterns in the testing set to yield meaningful 
generalization tests. 

fpg (C,,)-fasting plasma glucose (mg/dl), 
fpi (C&-fasting plasma insulin (pU/ml), 

2 

3 

10096 90.0% 38 38 : 479 

100% 88.1% 21 21 : 479 

I 1 I 10096 191.7% 1 7 I 9: 479 I 

5 
6 

10096 84.7%' 17 17 : 479 

10096 91.7% 11 11 : 479 

4 I 10096 p4.9961 17 I 17: 479 

7. 
8 

~~~~ ~ ~~ 

100% 83.1% 17 17 : 479 

10096 94.9% 11 11 : 479 

9 
average 

10096 96.7% 11 11 : 479 
1 : 28.5 10096 90.6% 16.7 

- 

Table 1 Performance of the hyperspherical composite 

mellitus: 479 is the total number of observations and 
neural networks as diagnosis expert systems for diabetes 

total set (100%) = training set (90%) + testing set (10%) 

Generalization performance is evaluated by presenting 
testing patterns to the trained networks, and comparing the 
networks classification with the desired classication. M l e  
1 depicts the succes~ful generalization performance of the hy- 
perspherical compobite neural networks as a diabetes mellitus 
diagnosis expert system. The average successN performance 
shown in the last row of Wlel is around 90% which is very 
encouraging. The number of extracted intermediate diagnosis 
rules for each phasy is not as small as we expected, however, 
the average compnpsion rate (defined as the number of ex- 
tracted in- * rules divided by the total data) shown in 
the last column of W l e l  is acceptable. The large number 
of hidden nodes is due to the following two reasons: 1) The 
diabetes mellitus data do not cluster in the form of hyper- 
spherical subspaces. and 2)During training procedure, each 
hypersphere, at its initial creation, migrates in the input space 
and generally tendq loward the most near mode of the data 
distribution. As hypempheres move toward modes, and latter 
positive patterns create hyperspheres at position from which 
older hyperspheres ,have migrated, there will always be hy- 
perspheres which cbver few positive pattems [161. 

The training prwedure was implementedas a C program 
and run on a SUN-PX. It took less than 20 minutes for all 
phases to converge. This is significantly faster than running 
C programs based on the backpropagation approach, which 
took several hours to converge. However the important ad- 
vantage of the hyperspherical composite neural networks is 
the fact that the classification knowledge can be represented 

i 
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I 1 1 1 1 I 1 I 

Table 2 The sevea extracted intennediate rules for phase 1 

as production rules in the following form: 

+ + ( cpr[r) 5 d2)  

T H E N  the monkey is on phase I 
... 
E L S E  I F  (...) 
T H E N  the monkey i s  on ... 

(13) 
whered is the radius of the hypersphere and each denominator 
repments the deviation of each variable, respectively. Table 
2 depivts a l l  seven extracted intermediate rules for phase 1. 

V. DISCUSSIONS AND CONCLUSIONS 

In this paper, we provide a new approach that brings to- 
gether WO distinct methodologies: rule-based expert systems 
and neural networks. The most important characteristic of this 
approach is that classification knowledge embedded in mumer- 
ical weights of nehwrks is extracted and repnzsented as sets 
of production rules for human users or automated by algorith- 
mic digital computers.. It promised to be of high promise in 
medical diagnosis requiring pathophysiological explanations. 
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