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Abstract Often a major difficulty in the design of expert
systems is the process of acquiring the requisite knowi-
edge in the form of production rules. This paper presents
a novel class of neural networks which are trained in
such a way that they provide an appealing solution to
the problem of knowledge acquisition. The value of the
network parameters, after sufficient training, are then uti-
lized to generate production rules on the basis of prese-
lected meaningful coordinates. Futhere, the paper pro-
vides a mathematical framework for achieving reasonable
generalization properties via an appropriate training algo-
rithm (supervised decision-directed learning) with a struc-
ture that provides acceptable knowledge representations
of the data. The concepts and methods presented in the
paper are illustrated through one practical example from
medical diagnosis.

L. INTRODUCTION

Neural networks are attracting a lot of interest in the sci-
entific community because of their dynamical nature: robust-
ness, capability of generalization and fault tolerance. Neural
networks have already proven useful in low level information
processing (e.g. signal analysis). An area where neural net-
works find exciting applications is in medicine in cases where
statistical methods can not be used such as when incomplete,
or insufficient amount of data. In medical diagnose, clinicians

make a series of inferences about the nature of the physio-

logical abnormality derived from existing observations (e.g.
historical data, physical findings, and routine laboratory tests).
There are diagnostic processes which are guided by precom-
piled production rules. In such cases the use of rule-based
expert systems is helpful

Rule-based expert systems are rather practical develop-
ment in the artificial mtelhgence (AI) field. They are based
on thé premise that expert knowledge can be encapsulated in
a set of IF..THEN... statements. Traditionally, the design
of rule-based expert systems involves a process of interac-
tion between a domain expert and a knowledge engineer who
formalizes the expert’s knowledge as inference rules and en-
codes it in a computer. However, there are several difficulties
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in obtaining an adequate set of rules from human experts.
Experts may not know, or may be unable to articulate, what
knowledge they actually use in solving their problems. Of-
ten, the development of an expert system is time-consuming.
Thus, the process of building an expert system requires much
effort. -Another important problems is that it is difficult o
determine whether the knowledge base is correct, consistent
and/or incomplete. One way to alleviate these problents is to
use machine learning to automate the process of knowledge
acquisition {1]. ‘

An appealing aspect of neural networks is that they can
inductively acquire concepts from examples. A set of labeled
examples is provided to the neural networks for training. Af-
ter the process of training, the network can classify inexperi-
enced patterns. Training procedure is accomplished by appro-
priately modifying its adjustable weights so that the training
data is more correctly classified. Neural networks have shown
promise in classification and diagnostic tasks. Nevertheless,
there are still some obstacles lying in the combination of neu-
ral networks and expert systems: 1) lengthy training time; 2)
no systematic way to set up a good network topology; and 3)
difficulty in interpreting trained networks [2]. The difficulty
in interpreting, in physiological meaningful ways, trained net-
works is one of the greatest problem of neural networks. A
neural network can not justify its response on the bases of
explicit rules or logical reasoning process. This feature is
particularly important in medicine where medical experts re-
quire detailed justification for any diagnosis; whether it issues
from nature or artificial intelligence. :

There have been séveral agtempts to overcome' these
problems. One approach is to interpret or extract rules from a
trained backpropagation networks [3). Other researchers fo-
cused on refining coarse knowledgebase by adjusting weights
of neural networks [4), [5]. Sestito and Dillon [6] and Good-
man, Higgins and Miller [7] considered problems of extract-
ing rules that relate to a set of binary (or discrete) feature
variables. However, there are rules which can not be ex-
tracted by such algorithms. In this paper, an architecture and
algorithm of neural networks is discussed that insures the ex-
traction of all applicable rules. Our approach is based on a
new concept of utilizing “intermediate rules”, by which the
final decision rules are represented. Specifically, intermedi-
ate rules are represented in the form of a hyperspherical type
description. A final decision rule is represented as a disjunc-
tion of intermediate rules. The training algorithm results in
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a two-layer hyperspherical composite neural network shown
in Fig. 1. Each intermediate rule corresponds to a distinct

node. An important feature is that the final neural network is

required to learn correctly all training data.

II. REPRESENTATIONS AND PROPERTIES

Knowledge representation in expert systems must be as
clear to human users as possible. The knowledge of a trained
backpropagation network lies in its inter-node weights [8],
in this respect, it différs from the high level representation
obtajned through traditional knowledge acquisition methods.

- The construction of a rule-based expert system involves
the process of acquiring the production rules. The production
rules are often represented as “IF -condition THEN act”.
Backpropagation networks do not always arrive to this type of
representation. A suitable class are hyperspherical composite
networks because production rules can be easily extracted
from them. The symbolic representation of a hyperspherical
neural node is shown in Fig. 2 and it is described by the
following equations,

n

net(X)=d* =Y (2 — ;) (1)
i=1
and
Out(X) = f(net(X)) (2)
where
ra={s 4220

¢i, and d € R are adjustable weights, R. is the set of real
number, n is the dimensionality of input variables, z; € R, X
is an n-component column vector of z; and Out(X): K™ —
{0, 1} is-an output function of a hyperspherical ncural node.

Fig. 1 A two-layer hyperspherical camposite neural network

Out

Fig. 2 A hyperspherical neural node

According to (1) & (2), we know the network outputs
one only under the following condition:

D (mi— ) <d @
i=1

Then the classification knowledge can be described in the
form of a production rule. The if-then rule corresponds to the
following statement

IF y - < d? )
(Z( )< ) )

THIN Oul = |.

The domain defined by (5) is an n-dimensional hypersphere.
DeClaris and Su have done considerable works with this class
of quadratic junction neural-type networks [9]. The decision
region_formed by a neural node with quadratic junctions is
in general a hyperellipsoid whose axes may be oblique with
respect to the axes of the input space in n-dimensional space.
Use of a nondiagonal covariance matrix allows each gencral
hyperellipsoid to tilt in the direction of the maximum data
spread. However, the inclusion of correlation coefficients for
cach general hyperellipsoid increases the numbers of param-
cters. The class of neural nodes studied in this paper uses
constrained quadratic junctions—a trade-off between the flex-
ibility of hyperellipsoids and the number of parameters.
(Owing to characteristics of data, such as dispersion char-
acteristic, it may be not adequate to use a simple classification
rule represented as a hypersphere to solve all pattern recog-
nition problems. Dispersion characteristic of data lcads to
an existence of many distinct clusters in input space. A rea-
sonable idca of clustering data would be in the form of a
hyperspherical or hyperellipsoidal “cluster” of patterns. In
this way a complex concept is represented as intermediare
concepts explicitely extracted by the sct of hyperspheres, In
the two-layer neural network configuration as shown in Fig.
1, input variables are assigned input nodes, intermediate con-
cepts are assigned hidden nodes (rule nodes). and the induced
concept (final classification decision rule) is assigned an out-
put node. Each hidden node is connected. with weight vadue
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1.0, to the output node. The output node is just a hard lim-
iter. The network outputs one whenever there exists one hid-
den node whose output is one. Fig. 3 illustrates decision
regions formed by hyperspherical composite neural networks.
Therefore, if there are k hidden nodes, a decision rule can be
represented as

IF (i (2 —c1i)®’ < d%)

i=1

THEN output = 1,
©)

ELSE IF (Z (i — cxs)? < d:)

i=1

THEN output = 1.

1II. TRAINING ALGORITHM FOR HYPERSPHERICAL
COMPOSITE NEURAL NETWORKS

Fig. 4 shows the algorithm called supervised decision-
directed leaming algorithm for training hyperspherical com-
posite neural networks. Here, we apply the idea of inductive
machine learning into. the training procedure of the class of
* hyperspherical composite neural networks. In setting up the
network topelogy, this algorithm generates a two-layer feed-
forward network in a sequential manner by adding hidden
nodes as need. After the training procedure, all training pat-
terns are correctly recognized. At the same time the decision
rule can be easily extracted. The algorithm is based on a
concept of division of the domain of inputs into appropriate
subsets.

STRUCTURE DECISION REGION

TYPE OF DECISION
REGION

CONVEX
(HYPERSPHERE)

ARBITRARY

( UNION OF THE
HYPERSPHERES)

@26\@
®

. Fig. 3 Decision regions formed by
hyperspherical composite neural networks

pattemns!
be negative or take them out from the
positive class

Fig. 4 Flowchart of the training algorithm
for hyperspherical composite neural networks

Often inputs (features) are measured on different units.
For instances, in medical diagnostic process, data are de-
rived from nature existing observations such as historical data,
physical findings, and routine laboratory tests. Therefore,
patterns need to be normalized so that no single input over-
whelms data merely because of scale. The method of normal-
ization used in this paper is that data have been normalized to
zero mean and unit variance in each direction. Thus, a hyper-
sphere in normalized input space is indeed a hyperellipsoid
in original input space as shown followed

Iy —m;
o

Y-y <d o=

i=1 " ) R . (7)

@Z(i;‘z& Sd2 ¢i = m; + o;c;
i=1 :

where m; and o; are mean value and squared variance of x;,
and x;’ is the normalized input.
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In this training algorithm, we want to find a set of
hyperspheres which cover all patterns belonging to the same
categories. To begin with, training patterns are divided into
two sets: 1) a positive class from which we want to extract
(induce) the concept and 2) a negative class which provides
counterexamples with respect to the concept. Then a seed
pattern X’ is used as the basis of an initial concept (the seed
pattern is any one chosen from the positive class). Then
weights are initialized in the following manner:

{azs

1<i<n
6 is a small positive number.

®

Next we use all counterexamples to prevent overgeneraliza-
tion (the induced concept should not be so general as to in-
clude any of counterexamples) formed by the initialization
of weights. The following step is to fetch the next positive
pattern and to generalize the initial concept to include the
new positive pattern. This process involves growing the orig-
inal hypersphere to make it larger to include the new positive
pattern. The size and position of the present hypersphere is
adapted from a better knowledge of the local distribution of
positive patterns falling inside the present hypersphere. The
way of computing a new center and radius is shown as fol-
lows:

G+ = («IZ(“ -c«t»2+d(t))

() = 2}) ©)

+zl 1<i<n,
n
2,/ 2 (2} — (1)

i=1

(\ EETE d(t))

dit+1)= )

where ¢, a small positive number, is the control parameter
which decides the degree of generalization contributed by a
positive pattern. After the process of generalization, again
we use counterexamples to validate the size of the expanded
hypersphere. Here let us assume X’ is the nearest counterex-
ample to the center of the original hypersphere (i.e. at time
f). Then

alt+2) = (. ’ (et - (o) + d(z))
i=1

RCTOEED
z\/zl (2} — ci(t))?

+€ (10

+z; 1<i<n

and

Original positive pattem \ "
concept (1) x’ !
gencralization prevention of H
Ne—r v gz A
X‘) vadims(t)
recognized positive X
peteems

Fig. 5 Process of learning in
hyperspherical composite neural networks

(, [35 (et = cl)? + d(t))
dt+2)= M=

2

—€ (12)

Fig. 5 illustrates this process of learning. This process is
repeated for all the remaining positive patterns.

Here, we want to point out that during the process of
preventing overgeneralization, a most important consideration
is that whenever we shrink the expanded hypersphere (at
time t+1) in order to exclude counterexamples, the shrunk
hypersphere should include the original hypersphere (at time
t). This criteria can guarantee that at least one positive pattern
(e.g. seed pattern) is correctly recognized after the training
procedure. In other words, it prevents the new learning from
washing away the memories of prior learning. Thus if there
exists any unrecognized positive pattern, another hidden node
is self-generated and the process of learning is repeated again
and again until all positive pattems are recognized correctly.
In the worst case, the number of the hidden nodes is equal to
the number of positive patterns, however, if the data clusters
well, the number of hidden nodes will be as small as possible.

A multi-output system can always be separated into a
group of single-output systems. Therefore, we may break
down a large training task into pieces of small tasks. Finally,
each hidden node is associated with a value, V, representing
the total number of positive examples explained (covered)
by the respective intermediate concept. The V-value may
be interpreted as a measure of its representativeness of the
intermediate concept as a concept description.

The RCE networks also adopt the representation of hy-
perspheres [10]. During its training procedure, each new pat-
tern that is not correctly recognized results in the creation of a
new hypersphere whose center is defined by the new pattern.
Misclassifications reduce the size of the created hyperspheres,
but they are not moved, nor deleted. Thus the number of hy-
perspheres created by the RCE networks does not reflect the
number of underlying clusters of data. Nevertheless, in our
training algorithm, we do attempt to minimize the number of
hyperspheres in normalized input space. On the other hand,
a popular choice for choosing radial basis units for the ra-
dial basis function (RBF) networks is the K-means algorithm
[11], [12]. It require the number of units be predetermined,
nevertheless, this predetermined number may not the right
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number of clusters. Our algorithm provides another choice
for training RBF networks.

IV. EXAMPLE: A MEDICAL DIAGNOSIS EXPERT NETWORK

Diabetes meHitus is one of the major non-communicable
chronic diseases and as such it constitutes a major medical
challenge. Diabetes is a syndrome involving both metabolic
and vascular abnormalities. It results in a range of compli-
cations which affect circulatory systems, eyes, and nerves.
There are two primary categories of diabetes mellitus: type
I—insulin dependent diabetes mellitus (IDDM); and type
II—non-insulin dependent diabetes mellitus (NIDDM) [13].
The pathogenesis of IDDM is well understood, but, little
progress has been made in discovering the mechanisms which
trigger NIDDM. In hopes of discovering a method of early
detection of future NIDDM onset, and ultimately, a means to
delay or avert the onset of this catastrophic metabolic disor-
der, Hansen and Bodkin [14] are studying its pathogenesis in
Rhesus monkeys. Currently, nine phases of progression have
been identified in the development of the type II diabetes mel-
litus. These phases are identified by fluctuations in various
measurements taken on the monkeys. Unfortunately, these
relationships are rather complex and difficult to be described
by human experts. Lin [15] used a multilayer backpropaga-
tion network to classify the data in order to decide on which
phase the monkey is. The result was satisfactory. However,
the classification knowledge can not be articulated as com-
prehensible diagnosis rules so its use is rather limited. We
shall use hyperspherical composite neural networks to elicit
the knowledge required to identify the phases on the basis of
physiological variable.

In collaboration with Hamsen we used data from 42
monkeys which had been followed through the course of
various phases of diabetes mellitus. The set of physiological
variables used for phase identification is as follows:

age (Cgc)—monkey’s age (years),

wgt (Cy)—monkey’s weight (kg),

fpg (C,g)—fasting plasma glucose (mg/dl),
fpi (Cpi)—fasting plasma insulin (4U/ml),
gpr (Cy)—glucose disappearance rate.

The above five measurements, age, wgt, fpg, fpi, and gdr,
were used as physiological coordinates in our expert system.
479 observations were used in our training algorithm. All of
the data entries contain five parameters and the corresponding
diabetes phase classification identified by experts. Because
there are low numbers of data points per phases, it was
decided to partition the complete data set in a 90%/10% ratio
for training and testing, respectively. This partitioning was
felt to be good compromise between having training patterns
to fully described the decision regions during training and
having enough patterns in the testing set to yield meaningful
generalization tests.

AW

Phases | Train | Test | # of rules | Compression
. Rate

1 100% | 91.7% 7 9:479
2 | 100% | 90.0% 38 38 : 479
3 100% | 88.1% 21 21: 479
4 100% | 94.9% 17 17 : 479
5 100% | 84.7% 17 17: 479
6 100% ] 91.7% 11 11: 479
7" 100% | 83.1% 17 17 : 479
8 100% | 94.9% 11 11: 479
9 100% | 96.7% 11 11: 479

average | 100% | 90.6% 16.7 1:285

Table 1 Performance of the hyperspherical composite
neural networks as diagnosis expert systems for diabetes

mellitus: 479 is the total number of observations and
total set (100%) = training set (90%) + testing set (10%) .

Generalization performance is evaluated by presenting
testing patterns to the trained networks, and comparing the
networks classification with the desired classification. Table
1 depicts the successful generalization performance of the hy-
perspherical composite ncural networks as a diabetes mellitus

- diagnosis expert system. The average successful performance

shown in the last row of Tablel is around 90% which is very
encouraging. The number of extracted intermediate diagnosis
rules for each phase is not as small as we expected, however,
the average compression rate (defined as the number of ex-
tracted intermediate rules divided by the total data) shown in
the last column of Tablel is acceptable. The large number
of hidden nodes is due to the following two reasons: 1) The
diabetes mellitus data do not cluster in the -form of hyper-
spherical subspaces. and 2)During training procedure, each
hypersphere, at its initial creation, migrates in the input space
and generally tends toward the most near mode of the data
distribution. As hyperspheres move toward modes, and latter
positive patterns create hyperspheres at position from which
older hyperspheres have migrated, there will always be hy-
perspheres which cbver few positive pattemns [16].
|

The training procedure was implemented as a C program
and run on a SUN-IPX. It took less than 20 minutes for all
phases to converge. This is significantly faster than running
C programs based on the backpropagation approach, which
took several hours to converge. However the important ad-
vantage of the hyperspherical composite neural networks is
the fact that the classification knowledge can be represented
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Phase age | wgt | fpg fpi gpr d
1 64 | 7.7 | 638 | 452 | 38 | 07
2 76 | 96 | 679 | 318 | 27 | 04
3 69 | 93 1 6731 237 | 60 | 03
4 92 | 107 ] 63.7 | 600 | 50 | 02
5 10.7 | 95 | 653 ] 230 | 33 | 02
6 81 | 104] 701 ] 677 | 45 | 0.1
7 89 [-114]1 692 ] 515 | 37 | o1
“deviation | 5.7 | 48 | 629 | 1053 ]| 13 | —

Table 2 The seven extracted intermediate rules for phase 1

as production rules in the following form:
Cye —age\? | (Cp—wgt\?  (Cpy — fra\’
IF g g rg
(( 5.7 ) t ( 18 ) T\ 620

Cpi“fpi 2 Cpr“gPr 2 2
+( 105.3 )*( iz ) s

THEN the monkey is on phase 1

ELSE IF (...)
THEN the monkey ison ...

(13)
where d is the radius of the hypersphere and each denominator
represents the deviation of each variable, respectively. Table
2 depivts all seven extracted intermediate rules for phase 1.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we provide a new approach that brings to-
gether two distinct methodologies: rule-based expert systems
and neural networks. The most important characteristic of this
approach is that classification knowledge embedded in numer-
ical weights of networks is extracted and represented as sets
of production rules for human users or automated by algorith-
mic digital computers. . It promised to be of high promise in
medical diagnosis requiring pathophysiological explanations.
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