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ABSTRACT-- The fuzzy A-formulation is used to solve 
multiobjective optimization problems in which the design 
variables are random, the constraints as a whole has a 
fuzzy probability o r  the constraints are mixed of 
deterministic, Stochastic and fuzzy constraints. The fuzzy 
optimization strategy helps one to get the highest degree of 
satisfaction in reaching an optimum solution. The idea of 
expected value and the chance constrained programming 
technique allows one to convert a stochastic optimization 
problem into its equal deterministic form. The design of a 
three-bar truss illustrates the proposed design optimization 
in detail and the design of a machine-tool spindle express 
the comprehensive work of this technique. Results show 
that the proposed formulation and method can generate a 
natural, well-behaved, and reliable design. 

1. INTRODUCTION 

A lot of efforts have been made to approach engineering 
design pi-ohlenis as naturally as possible. In natu1.c a lot of 
aspects are related to the pi-tnciples of probability. The 
situation where one often \voi-ries about the pruhahill 
t'ailui-e (oi. reliability) happcns to thc optimization prcice. 
41. I t  is reasonahle that in foii~iulation we consider the 
pmbahility point 01' vie\+ The conditions for applying 
probability concerns is that wc must have enough historical 
data to fmii  the distribution In case of a h o w n  probability 
density hnction (pdf), one can construct the associatcd 
niciiihcrship function in accordance a.ith the possibility- 
prohahility consistency principle [ 5 I .  

IJsually i t  is a high cost to ohtain these pdf. However, i t  
I S  1-clativcly casy t t i  ohtaiii tlic ineitn and standard deviation 
We iiitroduce an approach r r l '  applying the h . z y  thcoiy 16 I, 
and can still solve this ciptiniurn problcin under pi~~rhahilistic 

'et llicoi> nhicli was originally de\doped by 
professor Lade11 and is a hzautiful way of describing a natural 
optimization condition matlit"ica1ly. Since the appearancc 
of the h z q  theoty, sonic researches and applications have 
also been done such as the woi.ks of 17- I I ] 

'lo dcal with olitinii/,ation prolrlcm which is gene:'ally 
recognized to be tioiidetenniiiistic as uell as h 7 q  in nature, 
we pi-esent a fiizzy stochastic matlieinatical fiimiulation to 
solve such design pi-ohleni. 'l'his nirndctenninistic condition is 
not only in the design \~ari:ihles, hut it  can alstr be in t l~e 
allowable limits as \\jell Ilsing the ideas of expected \value 
and the chance coiisti-~~incd prcrpl-:uiiniing tccluiiclue [ 2 I O I I ~  
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can transform the stochastic problem into its deteiministic 
form. By then one can substitute this form into the fuzzy 
mathematical foimulation 

liere we present a design optimization method under a 
combination of deterministic, probabilistic, and fiuzy 
environment. 'The hasic idea i s  to solve the problem under two 
different expected probabilities of occumence andor two 
extreme values of furzy tolerance separately. Having these 
two results, we can then continue the construction of 
membership function to fit the f u 7 q  optimization. An 
engineering optimization design often involves more than one 
ohjectives and sometimes they can be contradicting too. 
Accordingly, we are intei-ested in concentrating on 
multiobjective problems. 

The following paragraphs we will present and solve the 
separate pattem of fu7q, probabilistic and fuzzy prohahility 
optimization problem. Each of them is illustrated by a well- 
known three-har truss design with minimizing two objective 
functions. Cotnl)ainson and observation are given afterwards. 
Eventually, ~ v c  made it tlcsign pi-ohlcni of four ohjectives 
where a machine-tool spindle is optimized. Thc design 
process and results under a niix of f i 7 q  and probabilistic 
environment will hi: given suhsequently. FI-om the annlysls, 
u~e  conclude this study and present the charactcristics hctween 
the satisfying degree and factor of safety designs. 

2. PROBABILISTIC OPTIMIZATION 

In a probabilistic optimization, a general stochastic 
optimization problems is to find X=[x,,x >,...,&IT by the 
following formulation: 

Minimizes I:( X) 
subjected to: 

I'k,(X)- g,,&) 5 01 ? , j = I A . . , k  ( 1-21 

where X represents a mix of random and deterministic 
vaiiahles, F(X) is the olijectivc hnction, P[gJ(X)-gJ,,(X) 5 01 
is the occurrence probability of constraint, gJ(X)-gJ,,(X) 5 0 ,  
and is the expectation value associated to the jth 
consti-aint. When P[gJ(X)-gl,a,,(X) 5 01 2 P,,..,,, the 
optimization design is based on a reliability point of view 
Two inipoi?ant variations according to the kind of allowable 
limits are described below. 
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2.1. Optimization Wiih Deierminisiic Allowable Limit 

Stochastic problem of this kind has the constraint as Eq. 
(1 ), where g,(X) has a nondeterministic value and Q ~ ( X )  has 
a deterministic value. In order to solve this probabilistic 
optimization problem, we transform the stochastic problem by 
Taylor expansion into the approximately equal deterministic 
form [3]: 

Minimize Y(X)=C,F(X)l,=~+C,o,(, ( 2 )  
subject to 

(4) 

where rj(P,.exp,) is the corresponding value of standard normal 
variate to the probability, Pj,exs ; odx1 is the standard deviation 
of the jth constraints; o, is the standard deviation of the ith 
random design variable, q. C ,  2 0,  C, 2 0 is the degree of 
importance for minimization. The stochastic optimization 
problem will be equal to the deteiministic form only if C,=O. 

2.2. Optimization With iVondeteministic Allowable Limit 

For a stochastic optimization problem with a 
nondeterministic allowable limit, as the similar approach 
above, Eq. ( 2 )  becomes: 

where g,,,(x) can be a statistical data with a mean and standard 
deviation only. Substituting these constraints into the equal 
deterministic formulation, one can now search for an optimal 
solution. 

3. FUZZY PROBABILISTIC OPTIMIZATION 

3.1. l h e  A-Formulaiion Method 

Designers are often caught in an optimization design 
situation that minimizes or maximizes more than one objective 
function under some fuzzy design constraints. In 
multiohjective fuzzy design, usually there are certain tolerance 
in which our final design falls in this certain acceptable range. 
To define this tolerance for several objective functions we 
must first execute the CI-isp optimization of each single 

objectives and at the same time calculate the comesponding 
values of the other objectives. From these values and bounds, 
we can construct the membership functions for the objective 
functions. 

The mathematical A-formulation of a multiobjective 
fuzzy optimization is as following [9]: 
Maximize b (7) 
Subject to I - p( < 0, i= I ,k (8) 

A. - pg, < 0 ,j=l,m (9) 

By neglecting the transition values in the constraints 
described by the membership function, we are constructing a 
formulation for the crisp multiobjective optimization. 

3.2. P, is a Fuzzy Number 

If is fuzzy, then Pi.%,, is restricted between an upper 
bound, (P,,,)", and a lower bound, When P[&(X)- 
&,,(X) 5 01 = (Pj,.,)", the membershp function is said to have 
a degree of satisfaction of one, and when P[g,(X)-&,(X) 5 01 
= (P,,,,,". the degree of satisfaction is said to be zero. 

Since the value of standard normal variate is fuzzy, then 
we can construct a membership function between rJ(Pj,exp)u and 
r,(P,,cxp)L by changing the equal deteiministic form into the 
following two different conditions. 

3.2.1 f o r  a deterministic allowable limit, the constraint can 
transform to the following: 

3.2.2for a nondeterministic ollowable limit, the constraint can 
transform to the following:: 

Thus, the linear membership function of standard normal 
variate Is: 

r , ( p , . e x ? . ) u -  r , ( p > . e x p . ) L  

if r l ( p j , e x p . ) L <  r , ( p l , e x p . ) c :  r l ( P , , e x p . ) u  

By modifying pm in Eq. (9) into Eq. ( 12) and solving the 
multiobjective optimization problem Eqs. (7-9), one will has 
the solution to the fuzzy stochastic problem mentioned 
above. 
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4. MULTIOBJECTIVE OPTIMIZATION WITH 
MIXED OF FUZZY AND PROBABILISTIC 

CONSTRAINTS 

A natural optimization design problem contains random 
variables and consists of a mix of deterministic, 
nondeterministic, fuzzy and probabilistic constraints. The 
general mathematical formulation for such problem can be 
described as: 
Minimizes [fi (X),f,(X),. . . ,fN(X)IT 
subject to five types of constraints 

(A) g,(X)-a,(X)SO,i=I ,..,p, where a L d ( X )  has a fuzzy value. 

(B) P(~(X)-P,,(X)0)zP,,,, , where P,&Q has a 
deterministic value. 

H 
I 1 I 

H 

/ 
P 

Fig. 1 Three-bar truss and its design variables. 

(E) P(R(X)-P~.,(X)~O)~P~,,, , where Pi.,(X) has a random 
value and P,,, is a furzy value. 

The first step is to solve each single objective 
optimization under the strict environment and calculate the 
corresponding value of the other objective functions. Then 
one repeats this procedure again, only this time one relax the 
environment based on the allowable fuzzy range of design 
constraints. Choosing the maximum and minimum values of 
the objective functions among these i-esults, one can construct 
the appropriate membership function of the objcctive 
fuictions. Applying the method mentioned in section 3, we 
can gct the solution of this multiple objective in a mixed fuzzy 
and probabilistic constraints 

5. ILLUSTRATIVE EXAMPLES 

5. I Three-ha, Truss Design Optiinizution 

The three-bar truss shown in Fig. 1 is frequently used in 
describing stiuctui-al optimum design [9]. We assume that the 
design variables ai-e random variahles. The design objectives 
are to minimize the weight, f , ,  and the vertical deflection of the 
loaded joint, fi. This pi-oblem as solved for five different 
environment as desci-ihed i n  section 2 and 3: 

(A) wmhich is depicred in section 3.1. By using f,"'"=2.1937, 
fi""=22.9706, f F = I  .3X07. f,""=17 5737, g,""=g,""=20., 
g,""=g,""=24, g,""'=-IX., g,""= -l5. ,  one can constiuct pn, 
po, p8,. pg2, and p@ respectively. Suhstituting these 
membei-ship functions into Eqs. (7-9), one can get the solution 
of this classical h z n .  prohlem. 

(E) which Is depicted 111 sectioii 3. I .  The probabilistic 
optimization with deteiministic allowable limit is defined as: 

(13-1) 

subject to P[ oI,,- o l l  01 2 P,,e,, , a= I ,2,3) (13-2) 

with o , . ~ =  0,,,=20., 0,,~=-15., oX1=ox2 =0.2 and the 
expectation value, is 0.99997, j=1,2,3. This problem 
can be transformed into a deterministic form described in 
section 2. I 

From the single objective optimization, we can get 
f,""=19.142, f,""=3.5549, f,""=l 1.0, and fi""=1.6569. 
Therefore one can construct the linear membership function of 
the objective function. Thus the constraints of multiobjective 
formulation are. 

where pGpj,cxp) has a degree of satisfaction equals one if r,(4,eip) 
greater or equals to 3.99, and zero degree of satisfaction 
otherwise. Thus one can solve this probabilistic constraint 
problem. 

(C) which is depicted in section 2.2. The probabilistic 
optimization problem is defined as in Eqs. (l3-l,l3-2). 
Allowable limit, ol,, (j=l,2), is a nondeterministic value with 
a mean value of 20 and standard deviation of 2O%x(o,,,)/3 
The mean value of o , , ~  is -15 and the standard deviation is 
20%x(o,J3. One can solve this type of problem as in former 
solution (B), however, the form of r,(h,cxpl is Eq. ( 1  1) instead of 
Eq. ( I O ) .  

(0) which is depicted in section 3.1.1. The problem with 
deterministic allowable limits is defined as in Eqs. ( 1  3- I ,  I3-2), 
but here the expected value has a fuzziness between 0.98030 
and 0.99997. For "=0.99997, the normal variate, 
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rl(0.99997), is 3.99; and for PJ,,,,L=0.98030, the normal variate, 
r,(0.98030), is 2.06. From Eq. (12), we obtain the membership 
function of the constraints. Again, solving the l-formulation 
we can get the optimum results. 

(E) which is depicled in section 3.1.2. The fuzzy probabilistic 
optimization is defined as in previous case (D), with the 
nondeterministic allowahle limits the same as be described in 
case @). One can apply former solution (D) to solve this type 
of problem, nevertheless, the fonn of r l~4,exp~ is of Eq. ( I  1) 
instead of Eq. (10). 

Optimum solutions to these five conditions can be seen 
in Table I .  below. 

Table I .  Final designs of three-bar truss under five types of 
constraints. 

Case A 

0 85412 
5 00590 
3 74300 
0 57867 
3 36920 
10442 
5 3434 
1 0  

~~ 
~~~ 

- 

CaseH CaseC CaseD CaseE 
~ 

0 73635 0 67460 0 81671 
7 66450 8 69770 6 4 I 190 
265040 248150 333870 
I09770 141370 102580 
455970 469930 3 51050 
I 91660 2 40540 I75160 
7 54610 8 05950 5 99040 
1 97950 2 64170 1 90730 

0 81217 
6 63340 
3 23470 
I06600 
3 61830 
181850 
6.18300 
I98490 

-5.2 Ohservalions ~ r n d  I)rsc.i issioru 

Since the numerical effects, the oi-igmal value of FS, in 
case A is 0.97342, we normalize this row and obtained the 
above results. As shown, those five possible constraints deal 
with uncertainties, but they pi-oduce different results. .The 
factor of safety, FS, in case (B) is greater than in case (A). 
The reason is that the probabilistic design considers the 
probability of failure that yields a reliable design. It is 
reasonable that the FS with considering a statistical allowahle 
limit in case (C) is greater than that with a deterministic value 
in case (B). An allowahle limit with a standard deviation om 
will effect Eq. ( 5 )  such that the constraint of Eq. (3) becomes 
more strict. Thus ui optimum design problem that considers 
a nondeterministic allowablc limit will have a greater factor of 
safety. One also can see that the FS of case (D) is smaller than 
that of case (B), because of a fuzzy cxpectation of reliability in 
case (D). I t  is logical that the FS of case (E) is larger than the 
cay; (D) because of the same icason between case (B) and (C). 

(Aj. the constraints of case (C) and (D) 
1-esult in a design with the maximum and minimum factor of 
safety, respectively. One also obsclves in this example that the 
mawnuin FS means a maximum structual weight and 
minimum deflection is obtained. 

a higher degree of satisfaction, A, than nonfuzzy (crisp or 
probabilistic) constraints. Therefore, the trended value of X is 
oppsite to the trend of factor of safety. The maximum l in this 
example is the same as a minimized structural weight and 
increased deflection. Thus, one can clearly see the 
characteristics of fuzzy, nondeterministic, and probabilistic 
design optimization. 

6. ENGINEERING DESlGN EXAMPLE 

Machine-tool Spindle Design 

The design of a machine-tool spindle adopted from [ 121 
with a few modifications is used to illustrate an engineering 
optimum fuzzy design under mixed constraints environment. 
The design variable, rd and oall are assumed to be random 
variables with deviations of aDl=aD~=oLI=oLz=aw=0.2, a,&= 
IS%x(t,)/3 and oad= 20%x(od)/3. The model of a machine- 
tool spindle is shown in Fig. 2. The design objectives are 
minimizing the total weight of the spindle, W,(kg), the 
maximum twist per unit applied torque, @(deg), the maximum 
deflection per unit applied load, 6(m), and the fundamental 
natural frequency, U(&). Therefore the optimization problem 
can be mathematically described as to find 
X=[Dl,l)?,I,i,I,?,L~]T by the formulation as: 

Minimizes F(X)= [ Wt(X) ,@(X), 6 (X), o (X)] 
where 

W ~ = E I ) ( L ~ + L ~ + L J  (D:-D:) (Kg) 
4 

'The constrain! with f w q  sense enables the i-esull to have The two fuzzy constraints are ofthe fomi: 
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I I I 

Fig. 2 Structure of the machine-tool spindle. 

L,+L,- L, 5 0 (22) 

where L, is a firvy value between 0.745m and 0.755m in 
which 0.75m has the highest degree of satisfaction. 
Therefore membership function for this fuzzy constraint has 
a degree of satisfaction equals to one when L,+L, equals to 
0.75 and when L,+I., is less / equals to 0.745 or greater / 
equals to 0.755 the degree of satisfaction is zero, this can 
he seen in Fig. 3 helow. 

Fig. 3 Representation of linear membership function of 
L,+L 

1.0 1.02 

L1+ L2+L3 [rn I 

Fig. 4 Representation of linear membership function of 
L I +L,+L,. 

The three fuzzy probabilistic constraints are expressed as: 

I,,+L,+L,- 5 0 

where L, is a f izzy value between I .Om and I .02m in which 
I Om has the highest degree of satisfaction. Thus if 
L,+L,+L, equals 1.0 the degree of satisfaction is equals to 
one where as a value of I~.,+l,,+L, greatedequals to 1.02 
has a zero degree of satisfaction. Fig. 4 below depicted this 
situation. 

Y D  P ( 2 - o  , S O )  >Pea,, 
2 1  
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where P,, is a fuzzy value hetween 0.97 and 0.9999 in which 
0.9999 has the greatest satisfaction. Some parameters in the 
above equations are represented as M,=F,L,, M,= 1 (F+F,)- 
F, 1 L, and I=n(Dl4-D,')/64, in which F is the applied force 
acting on the grinder or cutter, F, and F, are the reaction force 
at the left bearing and right bearing, respectively. The five 
side constraints are: 

0.05(m)LD2OO. 1 (m), i=l,2 (27-1) 

0 2 (m)L ,  4 . 3  (m) (27-2) 

0.4(m zL50 .6  (m) (27-3) 

O.l(m)iL,zI.S (m) (27-4) 

Some numerical data used here are F=ZSON, 
m=IS00N.m, td=200Mpa, ad=3SOMpa, p=7.85x IO'kkgim', 
G=8.04 x I O"N/m*, E=2,06 x 1 0' ' N/m2, k,=k,=9. 8 x 1 O'N/m, 
I,,=8.0kg.m2, and I,,=2.25kg.m2. To solve this mixed fuzzy 
probabilistic optimization problem, we first solve those four 
optimization objectives in a strict environment one by one. 
The strict environment will cause sevcral modifications to the 
above constraints. Here Eqs. (24-26 ) has only one 
deterministic P,,, value which is 0.9999, and the fuzzy 
constraints in Eqs.(22-23) become LI+L,=0.7S and 
L,+L,+L,=I .O. Therefore we will have four optimized 
objective values with the corresponding values of the other 
unoptimized objectives. 

The next step is to solve the relaxed single objective 
optimization. This is done by repeating the above procedure, 
only this time Eqs. (22-23) become L,+L20.745, L,+L&0.755 
and L,+L,+L,~I.O2 , L,+L,+L,~l.O, and Pcxp in Eqs. (24-26) 
has a value of 0.97. From this two procedures we now have 
the total of 32 values of the objective functions shown in Table 
2. and Tahle 3 .  

We choose the best and worst values among these 
objective functions for the construction of membership 
function of these objective as described in section 3.1. 
Completing the membership function constructions for the 
design constraints and substituting these membership function 
into the formulations in section 3 . l . ,  we can ohtain the 
solutions to this prohlem in a mixed fuzzy and prohahilistic 
environment. The results are presented in Table 4. 

Because of relaxing the constraints, one can see that the 
optimized value of individual objective function in Table 3 is 
better than the value in Table 2. The final designs of Table 4 
as shown in Fig. S which logically falls between the lower 
bound and the upper hound of the individual optimum result. 
This optimum design illustrates a natural approach of an 
optimization problem. Therefore a fuzzy probabilistic 
optimization does produce a hetter and reasonable natural 
solution. 

Table 2 Single objective optimum design for machine-tool spindle under strict environment. 

~~ ~~- _ _ _  - ~~ 

Minimize o Minimize W, Mlnlmize Q Minimize 8 
__ ~- .___ 

W,(kg) 18.030650 38.717230 32.811630 19.017680 
@ ( d e g )  0.3227200 0.1263700 0.1635300 0.3272800 

w (Hz) 155.35717 248.26556 218.24642 154.27129 
6 (m) 0.98419E-05 0.71722E-05 0.43502E-05 0.77093 E-05 

~~~ ~~~ 

D, (m) 0,0854280 0.1000000 0.0944270 0.0834130 
D2 ( m )  0.0662770 0.0609940 0 . 0 5 9 3 5 5 0  0.0622940 
L, ( m )  0.2831400 0.2801600 0.2000000 0.2524900 
L2 (m) 0.4668600 0.4698400 0.5500000 0.4911900 
L, (m) 0.2566400 0.2500000 0.2500000 0.2587600 
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Table 3 Single objective optimum design for machine-tool spindle under relaxed environment. 

___.. 

Minimize W, Minimize 0 MInimize 8 Minimize o 
~- 

W, ( k g )  1 4 . 8 7 1 9 4 0  4 6 . 1 9 3 8 1 0  4 7 . 1 6 5 1 4 0  1 5 . 0 5 4 5 3 0  
o ( d e g )  0 , 3 9 7 8 7 0 0  0 . 1 1 6 0 2 0 0  0 . 1 1 8 4 6 0 0  0 . 4 3 1 8 5 0 0  
6 (m) 0 . 1 0 0 4 4 3 - 0 4  0 . 6 1 0 9 2 3 - 0 5  0 . 4 1 1 8 8 3 - 0 5  0 . 6 7 8 7 6 3 - 0 5  
o (Hz) 1 3 9 . 9 1 7 5 1  2 5 9 . 1 0 0 2 7  2 5 6 . 4 1 8 4 3  1 3 4 . 2 9 9 2 9  

D, (m) 0 . 0 8 2 3 6 2 0  0 . 1 0 0 0 0 0 0  0 . 1 0 0 0 0 0 0  0 . 0 8 1 2 7 7 0  
D, (m) 0 . 0 6 5 9 4 2 0  0 . 0 5 0 0 0 0 0  0 . 0 5 0 0 0 0 0  0 . 0 6 4 9 7 3 0  
L, (mi 0 . 2 7 4 2 1 0 0  0 . 2 6 1 9 4 0 0  0 . 2 0 0 0 0 0 0  0 . 2 2 5 1 7 0 0  
L, (m) 0 . 4 8 0 5 8 0 0  0 . 4 9 2 8 1 0 0  0 . 5 5 5 0 0 0 0  0 . 5 2 1 4 5 0 0  
L, (m) 0 . 2 3 5 7 7 0 0  0 . 2 4 4 2 5 0 0  0 . 2 6 5 0 0 0 0  0 . 2 7 7 3 9 0 0  

------___-------------_------------------------------------ 

Table 4 Multi-objective optimum design for machine-tool spindle under mixed fuuy and probabilistic environment. 

2 0 . 8 9 5 9 1 0  D, (m) 0 . 0 9 4 7 9 5 0  
0 . 2 2 0 5 7 0 0  D, (m) 0 . 0 7 4 8 2 9 0  
0 . 7 0 9 3 4 3 - 0 5  L, (m) 0 . 2 6 0 0 6 0 0  
1 8 7 . 9 1 7 8 0  L, (m) 0 . 4 9 2 2 1 0 0  

L, (m) 0 . 2 4 8 4 3 0 0  

0 . 
8 

8 

A r 
/ 8 

0 

1.1 

1.0 

- 
E 

m 
- 

0.8 

0.5 

a- - -___ 8 -___A----” 
Wt 0 6 W 

Fig. 5 Optimum points of single and multiobjective optimization in machine-too spindle design 
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7. CLOSING 

The degree of satisfaction and thc factor of safety designs 
under uncertainties are presented and compared in this study. 
Both of them can neatly be a design index or design criterion. 
The higher degree of satisfaction means the design reaches a 
level of compromising and optimizing all objective functions 
in a common fuzzy design space. A k i e r  design space can 
generate a higher satisfying degree, but a lower factor of 
safety. However, the traditional factor safety design is too 
conservative to reach a reasonahlc design. Probabilistic-based 
optimization does provide a much reliable design and a 
stronger structure, nonetheless, it demands higher cost and is 
not usually used in all kind of design. To formulate a design 
problem with mixed fuzzy, prohahilistic, and deterministic 
information can contribute a natural, wcll-behaved and reliable 
design, yet it is not the only way to achieve the design target 
Other researches on this subject can hc widely done. 
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