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ABSTRACT-- The fuzzy A-formulation is used to solve
multiobjective optimization problems in which the design
variables are random, the constraints as a whole has a
fuzzy probability or the constraints are mixed of
deterministic, stochastic and fuzzy constraints. The fuzzy
optimization strategy helps one to get the highest degree of
satisfaction in reaching an optimum solution. The idea of
expected value and the chance constrained programming
technique allows one to convert a stochastic optimization
problem into its equal deterministic form. The design of a
three-bar truss illustrates the proposed design optimization
in detail and the design of a machine-tool spindle express
the comprehensive work of this technique. Results show
that the proposed formulation and method can generate a
natural, well-behaved, and reliable design.

1. INTRODUCTION

A lot of efforts have been made to approach engineering
design problems as naturally as possible. In nature a lot of
aspects are related to the principles of probability.  The
situation where one often worries about the probability of
faifure (or reliability) happens to the optimization process [1-
4]. It is reasonable that in formulation we consider the
probability pont of view. The conditions for applying
probability concerns 1s that we must have enough historical
data to form the distribution. In case of a known probability
density function (pdf), one can construct the associated
membership function 1n accordance with the possibility-
probability consistency principle [3].

Usually 1t 1s a high cost to obtain these pdf. However, it
15 relatively casy to obtain the mean and standard deviation.
We introduce an approach of applying the fuzzy theory {6],
and can still solve this optimum problem under probabilistic
base. The fuzzy set theory which was originally developed by
professor Zadeh and 1s a beautiful way of describing a natural
optimization condition mathematically. Since the appearance
of the fuzzy theory, some researches and applications have
also been done such as the works of [7-11].

To deal with optimization problem which is generally
recognized to be nondeterministic as well as fuzzy in nature,
we present a fuzzy stochastic mathematical fonmulation to
solve such design problem. This nondeternministic condition is
not only in the design variables, but it can also be in the
allowable limits as well. Using the ideas of expected value
and the chance constrained programming technique [2] one
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can transform the stochastic problem into its deterministic
form. By then one can substitute this form into the fuzzy
mathematical formulation

Here we present a design optimization method under a
combination of deternunistic, probabilistic, and fuzzy
environment. The basic idea is to solve the problem under two
different expected probabilities of occurrence and/or two
extreme values of fuzzy tolerance separately. Having these
two results, we can then continue the construction of
membership function to fit' the fuzzy optimization. An
engineering optimization design often involves more than one
objectives and sometimes they can be contradicting too.
Accordingly, we are interested in concentrating on
multiobjective problems.

The following paragraphs we will present and solve the
separate patlern of fuzzy, probabilistic and fuzzy probability
optimization problem. Each of them is illustrated by a well-
known three-bar truss design with minimizing two objective
functions. Companson and observation are given atterwards.
Eventually, we made a design problem of four objectives
where a machine-tool spindle is optimized. The design
process and results under a mix of fuzzy and probabilistic
environment will be given subsequently. From the analysis,
we conclude this study and present the characteristics between
the satisfying degree and factor of safety designs.

2. PROBABILISTIC OPTIMIZATION
In a probabilistic optinuzation, a general stochastic

optimization problems is to find X=[x,x,...x]" by the
following formulation:

Minimizes F(X) (-1
subjected to:
Plg(X)- gu(X) <012 P, , j=1.2,..k (1-2)

where X represents a mix of random and deterministic
vartables, [F(X) is the objective tunction, Pg(X)-g4(X) 0]
is the occurrence probability of constraint, g(X)-ga(X) <0,
and P, is the expectation value associated to the jth
constraint. When Plg(X)-g,(X) < 0] > P e the
optimization design 1s based on a reliability point of view.
Two important variations according to the kind of allowable
limits are described below.
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2.1. Optimization With Deterministic Allowable Limit

Stochastic problem of this kind has the constraint as Eq.
(1), where g(X) has a nondeterministic value and g; ;,(X) has
a deterministic value. In order to solve this probabilistic
optimization problem, we transform the stochastic problem by
Taylor expansion into the approximately equal deterministic
form [3]:

Minimize ¥ (X)= C\F(X)|yxz+ C,0p )
subject to
G, (30 4 (B, L YOy F),,0,( %)< 0 ®
nodg, (X ¢,
- 3 2 y1/2
O 2 (5= 15.0x] @
where (P, ) is the corresponding value of standard normal

vaniate to the probability, P, ; 04, is the standard deviation
of the jth constraints; o, is the standard deviation of the ith
random design variable, x;, C, > 0, C, > 0 is the degree of
importance for minimization. The stochastic optimization
problem will be equal to the deterministic form only if C,=0.

2.2. Optimization With Nondeterministic Allowable Limit
For a stochastic optimization problem with a

nondeterministic allowable limit, as the similar approach
above, Eq. (2) becomes:

X+ (P, N Ogien *O;;,uj(.m 9, .(X)< 0
%)
0 dg. L (Xy <,
ol - Z Jeali )_ o» 1/2
g, allx) [1_1( 9% k3 ’S] (6)

i

where g, ,4(x) can be a statistical data with a mean and standard
deviation only. Substituting these constraints into the equal
deterministic formulation, one can now search for an optimal
solution.

3. FUZZY PROBABILISTIC OPTIMIZATION
3.1. The A-Formulation Method

Designers are often caught in an optimization design
situation that minimizes or maximizes more than one objective
function under some fuzzy design constraints. In
multiobjective fuzzy design, usually there are certain tolerance
in which our final design falls in this certain acceptable range.
To define this tolerance for several objective functions we
must first execute the crisp optimization of each single

objectives and at the same time calculate the corresponding
values of the other objectives. From these values and bounds,
we can construct the membership functions for the objective
functions.

The mathematical A-formulation of a multiobjective
fuzzy optimization is as following [9]:

Maximize A (O]
Subjectto A - pf; < 0,1=1.k €3]
A-ug<0,j=lm (C)]

By neglecting the transition values in the constraints
described by the membership function, we are constructing a
formulation for the crisp multiobjective optimization.

3.2. P, is a Fuzzy Number

If P, is fuzzy, then P, is restricted between an upper
bound, (P,.,,)", and a lower bound, (P;,,)". When P[g(X)-
gu(X) <0] = (P,,,)", the membership function is said to have
a degree of satisfaction of one, and when P[g;(X)-g.(X) < 0]
= (P,p," the degree of satisfaction is said to be zero.

Since the value of standard normal variate is fuzzy, then
we can construct a membership function between r,(P; ., )" and
(P, )" by changing the equal deterministic form into the
following two different conditions.

3.2.1 for a deterministic allowable limit, the constraint can
transform to the following:

) -g. (X
r. (P, )SEEM
7 JiREp. o2
gi(¥

(10)

3.2.2 for a nondeterministic allowable limit, the constraint can
transform to the following::

L 9yuns¥) g, ()

an
2
og,jm g4, a11%

Thus, the linear membership function of standard normal
variate is:

1, 1f T {Py e ) 205 (Py opp )’

By 0By e )= | 0, 1E (B} b0 ) Ly (P 0 b

i, exp.

(12)

r; (P )

],exp.) - (Pj.exp.)u

1-¢

B P e )Y = (P )

if r)(Pj,e,p_)'“< Py eup.) < L5 (Py e )"

By modifying p; in Eq. (9) into Eq. (12} and solving the
multiobjective optimization problem Egs. (7-9), one will has
the solution to the fuzzy stochastic problem mentioned
above.
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4. MULTIOBJECTIVE OPTIMIZATION WITH
MIXED OF FUZZY AND PROBABILISTIC
CONSTRAINTS

A natural optimization design problem contains random
variables and consists of a mix of deterministic,
nondeterministic, fuzzy and probabilistic constraints. The
general mathematical formulation for such problem can be
described as:

Minimizes [f,(X),£,(X),....5 (X1
subject to five types of constraints.

(A) g(X)-a,,(X)<0.i=1,..,p, where «,,(X) has a fuzzy value.

where

B)  PE(X)-Biu(X)=02P

deterministic value.

Bia(X) has a
(€) P@(X)-Ba(X)<0)2P 0y Where B(X) has a random
value.

(D) P(g(X)-Pia(X)0)2P oy,  Where
deterministic value and P, ,, 1s a fuzzy value.

BiwX) has a

(B) P(g(X)-B;a(X)<0)>P,,,. where B ;(X) has a random
value and P, is a fuzzy value.

The first step is to solve ecach single objective
optimization under the strict environment and calculate the
corresponding value of the other objective functions. Then
one repeats this procedure again, only this time one relax the
environment based on the allowable fuzzy range of design
constraints. Choosing the maximum and minimum values of
the objective functions among these results, one can construct
the appropriate membership function of the objective
functions. Applying the method mentioned in section 3, we
can get the solution of this multiple objective in a mixed fuzzy
and probabilistic constraints.

5. ILLUSTRATIVE EXAMPLES
3.1 Three-bar Truss Design Optimization

The three-bar truss shown in Fig. 1 is frequently used in
describing structural optimum design [9]. We assume that the
design variables are random vanables. The design objectives
are to minimize the weight, f), and the vertical deflection of the
loaded joint, t,. This problem as solved for five different
environment as described in section 2 and 3:

(A) which is depicted in section 3.1. By using f;™"=2.1937,
f,"=22.9706, f;"=|3807, {,"*=17.5737, g™"=g,"=20,,
g™ =g,"=24, g,""=-18., g,"= -15., one can construct g,
Ba. Mg Mg, and g, respectively.  Substituting these
membership functions into Egs. (7-9), one can get the solution
of this classical fuzzy problem.

(B) which is depicted in section 2.1. The probabilistic
optimization with deterministic allowable limit s defined as:
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Fig. 1 Three-bar truss and its design variables.

Minimize F(X)=[f,(X),£(X)]

subject to Plo; - 0> 0] >P

Z Flexps

(13-1)

G=12,3) (13-2)

with 0, 5= 0,,=20, 0,,4=-15, 0,=0,, =0.2 and the
expectation value, P, is 0.99997, 3=1,2,3. This problem
can be transformed into a deterministic form described in

section 2.1,

From the single objective optimization, we can get
£,"*=19.142, {™=3.5549, f,;"™>=11.0, and f;™"=1.6569.
Therefore one can construct the linear membership function of
the objective function. Thus the constraints of multiobjective
formulation are:

A= Mg 20,1712
A-n <0 ,

r] (PL@Xh) -

(14)

3=1,2,3 (15

where Yy o has a degree of satisfaction equais one if 1 )
greater or equals to 3.99, and zero degree of satisfaction
otherwise. Thus one can solve this probabilistic constraint
problem.

(C) which is depicted in section 2.2. The probabilistic
optimization problem is defined as in Eqgs. (13-1,13-2).
Allowable limit, 0, , (j=1,2), is a nondeterministic value with
a mean value of 20 and standard deviation of 20%x(o, ,)/3.
The mean value of 0, is -15 and the standard deviation is
20%x(0,,)/3. One can solve this type of problem as in former

. solution (B), however, the form of Tipiexpy 18 Eq. (11) instead of

Eq. (10).

(D) which is depicted in section 3.1.1. The problem with
deterministic allowable limits is defined as in Eqs. (13-1,13-2),
but here the expected value has a fuzziness between 0.98030
and 0.99997. TFor P, "=0.99997, the normal variate,
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10.99997),is 3.99; and for P, L=0.98030, the normal vanate,
£{0.98030), is 2.06. From Eq. (12), we obtain the membership
function of the constraints. Again, solving the A-formulation

we can get the optimum results.

(E) which is depicted in section 3.1.2. The fuzzy probabilistic
optimization is defined as in previous case (D), with the
nondeterministic allowable limits the same as be described in
case (B). One can apply former solution (D) to solve this type
of problem, nevertheless, the form of 1., is of Eq. (11)
instead of Eq. (10).

Optimum solutions to these five conditions can be seen
in Table 1. below.

Table 1. Final designs of three-bar truss under five types of
constraints.

Case A CaseB CaseC CaseD CaseE

A 085412 073635 0.67460 0.81671 081217
fi 5.00590 7.66450 8.69770 6.41190 6.63340
f, 3.74300 2.65040 248150 3.33870 3.23470
X, 0.57867 1.09770 1.41370 1.02580 1.06600
X, 3.36920 4.55970 4.69930 3.51050 3.61830
FS, 10442 191660 240540 175160 1.81850
FS, 53434 754610 8.05950 5.99040 6.18300
FS, 1.0 1.97950 2.64170 1.90730 1.98450

5.2 Observations and Discussions

Since the numerical effects, the original value of FS; in
case A 1s 0.97342, we normalize this row and obtained the
above results. As shown, those five possible constraints deal
with uncertainties, but they produce different results. The
factor of safety, FS, n case (B) is greater than in case (A).
The reason is that the probabilistic design considers the
probability of failure that yields a reliable design. [t is
reasonable that the FS with considering a statistical allowable
limit in case (C) is greater than that with a deterministic value
in case (B). An allowable limit with a standard deviation o
will effect Eq. (5) such that the constraint of Eq. (3) becomes
more strict. Thus an optimum design problem that considers
a nondeterministic allowable limit will have a greater factor of
safety. One also can see that the FS of case (D) is smaller than
that of case (B), because of a fuzzy expectation of reliability in
case (D). Itis logical that the FS of case (E) 1s larger than the
case (D) because of the same reason between case (B) and (C).
In addition to case (A), the constraints of case (C) and (D)
result in a design with the maximum and minimum factor of
safety, respectively. One also observes in this example that the
maximum FS means a maximum structual weight and
minimum deflection is obtained.

The constraint with furzzy sense cnables the result to have

a higher degree of satisfaction, A, than nonfuzzy (crisp or
probabilistic) constraints. Therefore, the trended value of A is
oppsite to the trend of factor of safety. The maximum A in this
example is the same as a minimized structural weight and
increased deflection.  Thus, one can clearly see the
characteristics of fuzzy, nondeterministic, and probabilistic
design optimization.

6. ENGINEERING DESIGN EXAMPLE
Machine-tool Spindle Design

The design of a machine-tool spindle adopted from {12]
with a few modifications is used to illustrate an engineering
optimum fuzzy design under mixed constraints environment.
The design variable, t, and o, are assumed to be random
variables with deviations of 0,=0p,=0, =0 ,50,,=0.2, 0 ,~
15%x(tg)/3 and o, 4= 20%x(0 ,)/3. The model of a machine-
tool spindle is shown in Fig. 2. The design objectives are
minimizing the total weight of the spindle, W (kg), the
maximum twist per unit applied torque, ¢(deg), the maximum
deflection per unit applied load, 8(m), and the fundamental
natural frequency, w(Hz). Therefore the optimization problem

can be  mathematically described as to  find
X=[D,,D,,L,,L,,L;]" by the formulation as:
Minimizes F(X)=[Wt(X),$(X),5(X),w(X)]
where
Wt:I—;o(L1+L2+L3) (DF-DZ)  (Kg) (16)
180M, 32(L,+L,+ L)
o= ; (Degree) an
T nG(p-ph
640/ (L+L) 1 L R L
§=Fl——— = ()11, ()] (1)
3nE(D -D,) x L, L,
G(p}-p)
W= __#_‘ i+i)]l/2 (HA) (]9)
64(Li+L*Ly) I, I, :
subject to two deterministic constraints are:
2t,,-(Dy-Dy) <0 (20
on -4.6E107<0 @n

180 (I, +L,+L,)

The two fuzzy constraints are of the form:
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Cutter L -] L ! Ls

Fig. 2 Structure of the machine-tool spindle.

Litl,-L,<0 @2

where L, is a fuzzy value between 0.745m and 0.755m in 1
which 0.75m has the highest degree of satisfaction.

Therefore membership function for this fuzzy constraint has
a degree of satisfaction equals to one when L,+L, equals to
0.75 and when L,+L, is less / equals to 0.745 or greater /
equals to 0.755 the degree of satisfaction is zero, this can
be seen in Fig. 3 below.

1.0 102
Li+Le+Lz(m)
AL
1
Fig. 4 Representation of linear membership function of
L +L,+L,.
The three fuzzy probabilistic constraints are expressed as:
0,745 Q75 Q755
P 1am, D, : <0)2p
+ 1 4. - - X
L‘l Lz(m ) H(D;*D;) all exp (24)
Fig. 3 Representation of linear membership function of
L+,
D
Py M0 -0, $0) 2P, ’s
Litlytly L <0 @3) 2 @
where Ly is a fuzzy value between 1.0m and 1.02m in which
1.0m has the highest degree of satisfaction. Thus if MD
L,+L,+L; equals 1.0 the degree of satisfaction is equals to P 2'1_1 =0, <0)2P 26)

one where as a value of L,+l.+L, greater/equals to 1.02
has a zero degree of satistaction. Fig. 4 below depicted this
situation.
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where P, is a fuzzy value between 0.97 and 0.9999 in which
0.9999 has the greatest satisfaction. Some parameters in the
above equations are represented as M=F L, M,=| (F+F,)-
F,|L, and I=n(D,*-D*)/64, in which F is the applied force
acting on the grinder or cutter; F, and F, are the reaction force
at the left bearing and right bearing, respectively. The five
side constraints are:

0.05(m)<D<0.1 (m), i=1,2 27-1)
0.2(m)<L, <0.3 (m) 27-2)
0.4(m <1.,<0.6 (m) (27-3)
0.1(m)<L,<1.5 (m) 27-4)

Some numerical data used here are F=250N,

M=1500N.m, t,=200Mpa, 0,,=350Mpa, p=7.85x10°kg/m’,
G=8.04x10"°N/m?, E=2.06x10"N/m’ k=k,=9.8x10"N/m,
I,,=8.0kg.m?, and 1,,=2.25kg.m* To solve this mixed fuzzy
probabilistic optimization problem, we first solve those four
optimization objectives in a strict environment one by one.
The strict environment will cause several modifications to the
above constraints. Here Eqgs. (24-26 ) has only one
deterministic P,,, value which is 0.9999, and the fuzzy
constraints in  Egs.(22-23) become L,+L,=0.75 and
L,+L,#L,=1.0.  Thereforc we will have four optimized
objective values with the corresponding values of the other
unoptimized objectives.

P

The next step is to solve the relaxed single objective
optimization. This is done by repeating the above procedure,
only this time Egs. (22-23) become L,+L,>0.745, L,+1.,<0.755
and L +L,+L,<1.02 , L, +1,#1,>1.0, and P, in Egs. (24-26)
has a value of 0.97. From this two procedures we now have
the total of 32 values of the objective functions shown in Table
2. and Table 3.

We choose the best and worst values among these
objective functions for the construction of membership
function of these objective as described in section 3.1.
Completing the membership function constructions for the
design constraints and substituting these membership function
into the formulations in section 3.1., we can obtain the
solutions to this problem in a mixed fuzzy and probabilistic
environment. The results are presented in Table 4.

Because of relaxing the constraints, one can see that the
optimized value of individual objective function in Table 3 1s
better than the value in Table 2. The final designs of Table 4
as shown in Fig. 5 which logically falls between the lower
bound and the upper bound of the individual optimum result.
This optimum design illustrates a natural approach of an
optimization problem.  Therefore a fuzzy probabilistic
optimization does produce a better and reasonable natural
solution.

Table 2 Single objective optimum design for machine-tool spindle under strict environment.

Minimize W, Minimize ¢ Minimize & Minimize o
W, (kg) 18.030650 38.717230 32.811630 19.017680
® (deg) 0.3227200 0.1263700 0.1635300 0.3272800
S (m) 0.98413E-05 0.71722E-05 0.43502E-05 0.77093 E-05
@ {(Hz) 155.35717 248.26556 218.24642 154.27129
D, (m) 0.0854280 0.1000000 0.0944270 0.0834130
D, (m) 0.0662770 0.0609940 0.0599550 0.0622940
L, (m) 0.2831400 0.2801600 0.2000000 0.2524900
L, (m) 0.4668600 0.4698400 0.5500000 0.4911900
L, (m) 0.2566400 0.2500000 0.2500000 0.2587600
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Table 3 Single objective optimum design for machine-tool spindle under relaxed environment.

Minimize W, Minimize ¢ Mlnimize & Minimize @
W, (kg) 14.871940 46.193810 47.165140 15.054530
¢ (deg) 0.3978700 0.1160200 0.1184600 0.4318500
<] (m) 0.10044E-04 0.610%2E-05 ©0.41188E-05 0.67876E-05
w (Hz) 139.91751 259.10027 256.41843 134.29929
D, (m) 0.0823620 0.1000000 0.1000000 0.0812770
D, (m) 0.0659420 0.0500000 0.0500000 0.0649730
L, (m) 0.2742100 0.2619400 0.2000000 0.2251700
L, (m) 0.4805800 0.4928100 0.5550000 0.5214500
L, (m) 0.2357700 0.2442500 0.2650000 0.2773900

Table 4 Multi-objective optimum design for machine-tool spindle under mixed fuzzy and probabilistic environment.

W, (kg) 20.895910 D, (m) 0.0947950
¢ (deg) 0.2205700 D, (m) 0.0748290
5 (m) 0.70934E-05 L, (m) 0.2600600
® (Hz) 187.91780 L, (m) 0.4922100
L, (m)  0.2484300
484 O.5w a. //E. 11 r
I Ny -
J Y e . 250
> R4 Fo
~g-- N :
-
401 044 . o = §
—. [ o
w | &
. o r
= o . -08
z © . . M 200
0.3
304 A
P
4 R I L
02
[
204 . [] L150
] = H05
. o
T ol &eeree. g 5 -
Wi 0] $ w

Fig. 5 Optimum points of single and multiobjective optimization in machine-too spindle design.
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7. CLOSING

The degree of satistaction and the factor of safety designs
under uncertainties are presented and compared in this study.
Both of them can neatly be a design index or design criterion.
The higher degree of satisfaction means the design reaches a
level of compromising and optimizing all objective functions
in a common fuzzy design space. A fuzzier design space can
generate a higher satisfying degree, but a lower factor of
safety. However, the traditional factor safety design is too
conservative to reach a reasonable design. Probabilistic-based
optimization does provide a much reliable design and a
stronger structure, nonetheless, it demands higher cost and is
not usually used in all kind of design. To formulate a design
problem with mixed fuzzy, probabilistic, and deterministic
information can contribute a natural, well-behaved and reliable
design, yet it is not the only way to achieve the design target.
Other researches on this subject can be widely done.
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