
A Program-Driven Parallel Machine Simulation Environment*

Chien-Chun Chou Po-Zung Chen Shyh-Nong Chen

Department of Computer Sciences and Information Engineering,

Tamkang University, Taipei, Taiwan, ROC

chou@cs.tku.edu.tw pozung@cs.tku.edu.tw csnong@cs.tku.edu.tw

Abstract

In recent years it has been very popular to employ the
discrete-event simulation as a hardware architecture
analytical tool to study the distributed-memory
multicomputer and shared-memory multiprocessors. After the
hardware architecture prototype has been completed, a complete
and detailed machine simulation environment can be utilized to
evaluate the architecture’s efficiency under the real operating
systems and application software. In this article, all the
development, and implementation of a program-executable
Transputer Network multicomputer as well as 80x86 series
multiprocessors, and how they can be operated will be discussed.
On another level, owing to the extreme complexity of the
simulated computer systems, parallel discrete-event simulation
has also been used to shorten the time of running the simulation.
In practice, this simulator can solve problems through the network
connection with many workstations. Some of the workstations
may be in charge of computing, while some others can be
responsible for the management of memory, thus making it
simpler to establish a parallel machine simulation environment. In
addition to providing an environment for programs to execute on
it, such simulator will also calculate the time spent in running
these programs, so as to evaluate the feasibility for these
application programs to run on a hardware system.

Keywords : discrete-event simulation, distributed-memory
multicomputer, shared-memory multiprocessor, program-driven,
Transputers Network

1. Introduction

With the rapid improvement in the development of
computer hardware, both distributed-memory
multicomputer and shared-memory multiprocessors have
been very popular. In theory, the system which can collect
the most nodes (processors) together is likely to have a

larger memory bandwidth and better calculating ability of
processor, and then to provide the best raw parallelism.

Because of the increasing number of nodes in
multicomputer systems, however, many anti-efficiency
problems have arisen in the interconnection network in
the systems. And how to discover the way to produce the
best interconnection network at the lowest price has
always been an important moot point for research. The
discussion includes what shape will be the best network
architecture, which routing methods should be applied by
the network routers [1] [2], whether it is proper to employ
the wormhole [3] [4] switching techniques, whether it is
necessary to connect nodes and their corresponding
routers through multi-ports, and how the collective
communication among nodes can be dealt with [5].

The problems arising oftenest in shared-memory
multiprocessors, owing to the sharp increase in the
number of processors, lie in how to make the most of bus,
crossbar, or the connective architecture of multistage
interconnection in order to effectively connect processors,
caches, and shared-memory units and to control the
multicache coherence of the units. The further challenge
lies then in how to face the scalability problems [6] [7].

Many analytical models have been used to evaluate in
advance the efficiency of the interconnection network
architecture in multicomputers [8], the efficiency of the
bus-protocol which protects the multicache coherence in
shared-memory multiprocessors [9], and so forth. But, in
response to the increasing complexity of these computer
systems, it has been inevitable to employ some simplified
hypotheses of analyzed systems in order toobtain the
result of the analytical model analysis. In this way, some
limits on a number of prerequisite conditions may have
been set. During recent years it has been quite popular to
employ discrete-event simulation instead as another
analytical tool used for complex computer hardware

*This work was sponsored by grants from National Science Council,
Taiwan, ROC (NSC 85-2213-E-032-007 and NSC 86-2213-E-032-002)
and its partial results were published in [Chou97] [Chou98].

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225191419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

together with software. For example, the MultiSim (or
MultiSim++) [10] of Michigan State University was
adopted for research into the impacts that different
interconnection network topological architectures had
produced on the efficiency of multicomputer systems. On
the other hand, the SimOS [11] of Stanford University is a
more complete and detailed shared-memory
multiprocessor simulator. Not only does it simulate the
entire system, but also it allows actual software -- such as
operating system [12] and distributed database application
programs -- loaded on it and operated as if on a real
hardware machine. Consequently, it will help evaluate,
after the architecture prototype has been finished, the
efficiency shown in the real workload of operating
systems as well as application programs. Also, it will help
develop, produce, and improve operating system software
and application program software before hardware has
been manufactured [11].

Likewise, on account of the increasing complexity of the
simulated computer system and the fact that users always hope to
acquire the evaluation result in the shortest simulation time,
SimOS offered two kinds of different techniques, and it satisfies
users’ need by adopting them alternately. One of the techniques is
a machine emulator which is faster but may be in distortion. In
this case, SimOS imitates the result of the implementation of
computer systems merely through dynamic binary translation
rather than amply simulates the internal operations in hardware.
And therefore it may not be possible to obtain all the evaluation
data we want [13]. The other model uses machine simulation
technique to simulate in detail the internal action in hardware and
collect all the simulation results [11].

In this article we attempt to introduce the development,
implementation, and prospect of the machine simulation
environment of a multicomputer system and a multiprocessor
system. At present, provided have been a Transputers Network
multicomputer machine simulator that can execute INMOS T805
machine code [14] [15], a CPU that can execute Intel 80x86
machine code program [16], and multicache units. And they are
accompanied with a single-bus to access shared memory.
Meanwhile, we regard parallel discrete-event simulation as most
important in shortening the simulation time [17] [18]. In
implementation, yet, we should first connect a number of
workstations through the Ethernet as a implementation platform
for the simulator. At the same time, a distributed micro-kernel
operating system that controls Transputers Network hardware
resources is being developed. We will not only experiment with
running this operating programs on the Transputers Network
hardware that has virtually 17 nodes, but also we will load this
micro-kernel into the Transputers Network hardware for
simultaneous test and evaluation.

In the second section we will describe the the structure of the
simulation environment, and in the third section we will describe
in detail the implementation of Transputers Network simulators.
In the fourth, we intend to introduce the implementation of 80x86
machine simulators. The fifth section is devoted to work
afterwards and the future prospect. Finally, in the sixth section, we

will add our bibliography as well as illustrations.

2. The structure of the simulation environment

In our machine simulation environment, the ultimate
goal has been to evaluate, under the implementation of
real operating systems and application software, the
efficiency of different multicomputer and multiprocessor
hardware and the software systems executed. This is by
no means an easy task. As Figure 1 has shown, the entire
machine simulation environment can be divided into three
main levels. The upper level is the execution of programs
generated by real workload (will include such complex
software as operating system). The middle is the heart of
the simulator, which part has to provide detailed
simulators for each node of hardware model and to
provide the simulator components of network
interconnection among nodes. Up to now INMOS T805
node simulation, link simulation which owns 8 one-way
synchronization point-to-point connections, and Intel
80x86 node simulation have been provided. Other
components such as wormhole switching router and ALU-
biasing network resource control will be established step
by step. The lower level is the machine platform the
whole simulator will implement on. Because we shorten
the total simulation time by way of parallel discrete-event
simulation, in implementation we establish the present
implementation platform first by connecting many
workstations through Ethernet. But in the future it will be
taken into consideration to employ other more advanced
multicomputers and multiprocessors as our operation
platforms.

3. The implementation of the transputers
network multicomputer machine simulation
environment

Throughout the implementation of the machine
simulator, it is C language that develops those programs
executed on the hardware platform, like Sun
Sparc5/SunOS and IBM RS6000/AIX workstations, and
the basis of the simulation are the on-chip interconnection
network architecture units and CPU in the INMOS T805
Transputer node. Put simply, a Transputers Network is in
fact a hardware realization of Communicating Sequential
Processes [19].

Simulators are produced by means of discrete-event
simulation, which can provide program debugging in
programs, simulation time calculation, and efficiency
analization. Basically, a simulator will choose the first
event each time from the pending-event set to simulate
the operation and calculate the simulation time, and if
necessary, it will insert a new generated event into the set.
It will repeat the process until a predetermined simulation
time is expired or there is no more event in the set. A
pending-event set is one used to store all the data
architecture of the events that are going to happen but

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

haven’t happened and haven’t been simulated. The stored
events are ordered according to the recorded time they
will happen. Moreover, the data architecture includes not
only sorts of events and recorded time, but also a
WorkspacePtr field to record the memory workspace
address at which the process of the event happened
(which will be detailed in section 3.1).

The major events of simulators are FETCH, DECODE,
SCHEDULE, DESCHEDULE, RESCHEDULE,
WAITTIMER, WAKEUP, and EXTERNALEVENT.
Among them, FETCH event can have the four
instructions of the consecutive four bytes pointed by
Instruction pointer register (Iptr) in memory being copied
to the prefetch register. DECODE event will execute the
instructions (saved in advance in prefetch register)
pointed by Iptr, and, when executing the fourth instruction
in prefetch register or doing branch jump, it will add a
FETCH event to the pending-event set. SCHEDULE
event stands for the time slice of a low-priority process
has expired. This process will no more have the control
over CPUs and will be moved to the end of the active
queue set to which the process belongs, and at the same
time, the first process of the pending-event set will be
given the control of CPUs. DESCHEDULE event
indicates that process will release the control over CPU
and will be moved out to be a process in waiting state.
RESCHEDULE event will move the process in waiting
state back to the end of the pending-event set.
WAITTIMER event will move the process to the end of
the time queue and wait for the arrival of a certain time.
WAKEUP event denotes the arrival of a certain time and
the process will be moved back to the end of the set.
EXTERNALEVENT represents an external interruption
event has been generated [20].

In the following sections a more detailed introduction
will be given to major parts of a simulator, like the
memory and workspace in nodes, pending-event set, and
interconnection network architecture simulation.

3.1 The simulation of memory and workspace

A Transputer node contains a 4K-byte T805 on-chip
memory, adding with its unique memory in the node up to
a continuous 4G bytes memory space. The entire memory
space starts from the 32-bit negative minimum
8000000016 and end with the positive maximum
7FFFFFFF16. The time for accessing these two kinds of
memories is different, and hardware DisableIntRAM pin
is necessary in choosing between the two. When any other
node’s private memory is needed, it can be accessed only
through the network hardware channel.

In a simulator we represent 4K on-chip memory by
Memory[] array. On the other hand, when nodes are
communicating with the help of hardware channel, all this
is done through serial network linker. The hardware units
of this hardware architecture and the memory in the nodes
have the input/output capability like Direct Memory

Access, and thus the data can be read from or write to
memory without intervention by the CPU. With different
UNIX processes we will simulate the hardware action of
the CPU and serial linker in the nodes respectively. Yet
the memory simulation array Memory[] is designed with
the shared memory mechanism of UNIX, which after
being controlled by semaphore, can be used by CPUs and
serial linker at the same time.

It is the workspace in Transputer node that can store
frequently used variables in process context. And the
methods of accessing data in the workspace are all
operated by workspace pointer register (Wptr) as a basis
then adding the offset (one byte per unit) to it. Further,
once the workspace is established in the on-chip memory,
there will be a difference of three times to once in the
time it may take to access data comparatively in the
unique memory of the nodes. Besides, some significant
information concerning process status is stored in the
workspace. Such information lies in the zone below the
place Wptr pointed at. For instance, Iptr field will point to
the address of the next instruction to be executed; Link
field may point at the workspace of the next process in the
active queue; Pointer field may point to the destination or
resource address of the data communication (used in
communication through channel). Also, TLink field
points to the workspace of the next process in the timer
queue. Time field then stores the time that process has
spent waiting.

3.2 The simulation of the active queue

Transputer node provides process with two levels of
executive choices: high priority and low priority. So there
are two active queues, which are respectively used to
store the execution order for high priority processes and
low priority processes. For each active queue there are a
front-end pointer register and a back-end pointer register,
i.e. Fptr0 and Bptr0 registers, point respectively to the
workspace address of the first as well as the last process
of the high priority queue. (Fptr1 and Bptr1 registers are
on the low priority active queue in the same way).
Besides, as stated in the preceding section, every
process’s workspace has a Link field which can point to
the next process’s workspace, thus forming the structure
of the active queue.

Each time when process is put into the active queue,
the CPU will first keep the value of the Iptr register of
this process in the Iptr field of its workspace and then put
the workspace of this process into the active queue. In
Transputer nodes the high priority process can preempt
the execution of the low priority process at any time, and
only when waiting for channel I/O will the high priority
process release the execution power. Except when being
preempted or waiting for channel I/O, low priority
process has to release its execution power as time expired.
All these related scheduling procedures are completed in
hardware implementation through microcode.

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

3.3 The simulation of interconnection network
architecture

In the Transputers Network, the communication
between two processes is made possible through channel
which posses the point-to-point, one-way, buffer-less, and
synchronized characteristics. Also, channel provides real-
time communication ability of input and output, required
in parallel programs. The so-called channel is in fact a
word in memory. Quite different from traditional
communication ports, its only function is to store the
workspace address of those processes that are ready for
communication through this channel, rather than store the
information to be transfer. Therefore, when process is
communicating through channel, it is unnecessary to
write data into channel. And besides, at any given time,
there can be only one process waiting for communication
in a channel. Whether the two processes waiting for
communication are in the same node affects the way they
will communicate. When the two processes are in the
same node, this channel is called the soft channel or
internal channel. If the two processes are in the different
node, however, this channel is called the hard channel or
external channel.

To compare soft and hard channels, both have basically
the same logical behavior but different efficiency. In an
actual hardware architecture, because the two processes
communicating through soft channel are situated at the
same Transputer node, they achieve parallel processing
through time-sharing. The moving of memory during
communication is done through CPU. While the two
processes communicating with hard channel are in the
different nodes, which can easily execute in parallel. And
the moving of memory during communication is done
through the serial linker among nodes using DMA
hardware, which can work with CPU at same time
without occupying the CPU time. In Transputers Network
simulator, the simulation of hardware channel
communication is made possible by UNIX fork() function
call to produce new UNIX processes and to realize the
parallel machine simulation of CPU and serial link.

3.4 Calculation of the simulation time

The simulation time can basically be classified into the
CPU instruction execution time, the memory accessing
time, the process scheduling time of microcoded
scheduler, the interruption time, and the linker
communication time.

The calculation of the simulation time spent on CPU is
done through accumulating instruction execution time,
which can provide important information for related
research into the efficiency on analyzing and execution
programs hereafter. When several processes are
concurrently time-sharing processing in CPU, the
simulation time means all the time needed for the system
simulation after the simulator operations, rather than the

time for only one process. In addition, we have to
accumulate the memory accessing time, for example, – if
a on-chip memory accessing needs one clock cycle, then
it will be three clock cycles for external memory
accessing.

As for the calculation of the interruption time,
according to the manual [15], if an interruption happens,
it may require 53 to 58 clock cycles doing context switch.
Under the situation of FPU, it may require about 78 clock
cycles doing context switch as an interruption happens.
For the communication time, the calculation has been
based on the input and output instructions given by the
manual [15]. The communication between "in" and "out"
instructions takes 2w+19 clock cycles, in which w
represents how many bytes needed for the communication
messages. And the communication time spent in "outbyte"
and "outword" instructions is 23 clock cycles.

3.5 The parallel processing architecture and the
implementation of simulators

Here we are going to discuss how to realize the
architecture of, when distributed on different platforms,
the node simulations of Transputers Network simulator.
And also, how to simulate serial linker communication
through IPC mechanism of UNIX.

3.5.1 The network resource description file

The network resource description file is a text file
describing effective network hardware. We choose a
language rule offered by [21] for users to describe the
network architecture they desired. The content of a
network resource description file of has to be in following
language format:

"network" <name>
 "{"
 ("processor" <name> "{" <connections> ";" <opts>
 "}")+
 "}"

<name> after the key word "processor" is the
identification for each node in network. And
<connections> is the connection method of four serial
linkers. The optional <opts> is used to explain the size of
the memory and the program files this node is about to
run.

3.5.2 The set-up and operation of the parallel
processing architecture

Basically, Transputers Network simulators generates,
according to the network resource description file, all the
nodes to be simulated on the network by means of UNIX
fork() function call. And when all the nodes are running
on the same computer, they can choose either with the
UNIX pipe mechanism or the UNIX domain stream
socket mechanism to simulate the whole channel. When
all the simulated nodes are distributed to different

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

computers to be executed, channels are simulated by
UNIX Internet stream socket mechanism (note: it has to
be determined in advance at compile-time, that is to use
single-workstation or multi-workstation platform, or use
UNIX IPC mechanism). In another aspect, when
simulators are being run, each node will initialize the state
variables of memory module and register module (As
Figure 2 has shown) and, according to the network
resource description file, will design the network
connecting architecture to be simulated. Eventually, the
CPU simulation in every node of the simulator will load,
according to the network resource description file and
then starts the simulation.

Presently, we have not evaluated efficiency or
improved the execution speed simulated in single-
workstation or multi-workstation platforms (we have only
testified the execution result of the simulation), but all
this is going to be part of the further plan.

4. The implementation of 80x86
multiprocessor machine simulation
environment

During the implementation, a simulator can be divided
into two parts: CPU and memory unit. Of them memory
unit can also be classified into cache-memory unit and
shared-memory unit. This research offers program code of
C language, tested on Sun Sparc5 which runs SunOS
4.1.3.

Concerning CPU, the 80x86 series designed by Intel
has been simulated. Because this research is focused on
the computing efficiency of application program running
in shared memory, we use 8088 simulator, designed by
Tanenbaum, as the basis [16], and we have modified the
program code and seen the "records of used memory,"
which accessed the main memory, as the input of our
"CPU/cache-memory/shared-memory" simulator. These
records all based on the physical addresses. In the aspect
of accessing cache memory, we adopted prefetch
algorithm. And the alternatives as well as mapping
methods have been dealt with set-associative mapping,
accompanied with the Least Recent Used (LRU)
algorithm.

We are going to adopt the program-driven and
sequential discrete-event simulation as our strategy to
simulate multiprocessor machine. The target of this
simulator is a machine equipped with more than two
CPUs. Each CPU has its own cache-memory unit, which
communicate with a shared-memory unit via a single-bus
system. In this respect we will solve any data coherence
problems between all the cache memory and shared
memory. As Figure 3 shows the relationship among every
module. The simulator first reads a architecture
description file from a architecture-description module
and, founds a systemic architecture according to the
parameter obtained. Then, the loading module reads the
program code of an application program and puts it into

the architecture. Finally, the kernel module begins the
simulation, according to the systemic architecture and the
program code of application programs, and it will produce
statistic information together with the final result of
recording the memory.

The research below will offer a more detailed
introduction to major parts of the simulator, like CPUs,
memory units, data coherenc, Spinlock simulation, and so
forth.

4.1 The simulation of CPUs

In the simulation programs of CPUs, originally
designed by Tanenbaum, there is a simple main-memory
architecture. Tanenbaum declared a 1MB one-dimension
array to be the execution space for the system. This
memory-unit architecture is too simple to exhibit layers
architecture between cache memory and main memory. In
our implementation, we designed a memory-accessing
function as interface through which CPUs and memory
units can communicate, consequently eliciting memory
units completely from CPUs.

About the simulation of multiprocessor in question, we
attained the goal principally with the fork() system call
supported by UNIX. As soon as the process is created, a
socket channel to memory units is built up. As long as the
communication channel between CPUs and memory units
has been established, the variable, sockfd[], becomes the
identification code, by way of which memory units can
clearly recognize which CPU sent the request received.
Hereby, memory units can access the corresponding
cache-memory units.

4.2 The simulation of memory units

Memory units include cache-memory units and shared-
memory units. In the aspect of accessing cache memory,
we adopted prefetch algorithm. And the alternative as
well as mapping methods have been dealt with set-
associative mapping, accompanied with the Least Recent
Used (LRU) algorithm. Eventually, the updating of the
information about main memory as well as cache memory
has been done through write-through method.

As long as memory units have been elicited they will
be simulated by a UNIX process. When the CPU
simulating process is calling the memory-accessing
function, the communication with memory units will go
on through socket provided by UNIX. As cache-memory
units receive data from CPUs in the simulator, they will
start searching and accessing data. Inasmuch as main
memory plays a very passive part throughout the system,
only when cache memory needs to access data in main
memory will it do it through the function call.

The whole cache-memory architecture is constructed
and surmounted with linked list and dynamic memory
allocation. Such design is perfectly suitable for
adjustment of cache-memory design by means of
parameters. Further, the chief data architecture of main

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

memory units is to declare a 1MB one-dimension array
(provided that the system has 1MB memory space) and
that is responsible for offering data to cache-memory
units.

4.3 The operational architecture of simulator and
the data coherence

We take the architecture with three CPUs as a example,
there are three CPU places with one token on each. And
they share a token in the bus free place. When CPUs need
to access cache memory, the token on CPU place will
arrive the cache access places. If now the communication
with other cache memory or shared main memory via bus
is not needed, then tokens will just go back to CPU places.
Otherwise, the tokens would have reached get bus places
and checked whether there was any token on bus free
place. In case when the token reaches get bus place and
find no token there, it means the control of bus has been
taken over by other cache-memory units, and they have to
wait until there is a token on the bus free places (that is to
say, other cache-memory units have released the control
of bus), and then the fight for the control will begin. Once
the control gained, the tokens in get bus places will arrive
master places and begin to use bus.

4.4 The maintenance of the data coherence

When different CPUs need to access the same address
in shared memory, we will positively need a set of rules to
assure the data coherence between every cache-memory
unit and shared memory units. In our simulator, the
maintenance of the data coherence is complemented by a
mixed strategy of Firefly protocol and IEEE Futurebus+
standards. With this strategy, the updating of information
about cache-memory units has been write-through. While
the upgrading of data between cache-memory units and
shared main memory units is write-back.

4.5 System parameters

Our simulator can adjust the system architecture
parameters, such as the number of CPUs, characteristics
of cache memory, and certain related time parameters.
The parameters related to the cache-memory includes the
number of bits of divided cache-memory set, the number
of bits in every cache-memory page (page stands for
reservable pages meanwhile in each collection), and the
number of bits of the size of each page in cache memory.
Time-related parameters are: the basic CPU processing
time, the data transfer rate between CPU and cache-
memory units, the time for cache memory to read and
write, the data transfer rate in cache memory and between
cache memory and shared memory, the time for shared
memory to read and write, and the time for shared
memory to deal with addresses sent from cache memory.

4.6 The realization of multiprocessor system with
sequential simulation method

At present we simulate multiprocessor system by using
sequential strategy. We illustrate with four processes
running in the simulator simultaneously (Take three-CPU
systems for example. Three processes take charge of
simulating three CPUs, one of simulates memory units.).
Now we gather together all the control over shared-
memory units, cache-memory units, and the data
coherence inside one process to execute.

In the course of the simulation, every CPU has a
variable (a or b) to record simulation time, and in memory
units there is a variable used to record system simulation
time. When memory units receive two events sent from
CPU, they will choose an event of less local simulation
time to simulate (suppose a�b) and push the system
simulation time into this shorter local simulation time
(that is, the event sent from CPU, whose local time is a,
will be simulated first, and the system simulation time
will be pushed to a.). In choosing an event to be simulated,
however, anything can be started only after one condition
has been satisfied: memory units have to collect each
event sent from CPU will it be able to simulate one of
them, and remove it from the list of events. In other words,
if a CPU stops sending events to memory units, then the
events sent from another CPU can by no means be
simulated. In order to avoid such things, every CPU must
send at least an empty event every other few minutes to
maintain the implementation of the system.

There are five kinds of events in the system: Read
Cache, Write Cache, Read Miss Transaction, Write Miss
Transaction, and Write Hit Transaction. A Read Cache
event happens when CPU wants to read data in memory
units. A Write Cache event happens when CPU wants to
update data in memory units. When a Read Cache event is
simulated, if it is a Read Hit, then data will be read and
sent back to CPU. If it is a Read Miss event here, then a
Read Miss Transaction event will happen . When a Write
Cache event is simulated, if it is a Write Hit, then a Write
Hit Transaction event will happen. If it is a Write Miss
here, then a Write Miss Transaction event will happen.

4.7 The simulation of spinlock

When an application program is running in a parallel
processing environment, mutual exclusion is the first
problem we need to solve. Our system provides the
Spinlock function to solve this problem. First, we
establish a test-and-set hardware simulation in shared
memory, send the lock variable address to shared memory,
read the value of lock variable, and set the value of lock
variable to be 1. All the actions above can be finished
within a clock cycle. And we also add three instructions --
test-and-set lock variable, load lock variable, and unlock
lock variable – to CPU. Test-and-set lock variable is to get
the value of lock variable into AL register, meanwhile
setting the lock variable to be 1. Load lock variable is to
get the value of lock variable into the AL register. Unlock
lock variable is to set the lock variable to be 0.

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

5. The conclusion and the future prospect

Multicomputer machine simulation environment is not
a dream any longer. An prototype of Transputers Network
simulator, which can directly run INMOS T805 machine
code, has been created now. And on this platform a
distributed operating system that can control Transputers
Network is being developed (as shown in Figure 4).
Nevertheless, in order to create an intact multicomputer
machine simulation environment, used to evaluate the
operational efficiency of multicomputer hardware
architecture fitted into software, there is still a long way
to go. Here we merely present some fruits of the great
work – it leaves still a lot to be desired. For instance, (1)
much more interconnection network simulation
components (such as wormhole switching router, and
ALU-biasing-styled network resource control) are
required. (2) Evaluational data have to be clearly defined
and displayed. (3) Improvement as well as evaluation of
the efficiency has to be made on the simulated execution
speed of multi-workstation platform. But we strongly
believe the multicomputer machine simulation under real
workload will be able to provide from-up-to-down a
complete and real evaluation environment, for original
cross-section evaluation, to see this environment from.
Comparatively, the complexity has been increased, but it
may be the time now to overcome them.

As for the use of simulators, the present user-friendly
interface has to be improved. When the simulator is at
work, the system architecture relies still very much upon
manual power. We hope to offer an integrated
environment, given only some relevant information and
then we can have a systematically well-designed
environment. Up to now our machines have progressed
only to an extent of sequential simulation. Thus we hope
to properly cut each module of the simulator into parallel
operational modules, in order to increase the execution
efficiency of the simulator. Now we have only simulated a
multicomputer and multiprocessor hardware architecture.
In fact we still lack certain control over application
programs run in the parallel processing environment. In
the future research and development, we hope to
strengthen the control mentioned here, so that we can
evaluate more conveniently the execution efficiency of
application programs. Ultimately, we hope in the near
future we will be able to create a sound parallel
environment on the net.

6. Bibliography and illustrations
[1] C. J. Glass and L. M. Ni, "The turn model for adaptive
routing," JACM, vol. 41, pp. 874-902, Sept. 1994.
[2] A. Chien, Kim, Horst, Krause, Sonnier, and Watson
"Network resource control in the Tandem ServerNet router,"
submitted for publication, CSAG, University of Illinois at
Urbana-Champaign, Mar. 1996.
[3] L. M. Ni and P. K. McKinley, "A survey of wormhole
routing techniques in direct networks," IEEE Computer, vol. 26,

pp. 62-76, Feb. 1993.
[4] L. M. Ni, Y. Gui, and S. Q. Morre, "Performance evaluation
of switch-based wormhole networks," Proc. Of the 1995
International Conference on Parallel Processing, vol. 1, Aug.
1995.
[5] Y. Tsai and P. K. McKinley, "An extended dominating node
approach to collective communication in all-port wormhole-
routed mesh networks," Technical Report, MSU-CPS-94-55,
Michigan State University, Oct. 1994.
[6] P. Stenstrom, "A survey of cache coherence schemes for
multiprocessors," Computer, pp. 12-24, June 1990.
[7] M. Heinrich, M. Rosenblum, J. Hennessy, etc., "The
performance impact of flexibility in the Stanford FLASH
multiprocessor," Proc. Of the 6th International Conf. On
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VI), San Jose, CA, Oct. 1994.
[8] D. A. Reed and R. M. Fujimoto, "Multicomputer networks
message-based parallel processing," The MIT Press, Cambridge,
Massachusetts, London, England, 1987.
[9] M. Ajmone-Marsan, G. Balbo, and G. Conte, "Performance
models of multiprocessor systems, " The MIT Press, Cambridge,
Massachusetts, London, England, 1986.
[10] P. K. McKinley and C. Trefftz, "MultiSim: A simulation
tool for the study of large-scale multiprocessors," Proc. Of the
1993 International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication Networks
(MASCOTS), pp. 57-62, San Diego, California, Jan. 1993.
[11] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta,
"Fast and accurate multiprocessor simulation: the SimOS
approach," in IEEE Parallel and Distributed Technology, vol. 3,
#4, Fall 1995.
[12] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu,
and A. Gupta, "Hive: Fault containment for shared-memory
multiprocessors," The 15th Symposium on Operating Systems
Principles, Dec. 1995.
[13] E. Witchel and M. Rosenblum, "Embra: faster flexible
machine simulation," The Proc. Of SIGMETRICS ’96, pp. 68-
79, May 1996.
[14] "The T805 transputer instruction set manual," 1st ed.,
INMOS Limited, 1991.
[15] "Transputer data book," 2nd ed., INMOS Limited, 1990.
[16] From ftp://netbsd.csie.nctu.edu.tw/pub/Minix/simulator
[17] J. Misra, "Distributed discrete-event simulation," ACM
Computing Survey, Vol. 18, No. 1, pp. 39-65, Mar. 1986.
[18] Chien-Chun Chou, "Parallel simulation and its performance
evaluation," Technical Report 93-02 (Ph.D. Thesis), Department
of Computer Science, the University of Iowa, Iowa City, USA,
Feb. 1993.
[19] C. A. R. Hoare, "Communicating sequential processes,"
CACM, vol. 21, pp. 666-677, Aug. 1978.
[20] Shyh-Nong Chen, "Transputers Network User Guide,"
Department of Computer Sciences and Information Engineering,
Tamkang University, Taipei, Taiwan, ROC (in Chinese)
[21] "The Helios parallel operating system," Perihelion Software
Ltd., 1991.
[22] Chien-Chun Chou and Shyh-Nong Chen, "A Program-
Driven Multicomputer Machine Simulation Environment,"
Proceedings of 1997 Workshop on Distributed System
Technologies & Applications. pp. 416-422 (in Chinese)
[23] Chien-Chun Chou, Po-Zung Chen and Shyh-Nong Chen,
"A Program-Driven Multiprocessor Machine Simulation
Environment," Proceedings of 1998 Workshop on Distributed
System Technologies & Applications. pp. 368-375 (in Chinese)

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

[24] W. S. Colin, "The transputer," Proc. 12th Int‘l Sym. of
Computer Arch., IEEE, pp. 292-300, 1989.
[25] Institute of Electronics and Electronics Engineers, inc.
"IEEE Standard for Futurebus+ -- Logical Protocol Protocol
Specification," IEEE Std896.1, 1994

Figure 1. A program-driven parallel machine simulation environment

Simulation Host will be the group of workstation system in Ethernet

Multicomputer and Multiprocessor Machine

Simulation Engine

Node Models Interconnection Network Models

Real Workloads

(Target Operating System and

Application Programs)

Initialize
State Variables

End Simulation

Start

End

Network
Configuration

Initialize
Pending Event Set

Get
Next Event

Simulation
Engine

Insert
New Event

Yes

No

Pending Event Set

Config.h

State Variables

RegisterMemory

Figure 2. Simulator Architecture Configuration

Sequential Shared Memory
Multiprocessor Architecture

Description Module

Machine Code Loading
Module

Simulation Kernel

Description File

Real Program
Machine Code

Memory
Dump

Statistical
Data

CPUs

Caches

Shared
Memory

System Architecture

Figure 3. Simulator Architecture Configuration

CPU

Router

OS Kernel
Applications

General
Applications

T805 gcc
Compiler

C/C++
Program

Execution
Files

Transputer Machine
Simulator

CPU

Router

CPU

Router

CPU

Router

CPU

Router

CPU

Router

Ethernet

Host

Host

Host

Intel x86-Linux

T805

T805
T805 T805

T805 T805

Figure 4. Multicomputer Machine Simulation Environment

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 22:00:15 EDT from IEEE Xplore. Restrictions apply.

