
Agent Communication Network -

A Mobile Agent Computation Model for Internet Applications

Timothy K. Shih
Multimedia Information NEtwork (MINE) Lab

Department of Computer Science and Information Engineering
Tamkang University
Tamsui, Taipei Hsien
Taiwan 251, R.O.C.

email: TSHIHQCS . TKU . EDU . TW
fax: Intl. (02) 2620 9749

Abstract

We propose a graph-based model, with a simulation, for
the mobile agents to evolve over the Internet. Based on the
concepts of Food Web (or Food Chain), one of the natural
Jaws that we may use besides neural networks and genetic
algorithms, we define agent niche overlap graph and agent
evolution states for the distributed computation of mobile
agent evolution. The proposed computation model can be
used in distributed Internet applications such as e-commerce
programs, intelligent Web searching engine, and others.

Key words: Search Engine, Information Retrieval,
Internet, Evolution Computing, Mobile Agent,

Intelligent Agent

1 Introduction

Mobile agents are computer programs that can be dis-
tributed across networks to run on a remote computer
station. The technique can be used in distributed infor-
mation retrieval which allows the computation load to
be added to servers, but significantly reduces the traffic
of network communication. Many articles indicate that
this approach is a new direction to software engineering.
However, it is hard to find a theoretical base of mobile
agent computing and interaction over the Internet. On
the other hand, communication over Internet is growing
increasingly and will have profound implications for our
economy, culture and society. From mainframe-based
numerical computing to decentralized downsizing, PCs
and workstation computers connected by Internet have
become the trend of the next generation computers.
With the growing popularity of World Wide Web, dig-
ital libraries over Internet plays an important role in

the academic, the business, and the industrial worlds.
In order to allow effective and efficient information re-
trieval, many search engines were developed. However,
due to the limitation of now-a-day network communica-
tion bandwith, researchers [15] suggest that distributed
Internet search mechanisms should overcome the tradi-
tional information retrieval technologies, which perform
the controls of searching and data transmission on a sin-
gle machine.

A mobile agent, in general, can be more than just a
search program. For instance, a mobile agent can serve
as an emergency message broadcaster, an advertising
agent, or a survey questionnaire collector. A mobile
agent should have the following properties:

0 It can achieve a goal automatically.

It should be able to clone itself and propagate.

0 It should be able to communicate with other agents.

0 It has evolution states, including a termination state.

The environment where mobile agents live is In-
ternet. Agents are distributed automatically or semi-
automatically via some communication paths. There-
fore, agents meet each other on the Internet. Agents
have the same goal can share information and co-
operate. However, if the system resource (e.g., net-
work bandwidth or disk storage of a station) is insuffi-
cient, agents compete with each other. These phenom-
ena are similar to those in the ecosystem of the real
world. A creature is born with a goal to live and re-
produce. To defense their natural enemies, creatures
of the same species cooperate. However, in a pertur-
bation in ecosystems, creatures compete with or even
kill each other. The natural world has built a law of
balance. Food web (or food chain) embeds the law of
creature evolution. With the growing popularity of In-
ternet where mobile agents live, it is our goal to learn

425
0-7695-0250-4/99 $10.00 0 1999 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:29:01 EDT from IEEE Xplore. Restrictions apply.

from the natural to propose an agent evolution com-
puting model over the Internet. The model, even it is
applied only in the mobile agent evolution discussed in
this paper, can be generalized to solve other computer
science problems. For instance, the search problems in
distributed Artificial Intelligence, network traffic con-
t,rol, or any computation that involves a large amount
of concurrent/distributed computation.

We propose a logical network for agent connec-
tions/communications called Agent Communication
Network (or ACN). ACN is dynamic. It evolves as agent
communication proceeds. It also serves as a graph the-
oretical model of agent evolution computing. Our re-
search purposes include:

0 Provide a model for agent evolution and define the as-

0 Construct simulation facilities to estimate agent evolu-

0 Suggest guidelines to write intelligent mobile agent pro-

0 Suggest strategies to construct efficient ACNs. And,

Ensure network security in the simulation environment.

sociated rules.

tion.

grams.

Given an ACN, the model finds which agent evolu-
tion policy produces the maximum throughput (i.e., the
goal of agents achieved). Or, changing the structure of
an ACN, the model is able to find out how to adjust
the agent evolution policy in order t o recover from the
change (or how is the throughput affected).

We have surveyed articles in the area of mobile
agents, personal agents, and intelligent agents. The
related works are discussed in section 2. Some termi-
nologies and definitions are given in section 3, where
we also introduce the detail concepts of agent commu-
nication network. In our model, an agent evolves based
on a state transition diagram, which is illustrated in
section 4. A graph theoretical model describes agent
dependencies and competitions is given in section 5.
Agent evolution computing algorithms, which we used
to construct our simulation, are addressed in section 6.
And finally, we discuss our conclusions and possible ex-
tensions in section 7.

2 Related Works

The concept of agent-based software engineering is dis-
cussed in a survey paper [5]. The author presents two
important issues: agent communication language and
agent architecture. Agent communication languages al-
low agents to share information and send messages to
each other. Agent architecture, on the other hand, in-
culdes network infrastructure and software architecture

that encure agent computing. An open agent architec-
ture for kiosk-based multimedia information service is
proposed in (31.

The concept of mobile agent is discussed in several
articles [13, 17, 11, 121. Agent Tcl, a mobile-agent sys-
tem providing navigation and communication services,
security mechanisms, and debugging and tracking tools,
is proposed in [9, 6, 71. The system allows agent pro-
grams move transparently between computers. A soft-
ware technology called Telescript, with safety and se-
curity features, is discussed in [19]. The mobile agent
architecture, MAGNA, and its platform are presented
in [ll]. Another agent infrastructure is implemented to
support mobile agents [12]. A mobile agent technique
to achieve load balancing in telecommunications net-
works is proposed in [18]. The mobile agent programs
discussed can travel among network nodes to suggest
routes for better communications. Mobile service agent
techniques and the corrseponding architectural princi-
ples as well as requirements of a distributed agent envi-
ronment are discussed in [lo]. The evaluation of several
commercial Java mobile agents is given in [$I.

3 Agent Communication
Network

Agents communicate with each other since they can
help each other. For instance, agents share the same
search query should be able to pass query results to each
other so that redundent computation can be avoided.
An Agent Communication Network (ACN) serves this
purpose. Each node in an ACN represents an agent on
a computer network node, and each link represents a
logical computer network connection (or an agent com-
munication link). Since agents of the same goal want to
pass results to each other, they are modeled as a com-
plete graph. Therefore, an ACN of agents hold different
goals is a graph of complete graphs.

We define some terminologies used throuth this pa-
per. A host station (or station) is a networked worksta-
tion on which agents live. A query station is a station
where a user releases a query for achieving a set of goals.
A station can hold multiple agents. Similarly, an agent
can pursue multiple goals. An agent society (or soci-
ety) is a set of agents fully connected by a complete
graph, with a common goal associated with each agent
in the society. A goal belongs to different agents may
have different priorities. An agent society with a com-
mon goal of the same priority is called a species. Since
an agent may have multiple goals, i t is possible that
two or more societies (or species) have intersections. A
communication cut set is a set of agents belong to two
distinct agent societies, which share common agents.
The removing of all elements of a communication cut

426

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:29:01 EDT from IEEE Xplore. Restrictions apply.

set results in the separation of the two distinct soci-
eties. An agent in a communication cut set is called
an articulation agent. Since agent societies (or species)
are represented by complete graphs and these graphs
have communication cut sets as intersections, articula-
tion agents can be used to suggest a shortest network
path between a query station and the station where an
agent finds its goal. Another point is that an articu-
lation agent can hold a repository, which contains the
network communication statuses of links of an agent
society. Therefore, network resource can be evaluated
when an agent checks its surviving environment to de-
cide its evolution policy.

I t is necessary for us to give formal definitions of
these terminologies to be used in our algorithms. In
the following definitions, “==” read as “is defined by”
and “P X ” represents a set of object X :

HostStation == URL x Resource x P Agent
Resource == Network x CPU x Memory x Information
Agent == B Goal x Policy
Goal == Query-Return-URL x Query x Priority
AgentSociety == P Agent
Species C AyentSociety

A Host-Statzon has a uniform resource locator (i.e.,
URL)’ which represents the station’s unique network
address. A host station has system resources (i.e.,
Resource) and can hold some agents (i.e., PAgent) .
Network represents the network facility available to a
station. CPU represents the computation power of a
station. Memory represents the storage of a station.
It could be the main memory or the secondary mem-
ory. Information is available on a station. Each Agent
has some Goals and a Policy, which is a set of applica-
tion dependent factors the agent depends on t o perform
its evolution computation. Query-Return- URL is the
URL where an agent should return its query results.
Query is an application dependent specification which
represents a user request to the agent. Priority is an
integer represents the priority of a goal. The larger
the integer, the higher the goal priority. Agent-Society
is a set of agents share a common goal. Species is a
Agent-Society of the same goal priority.

We use a simple notation to obtain a component of
an object. For example, in our algorithm, if agent A
is used, then A.Goal represents the goals of that agent,
where A is unique in its belonging agent society (or
species). We will discuss the usage of these terms in
algorithms which are given in section 6 . But, firstly, we
should address the concepts of agent evolution states
and species food web in section 4 and 5, respectively.

’ We could use an IP address. But, since our implementation
of agents is based on the Web, a unique URL is used instead.

4 Agent Evolution States

An agent evolves. I t can react to an environment, re-
spond to another agent, and communicate with other
agents. The evolution process of an agent involves some
internal states of an agent. An agent is in one of the
following states after it is born and before it is killed or
dies of natural:

Searching: the agent is searching for a goal

Suspending: the agent is waiting for enough resource
in its environment in order to search for its goal

Dangling: the agent losts its goal of surviving, it is
waiting for a new goal

Mutating: the agent is changed to a new species with
a new goal and the agent survives in a new host station

An agent is born to a searching state to search for
its goal (i.e., information of some kind). All creatures
must have goals (e.g., search for food). However, if its
surviving environment (i.e., a host station) contains no
enough resource, the agent may transfer to a suspend-
ing state (i.e., hibernation of a creature). The search-
ing process will be resumed when the environment has
better resources. But, if the environment is lack of re-
sources badly (i.e., natural disasters occur), the agent
might be killed. When an agent finds its goal, the agent
will pass the search results to other agents of the same
kind (or same society). Other agents will abort their
search (since the goal is achieved) and transfer to a
dangling state. An agent in a dangling state can not
survive for a long time. It will die after some days (i.e.,
a duration of time). Or, it will be re-assigned to a new
goal with a possible new host station, which is a new
destination where the agent should travel. In this case,
the agent is in a mutatingstate and is reborn to search
for the new goal. In order to maintain the activity of
agents, in a distributed computing environment, we use
message passing as a mechanism to control agent state
transition.

5 Species Food Web and Niche
Overlap Graph

Agents can suspend/resume or even kill each other. We
need a general policy to decide which agent is killed.
By our definition, a species is a set of agents of the
same goal with a same priority. I t is the priority of a
goal we base on to discriminate two or more species.
We need to construct a direct graph which represents
the dependency between species. We call this digraph
an species food web (or food web). Each node in the
graph represents a species. All species of a connected
food web (i.e., a graph component of the food web) are

427

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:29:01 EDT from IEEE Xplore. Restrictions apply.

of the same goal. We assume that, different users at
different host stations may issue the same query. Each
directed edge has an origin represents a species of a
higher goal priority and has a terminus with a lower
priority. Since an agent (and thus a species) can have
multiple goals, each goal of an articulation agent should
have an associated food web.

Each food web describes goal priority dependencies
of species. Form a food web, we can further derive
an niche overlap graph. In an ecosystem, two or more
species have an ecological niche overlap (or niche over-
lap) if and only if they are competing for the same re-
source. A niche overlap graph can be used to repre-
sent the competition among species. The niche overlap
graph is used in our algorithm to decide agent evolution
policy and to estimate the effect when certain factors
are changed in an agent communication network. Based
on the niche overlap graph, the algorithm is be able to
suggest strageies to re-arrange policies so that agents
can achieve their highest performance efficiency. This
concept is similar to the natural process that recover
from perturbations in ecosystems.

6 Agent Evolution Computing

We have described how an agent evolves and how agents
compete. The algorithms proposed in this section use
the agent evolution state diagram and the niche overlap
graphs discussed for agent evolution computing. First,
we present some naive approaches, which also explain
the basic concepts of agent searching and agent distri-
bution. We then present a set of agent evolution com-
puting algorithms over an ACN.

6.1 Agent Searching versus Agent Cloning

An agent wants to search for its goal. At the same
time, since the searching process is distributed, an
agent wants to find a destination station to clone it-
self. Searching and cloning are essentially exist as a
co-routining relation. A co-routine can be a pair of pro-
cesses. While one process serves as a producer, another
serves as a consumer. When the consumer uses out
of the resource, the consumer is suspended. After that ,
the producer is activated and produces the resource un-
til it reaches an upper limit. The producer is suspended
and the consumer is resumed. If the searching process is
a consumer, then the cloning process is a producer who
provides new URLs. The following algorithms describe
agent searching and cloning:

Co-routining algorithm

Algorithm Search(G) :
given a goal G

repeat
if goal G is found then

terminate Search
else

if URL-queue is empty then

else
suspend Search until Clone returns

search on a URL for goal G
and delete the URL from the queue

Algorithm Clone :
repeat

if URL-queue is full then

else
suspend Clone until Search returns

find and put next URL in the URL-queue

The co-routining algorithms use a queue to store URLs.
When the queue is empty, algorithm Search is sus-
pended until Clone returns. Otherwise, a URL in the
queue is used to propagate the agent. Algorithm Clone
collects some new URLs via search engine until the URL
queue is full. The co-routining processes communicate
through the URL queue. However, it is not an efficient
approach since Search or Clone wait for each other
until the URL queue is full or empty. The drawback
can be eliminated using a concurrent algorithm of t.wo
separated processes:

Concurrent algorithm

Algorithm Search-Clone(G) :
given a goal G

cobegin
process Search :

repeat
if goal G is found then

coend

terminate Search-Clone

if URL-queue is not empty then
search on a URL for goal G
and delete the URL

else

process Clone :
repeat

if URL-queue is not full then
put next URL in the URL-queue

The concurrent algorithm searches and propagates
at the same time when the queue is not empty or not
full. Two processes are used concurrently (specified in-
between “cobegin” and “coend)”. When the agent im-
plemented in the concurrent or co-routining algorithm
travels to a station, a local URL queue is used and the
computation proceeds independently.

The above two approaches describes the relation be-
tween searching and cloning of agents. But, there is no

428

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:29:01 EDT from IEEE Xplore. Restrictions apply.

communication among agents. All agents compute for
the same goal and multiple copies of the same result
will be sent back to the query station. this approach
not only waste CPU time, but also wast'e network re-
source. In the next section, we want t o overcome this
drawback by using an agent communication network,
where agents evolve.

mzn-reqazremenl so that different levels of treatment
are used when the resource is not sufficient. But the
resource available factor depends on agent policy, as
defined in Resource-Available.

Agent Cloning Algorithm

6.2 Agent Evolution Computing over an
ACN

The co-routining and concurrent algorithms dis-
cussed in section 6.1 works on a signle station. How-
ever, agent evolution on the agent communication net-
work is an asynchronized computation. Agents live on
different (or the same) stations communicate and work
with each other. The searching and the cloning pro-
cesses of an agent may run as a co-routine on a station.
However, different agents are run on the same or sepa-
rated stations concurrently. Algorithm Agentsearch
is the starting point of agent evolution simulation. If
system resource meets a basic requirement, the algo-
rithm activates an agent in the searching state. If the
search process finds its goal (e.g., the requested infor-
mation is found), goal abortion results in a dangling
state of all agents in the same society (including the
agent who finds the goal). At the same time, the search
result is sent back to the original query station. Sup-
pose that the goal can not be achieved in an individual
station, the agent is cloned in another station (agent
propagation). The Agent-Clone algorithm is then
used. On the other hand, the agent may be suspended
or even killed upon the availability of system resource.
Some auxiliary algorithms, which are self-explanatory,
describe these processes.

Agent Searching Algorithm

Algorithm AgentSearch(A, G, X) :
given a goal G to agent A on station X of S
if Resource-Available(A, G, X) >

low-requirement then
agent A searches for G in its station X
if G is found then

A sends an abort message to agents in S
A sends search result to query station
Agentsearch is complete

call Agent-Clone(A, G, S)
terminate Agent-Search

else if Resource-Available(A, G , X) >
min-requirement then

call Agent-Suspend(A, G, X)

call Agent-Kill(A, G , X)

else

else

Algorithm Agent-Clone(A, G , S) :
given a source agent A searches for goal G of society S
use search engine to find a new URL

on an arbitrary station X that may contain goal G
if station X has an agent A' then

if goal of A' contains G then
let S' be the society associated with G

union S' and S

assign G t o A'
make A' join S

where A' belongs

else

call A g e n t S e a r c h (A ' , G, X)

copy a new agent A" of A on station X
make A" join society S
call A g e n t s e a r c h (A", G , X)

else

Agent cloning is achieved by the Agent-Clone al-
gorithm. When the cloning process finds new URLs to
broadcast an agent, two strategies can be used. The
first is to broadcast the agent t o all URLs found by one
search engine. But, considering the network resource
available, the second strategy may check for the com-
mon URLs found by two or more search engines. The
cloning algorithm must check whether there is another
agent in the destination URL (or station). If so, the al-
gorithm checks whether the agent at that URL shares
the same goal with the agent to be cloned. If two agents
share the same goal, there is no need of cloning another
copy of agent. Basically, the goal can be computed
by the agent at the destination URL. In this case, the
union of the two societies is necessary. On the other
hand, if the two agents do not have a common goal,
to save computation resource, we may ask the agent
at the destination URL to help searching for an addi-
tional goal. This case makes a re-organization of the
society where the source agent belongs. The result also
ensure that the number of agents on the ACN is kept
in a minimum. Whether the two agents share the same
goal, the A g e n t s e a r c h algorithm is used to search
for the goal again. When there is no agent running on
the destination station, we need to increase the number
of agents on the ACN by duplicating an agent on the
destination URL. The society is reorganized. And the
A g e n t s e a r c h algorithm is called again.

Note that, low-requirement must be greater than Auxiliary Algorithms

429

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:29:01 EDT from IEEE Xplore. Restrictions apply.

Algorithm AgentSuspend(A, G , X) :
given a goal G to agent A on station X
wait until Resource-Available(A, G, X) >

call Agent-Search(A, G, X)
low-requirement

Algorithm Agent_I(ill(A, G, X) :
given a goal G to agent A on station X
terminate agent A on station X

Algorithm Resource-Available(A, G , X) :
given a goal G to agent A on station X
switch A.Pol:cy

case descre t e s im A network-bound then
Available = X . Resource.Network

case descre t e s im A cpu-bound then
Available = X.Resource.CPU

case descre t e s im A memory-bound then
Available = X.Resource.Memory

case descre t e s im A cpu-bound A
memory-bound then

Available = X.Resource.CPU * w3 +
X.Resource.Memory * w 2

case descre t e s im A ...

case in t e rne t s im
Available = ...

Available = resource available on X
if G. Priority is low then

Available = Available * r

Notre that, wl and w2 are weights (w l + w2 =
1 .O). In the Resource-Available algorithm, we
only describes some cases of using agent policies (i.e.,
A.Po l i cy) . Other cases are possible. If the goal priority
(i.e,, G.Priorzly) is low, we let r be a constant less than
1 .O. Therefore, resources are reserved for other agents.

The above algorithms describe how an agent evolves
from a state to another. The factor that agents af-
fect each other depends on the system resource avail-
able. However, in an ACN, it is possible that agents
suspend or even kill each other, as we described
in previous sections. The niche overlap graphs of
each goal play an important role. We revise the
AgentSuspend and A g e n t X i l l algorithms to take
the niche overlap graphs into consideration. In the re-
vised Agent-Suspend algorithm, if there exists a goal
that has a lower priority comparing to the goal of the
searching agent, a suspend message is sent to the goal to
delay its search. The searching agent may be resumed
after that since system resources may be released from
those goal suspension. In the revised Agent-Kill al-
gorithm, however, a kill message is sent instead. The
system resource is checked against the minimum re-
quirement. If resuming is feasible, the A g e n t s e a r c h
algorithm in invoked. Otherwise, the system should
terminate the searching agent.

Algorithm AgentSuspend(A, G , X) :
given a goal G to agent A on station X
check the niche overlap graph of G
for each goal G’ in the graph that

has a priority lower than G
send a suspend message to G‘ to delay search

wait until Resource-Available(A, G, X) >

call AgentSearch(A, G, X)
low-requirement

Algorithm Agent-Kill(A, G , X) :
given a goal G to agent A on station X
check the niche overlap graph of G
for each goal G‘ that has a priority lower than G

if Resource-Available(A, G, X) >
min-requirement

send a kill message to G’ to terminate search

call AgentSearch(A, G, X)

terminate agent A on station X
else

7 Conclusions

Mobile agent based software engineering is interest-
ing. However, in the literature, we did not find any
other similar theoretical approach to model what mo-
bile agents should act on the Internet, especially how
mobile agents can cooperate and compete. A theoret-
ical computation model for agent evolution was pro-
posed. Algorithms for the realization of our model were
given. Consequently, our contributions in this paper
are:

0 We proposed a model for agent evolution computing

0 We developed a set of algorithms for the distributed

0 We implemented a simulation environment based on

based on food web, the law of natural balancing.

computing of agent programs.

JATLite to support our theory.

However, there are other extensions to the evolution
model. For instance, species in the natural world learn
from their enemies. In our future model, agents can
learn from each other. We can add a new state, the
“learning” state, to the agent evolution state diagram.
When an agent is in the dangling state, it can commu-
nicate to other agents via some agent communication
languages. Computing methods can be replicated from
other agents. And the agent transits to the mutating
state to wait for another new goal. In addition, when
a station lacks of system resource, an agent in the sus-
pending state can change its policy to admit t o the envi-
ronment before it transits to the searching state. These

430

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:29:01 EDT from IEEE Xplore. Restrictions apply.

are the facts that agents can learn. On the other hand,
in the cloning process, two agenh on a station sharing
a common goal can be composed to a new agent (i.e.,
marriage of agents). This agent may have more goals
compa.res to i ts parents. An agent composition state
could be added to the agent evolution state diagram.
But, the destination station where this new agent lives
should be compromised.

The evolution of computers has changed from
mainframe-based numerical computation to networked
stations. In line with the success of Internet technolo-
gies, in the future, computation and information stor-
age are not limited to a single machine. It is possible
that, an individual buy a primitive computer that only
has a terminal connected to Internet. Personal da ta
and the computation power are embedded within the
Internet. Mobile agent and agent evolution comput-
ing will be very interesting and important. Our agent
evolution model addresses only a small portion of the
icefield, which should be further studied in the societies
of network communications, automatic information re-
trieval, and intelligent systems.

References

P I

[’I

131

[41

151

I61

171

I81

Jose G. Annunziato, “A Review of Agent Technology,”
in Proceedings of the First International Conference
on Multi-Agent Systems, San Francisco, California,
U.S.A., June 12 - 14, 1995.
Alper Caglayan and Colin Harrison, Agent Sourcebook:
A Complete Guide to Desktop, Internet, and lntranet
Agents, Wiley Computer Publishing, 1997.
P. Charlton, Y. Chen, E. Mamdani, 0. Olsson, J . Pitt,
F. Somers, and A. Wearn, “An Open Agent Architec-
ture for Integrating Multimedia Services,” in Proceed-
ings of the Autonomous Agents 97 conference, Marina
Del Rey, California, U.S.A., 1997, pp. 522 - 523.
Chanda Dharap and Martin Freeman, “Information
Agents for Automated Browsing,” in Proceedings of the
1996 ACM CIKM conference (CIKM’96), Rockville,

Michael R. Genesereth, “Sotftware Agents,” communi-
cation of the ACM, Vol. 37, No. 7, Jul. 1994, pp.48 -
54.
Robert Gray, David Kotz, Saurab Nog, Daniela Rus,
and George Cybenko, “Mobile agents: the next gener-
ation in distributed computing,” in Proceedings of the
1997 2nd Aizu International Symposium on Parallel Al-
gorithms/Architecture Synthesis, Fukushima, Japan,
1997, pp. 8 - 24.
Robert S. Gray, “Agent Tcl,” Dr. Dobb’s Journal of
Software Tools for Professional Programmer, Vol. 22,
No. 3, Mar 1997.
Joseph Kiniry and Daniel Zimmerman, “Hands-on look
at Java mobile agents,” IEEE Internet Computing, Vol.
1 , NO. 4, July 1997, pp. 21 - 30.

MD, U.S.A., 1996, pp. 296 - 305.

[9] David Kotz, Robert Gray, Saurab Nog, Daniela Rus,
Sumit Chawla, and George Cybenko, “Agent Tcl: tar-
geting the needs of mobile computers,” IEEE Internet
Computing, Vol. 1, No. 4, July 1997, pp. 58 - 67.

[lo] S. Krause and T. Magedanz, “Mobile service agents en-
abling int,elligence on demand in telecommunications,”
in Proceedings of the 1996 IEEE Global Telecommuni-
cations Conference, London, UK, 1996, pp 78 - 84.

[l l] Sven Krause, Flavio Morais de Assis Silva, and Thomas
Magedanz, “MAGNA - a DPE-based platform for mo-
bile agents in electronic service markets,” in Proceed-
ings of the 1997 3rd International Symposium on Au-
tonomous Decentralized Systems (ISADS’97), Berlin,
Germany, 1997, pp. 93 - 102.

121 Anselm Lingnau and Oswald Drobnik, “Making mo-
bile agents communicate: a flexible approach,” in Pro-
ceedings of the 1996 1st Annual Conference on Emerg-
ing Technologies and Applications in Communications,
Portland, OR, USA, 1996, pp. 180 - 183.

131 T. Magedanz and T. Eckardt, “Mobile software agents:
a new paradigm for telecommunications management,”
in Proceedings of the 1996 IEEE Network Opera-
tions and Management Symposium (NOMS’96), Ky-
oto, Japan, 1996, pp 360 - 369.

[14] Jide B. Odubiyi, David J. Kocur, Stuart M. Weinstein,
Nagi Wakim, Sadanand Srivastava, Chris Gokey, and
JoAnna Graham, ”SAIRE - A Scalable Agent-Based
Information Retrieval Engine,” in Proceedings of the
Autonomous Agents 97 conference, Marina Del Rey,
California, U.S.A., 1997, pp. 292 - 299.

I151 Michael Pazzani and Daniel Billsus, “Learning and Re-
vising User Profiles: The Identification of Interesting
Web Sites”, Machine Learning, Vol. 27, 1997, pp. 313

[16] Charles J. Petrie, “Agent-Based Engineering, the Web,
and Intelligence,” IEEE Expert, Vol. 11, No. 6, 1996,

[I71 Peter S. Sapaty and Peter M. Borst, “WAVE: mobile
intelligence in open networks,” in Proceedings of the
1996 1st Annual Conference on Emerging Technologies
and Applications in Communications, Portland, OR,

[18] Ruud Schoonderwoerd, Owen Holland, and Janet,
Bruten, “Ant-like agents for load balancing in telecom-
munications networks,” in Proceedings of the 1997 1st
International Conference on Autonomous Agents, Ma-
rina del Rey, California, U.S.A., 1997, pp. 209 - 216.

[19] Joseph Tardo and Luis Valente, “Mobile agent security
and telescript,” in Proceedings of the 1996 41st IEEE
Computer Society International Conference (COMP-
CON’96), Santa Clara, CA, USA, 1996, pp. 58 - 63.

I201 Christoph G. Thomas, and Gerhard Fischer, “Using
Agents to Personalize the Web,” in Proceedings of the
1997 ACM IUI conference (IUI’97), Orlando Florida,

- 331.

pp. 24 - 29.

USA, 1996, pp. 192 - 195.

U.S.A., 1997, pp. 53 - 60.

43 1

Authorized licensed use limited to: Tamkang University. Downloaded on March 25,2010 at 23:29:01 EDT from IEEE Xplore. Restrictions apply.

