
Using Food Web as an Evolution Computing Model

for Internet-Based Multiimedia Agents

Timothy I<. Shih
Multimedia Information NEtwol-k (MINE) Lab

Department of Computer Science a.nd Information Engineering
Tam kang University

Tamsui, Taipei Hsien, Taiwan 251, R.O.C.
email: TSHIH@CS . TKU . E:DU. TW

Abstract

The ecosystem is an evolutionary result of natural laws.
Food Web (or Food Chain) embeds a set of computation
rules of natural balance. Based one the concepts of Food
Web, one of the laws that we may learn from the natural
besides neural networks and genetic algorithms, we propose
a theoretical computation model for mobile agent evolut,ion
on the Internet. We define an agent niche overlap graph
and agent evolution states. We also propose a set. of algo-
rithms, which is used in our multimedia search programs,
to simulate agent evolution. Agents are cloned to live on
a remote host station based on three different strategies:
the brute force strategy, the semi-brute force strategy, and
the selective strategy. Evaluations of different strategies are
discussed. Guidelines of writing mobile agent programs are
proposed. The technique can be used in distributed infor-
mation retrieval which allows the computation load to be
added to servers, but significantly reduces the traffic of net-
work communication.

1 Introduction

Mobile agents are software programs tha t can travel
over the Internet. Mobile search agents find the infor-
mation specified by its original query user on a spe-
cific station, and send back search results t o the user.
Only queries and results are transmitted over the In-
ternet. Thus, unnecessary transmission is avoided. In
other words, mobile agent computing distributes com-
putation loads among networked stations and reduces
network traffic.

T h e environment where mobile agents live is the In-
ternet. Agents are distributed automatically or semi-
automatically via some coininunication paths. There-
fore, agents meet each other on the Internet. Agents
have the same goal can share information and co-
operate. However, if the system resource (e.g., net-

0-7695-0253-9/99 $10.00 0 1999 IEEE
591

work bandwidth or disk storage of a station) is insuffi-
cient, agents compete with each other. These phenom-
ena are similar to those in the ecosystem of the real
world. A creature is born with a goal to live and re-
produce. To defense their natural enemies, creatures
of the same species cooperate. However, in a pertur-
bation in ecosystems, creatures compete with or even
kill each other. The natural world has built a law of
balance. Food web (or food chain) embeds the law of
creature evolution. With the growing popularity of In-
t,ernet where mobile agents live, i t is our goal to learn
from the natural to propose an agent evolution com-
puting model over the Internet. The model, even i t is
applied only in the mobile agent evolution discussed in
this paper, can be generalized to solve other computer
science problems. For instance, the search problems in
distributled Artificial Intelligence, network traffic con-
trol, or any computation that involves a large amount
of concurrent/distributed computation. In general, an
application of our Food Web evolution model should
have the following properties:

The application must contain a number of concurrent
events.

Events can be simulated by some processes, which can
be partitioned into a number of groups according to
the properties of events.

Therle must exists some consumer-producer relation-
ships among groups so that dependencies can be deter-
mined.

The iiumber of processes must be large enough.

For instance, with the growing popularity of Inter-
net, Web-based documentation are retrieved via some
search engine. Search processes can be conducted as
several concurrent events distributed among Internet
stations. These search events of the same kind (e.g.,
pursuing the same document) can be formed in a group.
Within these agent groups, search agents can provide
information to each other. Considering the amount

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:34:19 EDT from IEEE Xplore. Restrictions apply.

of Web sites in the future, the quantity of concurrent
search events is reasonably large.

We have surveyed articles in the area of mobile
agents, personal agents, and intelligent agents. The
relat,ed works are discussed in section 2 . Some termi-
nologies and definitions are given in section 3, where we
also introduce the detail concepts of agent communica-
tion network. In our model, an agent evolves based on
state transitions, which are also discussed. A graph the-
oretical model describes agent dependencies and com-
petitions is also given. Agent evolution computing al-
gorithms are addressed in section 4. And finally, we
discuss our conclusions in section 5.

2 Related Works

The concept of mobile agent. is discussed in several ar-
ticles [3, 41. Agent Tcl, a mobile-agent system pro-
viding navigation and communication services, security
mechanisms, and debugging and tracking tools, is pro-
posed in [I]. The system allows agent programs move
transparently between computers. A software tech-
nology called Telescript, with safety and security fea-
tures, is discussed in ['i]. The mobile agent architec-
ture, MAGNA, and its platform are presented in [3].
Another agent infrastructure is implemented t o support
mobile agents [4]. A mobile agent technique to achieve
load balancing in telecommunications networks is pro-
posed in [6]. The mobile agent programs discussed can
travel among network nodes to suggest routes for bet-
ter communications. Mobile service agent techniques
and the corresponding architectural principles as well
as requirements of a distributed agent environment are
discussed in [2].

3 Definitions

Agents communicate with each other since they can
help each other. For instance, agents share the same
search query should be able to pass query results to each
other so tha t redundant computation can be avoided.
An Agent Communication Network (ACN) serves this
purpose. Each node in an ACN represents an agent on
a computer network node, and each link represents a
logical computer network connection (or an agent com-
munication link). Since agents of the same goal want
t,o pass results t o each other, agent communication rela-
tions can be described in a complete graph. Therefore,
an ACN of agents hold different goals is a graph of com-
plete graphs. Since agents can have multiple goals (e.g.,
searching based on multiple criteria), an agent may be-
long to different complete graphs.

We define some terminologies used in this paper. A

host station (or station) is a networked workstation on
which agents live. A query station is a station where
a user releases a query for achieving a set of goals. A
station can hold multiple agents. Similarly, an agent
can pursue multiple goals. An agent society (or soci-
ety) is a set of agents fully connected by a complete
graph, with a common goal associat.ed with each agent
in the society. A goal belongs t o different agents may
have different priorities. An agent society with a com-
mon goal of t.he same priority is called a species. Since
an agent may have multiple goals, i t is possible tha t
two or more societies (or species) have intersections. A
communication cut set is a set of agents belong t o two
distinct agent societies, which share common agents.
The removing of all elements of a communication cut
set results in the separation of the two distinct soci-
eties. An agent in a communication cut set is called
an articulation agent. Since agent societies (or species)
are represented by complete graphs and these graphs
have communication cut sets as intersections, articula-
tion agents can be used t o suggest a shortest network
path between a query station and the station where an
agent finds its goal. Another point is tha t an articu-
lation agent can hold a repository, which contains the
network communication statuses of links of an agent
society. Therefore, network resource can be evaluated
when an agent checks i ts surviving environment t o de-
cide its evolution policy.

An agent evolves. I t can react to an environment,
respond t o another agent, and communicate with other
agents. T h e evolution process of an agent involves some
internal states. An agent is in one of the following states
after it is born and before i t is killed or dies of natural:

Searching: the agent is searching for a goal
Suspending: the agent is waiting for enough resource

0 Dangling: the agent loses its goal of surviving, it is

0 Mutat ing: the agent is changed to a new species with

in its environment in order to search for its goal

w a i h g for a new goal

a new goal and a possible new host station

An agent is born t o a searching s ta te to search for
its goal (i.e., information of some kind). All creatures
must have goals (e.g., search for food). However, if its
surviving environment (i.e., a host station) contains no
enough resource, the agent may transfer t o a suspend-
ing s ta te (i.e., hibernation of a creature). The search-
ing process will be resumed when the environment has
better resources. But , if the environment is lack of re-
sources badly (i.e., natural disasters occur), the agent
might. be killed. When an agent finds its goal, the agent
will pass the search results to other agents of the same
kind (or same society). Other agents will abort their
search (since the goal is achieved) and transfer t o a
dangling state. An agent in a dangling state can not
survive for a long time. I t will die after some days

592

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:34:19 EDT from IEEE Xplore. Restrictions apply.

(i.e., a duration of time). Or, it will be re-assigned to
a new goal with a. possible new host station, which is a
new destina.t,ion where the agent should travel. In this
case, the agent is in a mutating s ta te and is reborn to
sea.rch for the new goal. Agent evolution st.ates keep the
sta.tus of an agent. In order to maintain the activity of
agents, in a dist.ribut,ed computing environment,, we use
message passing as a mechanism to control agent state
transitions.

Agents can suspend/resunie or even kill each other.
We need a general policy to decide which agent is killed.
By our definition, a species is a set of agents of the same
goal with a same priority. I t is the priorit,y of a goal we
ba.se on to discriminate two or more species.

We need to construct a direct graph which represents
the dependency between species. We call this digraph
an species food web (or food web). Each node in the
graph represenh a species. A11 species of a connected
food web (i.e., a graph component of the food web) are
of the same goal wit'h possibly different priorities. We
assume that , different users at different host st,ations
may issue the same query with different priority. Each
directed edge in the food web has an origin represents a
species of a higher goal priority and has a terminus with
a lower priority. Since an agent (and thus a species)
can have mult.iple goals which could be similar t,o ot,her
agent,s, each goal of an articulation agent should have
an associated food web. Therefore, the food web is used
as a competit.ion base of agents of the same goal in the
same station.

Each food web describes goal priority dependencies
of species. Form a food web, we can furt,her derive
an niche overlap graph. In an ecosyst,em. two or more
species have an ecological niche overlap (or niche over-
lap) if and oiily if t,hey are competing for t,he same re-
source. A niche overlap graph can be used t.o repre-
sent t,he competition among species. The niche overlap
graph is used in our algorithm t,o decide agent evolut.ion
policy and to est8imat.e the effect, when cert.ain fact.ors
are changed in an agent communication network. Based
on the niche overlap graph, the algorithm is able to sug-
gest strat,egies to re-arrange policies so that agent.s can
achieve their highest performance efficiency. This con-
cept is similar to the natural process that recover from
perturbations in ecosystems.

4 Agent Evolution Computing

The algorithms proposed in this section use the agent
evolution states and the niche overlap graphs discussed
for agent evolution computing. An agent wants to
search for its goal. At the same time, since the searching
process is distributed, an agent wants to find a destina-
tion st.ation to clone itself. Searching and cloning are

essentially exist. as a co-routing relation. A co-routine
can be ;a pair of processes. While one process serves as
a produicer, another serves as a consumer. When the
consumer uses out of the resource, the consumer is sus-
pended. After t,hat, the producer is activated and pro-
duces the resource until it reaches an upper limit. The
producer is suspended and the consumer is resumed.
In the computation model, the searching process can
be a consumer, which need new destinations to proceed
search. On the other hand, the cloning process is a
producer who provides new URLs.

Agen,t evolution on the agent communication net-
work is an asynchrono~s computation. Agents live on
different (or the same) stations communicate and work
with each other via agent messages. The searching and
the cloning processes of an agent may run as a co-
routine on a station. However, different agents are run
on the same or separated stations concurrently. We use
a formal specification approach to describe the logic of
our evolution computation. Formal specifications use
first order logic, which is precise. In this paper, we use
the 2 specification language to describe the model and
algorithms.

Each algorithm or global variable in our discussion
has two parts. The expressions above a horizontal line
are the signat.ures of predicates, functions, or the data
types of variables. Predicates and functions are con-
structed using quantifiers, logic operators, and other
predicaks (or funct.ions). T h e signature of a predicate
also indicate the type of its formal parameters. For
instance, Agen.t x Goal x Host-Station are the types
of formal parameters of predicate Agent-Search. The
body, as the second part of the predicate, is specified
below the horizontal line.

We use some global variables through the formal
specification. The variable goal-achieved is set to
TRUE when the sea.rch goal is achieved, FALSE oth-
erwise. VVe also use t,wo watermark variables, Q and p,
where Q is the basic system resource requirement and
,h' is the minimal requirement. Note that , cu must be
greater than p so that different Revels of treatment are
used when the resource is not sufficient.

Global Variables and Constants

goal-achieved : Goa14chieved
a : REAL

(Y :> p

Algorithm Agent-Search is the starting point of agent
evolution simulation. If system resource meets a basic
requirement (i.e., a) , the algorithm activates an agent
in the searching state within a local station. If the
search process finds its goal (e.g., the requested in-
forniation is found), the goal is achieved. Goal abor-
tion of all1 agents in a society results in a dangling

593

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:34:19 EDT from IEEE Xplore. Restrictions apply.

state of all agents in the same society (including the
agent who finds the goal). At the same time, the
search result is sent back to the original query sta-
tion via Query-Return- URL. Suppose that the goal
can not be achieved in an individual station, the agent
is cloned in another station (agent propagation). The
AgenLClone algorithm is then used On the other
hand, the agent may be suspended or even killed if the
system resource is below the basic requirement (i.e.,
Resource_Aziazlable(A, G, X) < a) . In this case, algo-
rithms Agent-Suspend is used if the resource available
is still feasible for a future resuming of the agent. Oth-
erwise, if the resource is below the minimal requirement.
algorithm Agent-lizll is used.

Agent Searching Algorithm

AgentSearch : Agent x Goal x Hos tS ta t ion

V A : Agent, G : Goal, X : HostS ta t ion
AgentSearch(A, G , X) +

ResourceAvailable(A, G , X) 2 (Y j

[G E LocalSearch(.4, X) j
Abort_All(A t AgentSocie ty) A
send-result (A’. URL,

goal-achieved = TRUE
V G 4 LocalSearch(A , A’) j

Agent-Clone(A, G ,
A t AgentSocie ty)]

V Resource-Available(A, G , X) 2 ,R j

V ResourceAvailable(A, G , X) < 0 j

G. Query-Return-URL) A

Agen tSuspend(A , G , X)

Agent-liill(A, G , X)

Agent, cloning is achieved by the Agen.f-Clone algo-
rithm. When the cloning process wants to find new
stations t,o broadcast a.n agent, t.wo implement,ations
can be considered. The first is to collect all U R L s
of st,at.ions found by one search engine. But, consid-
ering the network resource available, the implementa-
tion may check for the common U R L s found by t.wo
or more search engines. New U R L s are collected by
the Search-For-Stations algorithm, which is invoked in
the agent cloning algorithm. Agent propagation strat-
egy decides the computation efficiency of our model. In
this research, we propose three strategies:

the brute force agent distribution

the semi-brute force agent distribution, and

the selective agent distribution.

The first strategy simply clone an agent on a remote
stmation, if the potential station contains information
that helps the agent to achieve its goal. The semi-brute
force strategy, however, finds another agent on a poten-
tial station, and assigns the goal t o that agent. The se-
lective approach not only try to find a useful agent, but.

also check for the goals of tha t agent. Cloning strate-
gies affect t.he size of agent societies thus the efficiency
of computa,tion.

Agent Cloning Algorithm: the Brute Force
Strategy

Agent-Clone : Agent x Goal x Agen fSoc ie t y

V A : .4gent, G : Goal, S : AgentSocie ty

[V X : Hos tS fa t ion
Agent-Clone(A, G , S) e

A’ E Search_For-Statzons(G) j
(3 A’ : Agent A’ = copy(A) A
X.Agen tSe t = X.Agen tSe t U { A‘ } A

AgentSearch(A’, G , X))]

goal-achieved = FA LSE]

S = S u { A ’ } A

V [SearchJor-Statzons(G) = 0

The brute force agent distribution strategy makes a
copy of agent A , using the copy function, in all stat,ions
returned by t.he Search-For-Statzons algorithm. Agent
set in each station is updated and the s0ciet.y S where
agent A belongs is changed. Agent A’, a clone of agent
A is transmitted to station A’ for execution.

Agent Cloning Algorithm: the Semi-brute
Force Strategy

Agent-Clone : Agent x Goal x AgenfAoczety

V A : Agent, G : Goal, S : AgentSoczety

[V X : HostStatzon
Agent-Clone(A, G , S)

X E Search_For-Stattons(G) j
[3 A’ : Agent A‘ E X . A g e n t S e t j

(A‘ . Goa lSe t = A ’ . G o a l S e t ~
1 G I A

S = S u { A ’ } A
AgenfSearch(A’ , G , A’))]]

v [Search_For-Stateom(G) = 8 3
goal-achzeved = FA LSE]

The semi-brute force agent distribution approach is
similar t.o the brute force approach, except that it does
not make a copy of the agent but give t,he goal to an
agent on its destination station. The agent which ac-
cepts this new goal (i.e., A‘) is activated for the new
goal in its belonging station.

Agent Cloning Algorithm: the Selective
Strategy

594

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:34:19 EDT from IEEE Xplore. Restrictions apply.

Agent-Clone : Agent x Goal x AgentSocie ty

V A : Agent, G : Goal, S : AgentSoczety

[V X : HostS ta tzon
Agent-Clone(A, G , S) e

X E Search_For-Statzons(G) =+
[3.4’ : Agent .4‘ E X . A g e n t S e t =+

[G E A’. Goa lSe t =+

V G A’.GoalSet 3
S = S U A‘ t AgentSoczety

(.4’. GoalSe t =

A S = S U { A ‘))]
A’.GoalSet U { G }

A AgentSearch(A’, G , A’)]

[3 A“ : Agent A” = copy(A) A
X . A g e n t S e t = { A”) A

AgentSearch(A”, G , S)]]]

V [X . A g e n t S e t = 0 =+

S=Su{ A ”) A

V [SearchJor-Statzons(G) = 0
+ goal-achzeved = FA LSE]

The last approach is more complicate. The selective
approach of cloning algorithm must check whether there
is another agent in the destination station (i.e., X). If
so, the algorithm checks whether the agent (i.e., A’) at
that station shares the same goal with the agent t o be
cloned. If two agents share the same goal, there is no
need of cloning another coipy of agent. Basically, the
goal can be computed by the agent a t the destination
station. In this case, the union of the two societies is
necessary (i.e., S = S U A’ Agent-Society). On the
other hand, if the two agents do not have a common
goal, to save computation resource, we may ask the
agent a t the destination station t o help searching for
an additional goal. This case makes a re-organization
of the society where the source agent belongs. The
result also ensure that the number of agents on the
ACN is kept in a minimum. Whether the two agents
share the same goal, the Agent-Search algorithm is used
t o search for the goal again. In this case, Agent A’
is physically transmitted t o station X for execution.
When there is no agent running on the destination sta-
tion, we need to increase the number of agents on the
ACN by duplicating an agent on the destination sta-
tion (i.e., the invocation of A” = c o p y (A)) . The soci-
ety is reorganized. And the Agent-Search algorithm is
called again. In the acse that no new station is found
by the Search-For-Stataons algorithm, the goal is not
achieved.

The agent search and agent clone algorithrns use
some auxiliary algorithms, which are discussed as fol-
lows. The justification of system resource available de-
pends on agent policy, as defined in A.Policy. Agent
policy is a set of factors indicated by name tags (e.g.,
N E T W O R K - B O U N D) . The estimation of resources is
represented as a real number, which is computed based
on X.Resource of st.ation X . Note that , in the algo-
ri thm, w l and w2 are weights of factors (w l + w2 =

1.0). We only describes some cases of using agent poli-
cies. Other cases are possible but omitted. Moreover,
we consider the priority of goal G. If the priority is
lower than some watermark (i.e., G.Przorzty < e) , we
let rl be a constant less than 1.0. Therefore, resources
are reserved for other agents. On the other hand, if
the priority is high, we consider the value returned by
Resourcc-Available should be high. Thus the potential
agent can proceed its computation immediately. The
values of 0 and w depend on agent applications.

A u x i l i a r y A l g o r i t h m s

Resourceilvaaloble : Agent x Goal x HostStataon -
R E A L

V A : Agent, G : Goal, X : HostS ta tzon , R : R E A L
3 w l , w2, r l , 7-2: R E A L .
Resourceilvaalable(A, G, X) = R -S

[NETWORK-BOUND E A.Polzcy =+
R = X.Resource.Network

V CPU-BOUND E A.Polzcy j
R = X.Resource.CPU

V MEMORY-BOUND E A.Polzcy j
R = X.Resource.Memory

V CPU-BOUND E A.Polacy A

MEMORY-BOUND E A.Polzcy =+
R = X.Resource.CPU * w l +

wl + w2 = 1.0
X.Resource.Memory* w2 A

v ...I
A 3 8 , w : Przorzty

[G. Przorzty < 8 3

V G.Przorzty > w 3
(R = R t r l A r l < 1.0)

(R = R * r 2 A r 2 > I .0)]

The above algorithms describe how an agent evolves
from a s ta te to another. How agents affect each other
depends on the system resource available. However,
in an ACN. it is possible that agents suspend or even
kill each other, as we described In previous sections.
The niche overlap graphs of each goal play an impor-
tant role. We use the Agent-Suspend and Agent-Kill
algorithms t o take the niche overlap graphs of a goal
(i.e., nzc/‘le-compete(G)) into consideration. In the
Agent-Suspend algorithm, if there exists a goal tha t has
a lower piriority comparing to the goal of the searching
agent, a suspend message is sent to the goal to delay its
search (i x . , via suspend(G’ T Agen t)) . The searching
agent may be resumed after that since system resources
may be released from those goal suspension. In the
Agent-Kzll algorithm, however, a kill message is sent
instead (i.e., via terrnznate(G‘ Agent)) . The system
resource is checked against the minimum requirement
p. If resuming is feasible, the Agent-Search algorithm
in invoked. Otherwise, the system should terminate the
searching agent.

595

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:34:19 EDT from IEEE Xplore. Restrictions apply.

1 AgentSuspend : Agent x Goal x HostS ta t ion

V A : Agent, G : Goa1,X : HostS ta t ion e
Agen iSuspend(A , G , X) U
3 GS : GoalSe t e

GS = niche-compete(G)
A (V G‘ : Goal e G‘ E GS A

G’.Priorzty < G.Priority 3

A (Resource_Available(A, G , X) 2 /3 3

v ResorrrceAvailable(A, G , X) < /3 +

suspend(G’ 1 Agent))

AgentSearch(A, G , X)

suspend(A))

A g e n t J i l l : Agent x Goal x HostS ta t ion

V A : Agent, G : Goal, X : HostS ta t ion e

AgentJt’ill(A, G , X) e
3 GS : GoalSe t 0

GS = niche-compete(G)
A (V G’ : Goal 0 G’ E GS A

G‘.Priority < G.Priority j
terminate(G’ Agent))

A (Resource-Available(A, G , X) 2 /3 3

V Resource_Available(A, G , X) < p +
AgentSearch(A, G , X)

terminate (A))

T h e other auxiliary algorithms are relatively less com-
plicated. Function Local-Search takes as input an agent
and a station. I t returns a set of goals found by the
agent in tha t station. A match predicat,e is used. This
match predicate is app l i~a t~ ion dependent. I t could be
a search program which 1ocat.es a key word in a Web
page, or a request of information from a user (e.g., a
survey questionnaire). T h e Abort-All predicate t.akes
as input an agent society and terminates all agents
within that. s0ciet.y. The Search-For-Sfafions funct,ion
t.akes as input a goal and returns a set. of host, st,a-
tions. T h e st.ations should be selected depending on the
candidate-station function, which estimat,es the possi-
bilit,y of goal a.chievement in a station. This function
can be implemented as a Web search engine which looks
for candidate URLs. We have omitted some detailed
definitions of the above auxiliary algorithms] as well as
some primit.ive functions which are self-explanatory.

LocalSearch : Agent x Hos tS ta t ion -+ G o a l S e f

V A : A g e n t , A’ : HostS ta t ion , GS : G o a l S e f e

GS = { G : Goal I G E A.GoalSe t A

X . Resource.Injormation) }

LocalSearch(A,X) = GS U

match(G.Query,

Abor t i l l1 : AgentSociety

Abort,411(S) *
V A : Agent e -4 E S + terminate(A)

Search-For-Stations : Goal + P Hos tS ta t ion

V G : Goal, X-Set : P HostS ta t ion e
Search-For-Stations(G) = X S e t e

X S e t = { X : HostS ta t ion I
candidatestation(G , X) 3

5 Conclusions

Mobile agent based software engineering is interest-
ing. However, in the literature,-we did-not find any
other similar theoretical approach to model what mo-
bile agents should act on the Internet, especially how
mobile agents can cooperate and compete. A theoret,-
ical computation model for agent evolution was pro-
posed in this paper. Algorithms for the realization of
our model were also given.

References
David Kotz, Robert Gray, Saurab Nog, Daniela Rus.
Sumit Chawla, and George Cybenko, “Agent Tcl: tar-
geting the needs of mobile computers,” IEEE Internet
Computing, Vol. 1, No. 4, July 1997, pp. 58 - 67.
S. Krause and T. Magedanz, “Mobile service agents en-
abling intelligence on demand in telecommunications,”
in Proceedings of the 1996 IEEE Global Telecommuni-
cat.ions Conference, London, UK, 1996, pp 78 - 84.
Sven Krause, Flavio Morais de Assis Silva, and Thomas
Magedanz, “MAGNA - a DPE-based platform for mo-
bile agents in elect,ronic service markets,” in Proceed-
ings of the 1997 3rd International Symposium on Au-
tonomous Decent.ralized Systems (ISADS’97), Berlin,
Germany, 1997, pp. 93 - 102.
Anselm Lingnau and Oswald Drobnik, “Making mo-
bile agents communicate: a flexible approach,” in Pro-
ceedings of the 1996 1st Annual Conference on Emerg-
ing Technologies and Applications in Communications,
Portland, OR, USA, 1996, pp. 180 - 183.
Michael Pazzani and Daniel Billsus, “Learning and Re-
vising User Profiles: The Identification of Interesting
Web Sites”, Machine Learning, Vol. 27, 1997, pp. 313

Ruud Schoonderwoerd, Owen Holland, and Janet
Bruten, “Ant-like agents for load balancing in telecom-
munications networks,” in Proceedings of the 1997 1st
International Conference on Autonomous Agents, Ma-
rina del Rey, California, U.S.A., 1997, pp. 209 - 216.
Joseph Tardo and Luis Valente, “Mobile agent security
and telescript,” in Proceedings of the 1996 41st IEEE
Computer Society lnternat.iona1 Conference (COMP-
CON’96), Santa Clara, CA, USA, 1996, pp. 58 - 63.

- 331.

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:34:19 EDT from IEEE Xplore. Restrictions apply.

