
IEEE Region 10 Confexence. Tencm 92
11th - 13th November. 1992
Melbourne, Australia

Cyclic Inheritance Detection for Object-Oriented Database

Ding-An Chiang and Mmg-Chi Lee

Department of Computer Science
Tamkang University

Taipei, Taiwan, R.O.C.

Abstract
Inheritance is the main theme of schema design for the object-oriented software and object-oriented database.

This notion supports the class hierarchy design and captures the is-a relationship between a class and its sub-
class. It contributes to good properties of modularity, reusability and incremental design Cox86][Meyer88].

self-inheritance. Unfortunately, for a class hierarchy with cyclic inheritance, to detect all the cyclic inheritances
is a NP-complete problem. This paper describes a graph-theoretical reduction methodology to reduce them in a
polynomial time. An algorithm to support this reduction is also presented.

However, misuse of inheritance wil l lead to cyclic inheritance which suffers from redundant c I asses and endless

1 Introduction
Object-oriented design strategy is a new promising approach for developing database to reduce data redundancy
and enhance data reusability. One of the advantages of object-oriented programming over conventional procedure-
oriented programming is supporting the notion of a class hierarchy and inheritance of properties (instance variables
and methods) along the class hierarchy. A class hierarchy captures the &-a relationship between a class and its
subclass a class inherits all properties defined for its superclasses, and can have additional properties local to
itself. The notion of property inheritance and class hierarchy enhances application programmer’s productivity by
facilitating topdown design of the database as well as applications. The class hierarchy is usually represented by
a directed graph called inheritance gmph.

misuse of it will lead to three trouble problems: functionfmcthod) name-confliction , redundant inheritances (re-
dundant is-a relationships and cyclic inheritancc. The 6rst two problems will be introduced briefly in this paper,
instead of being solved. d e focus on the thud problem - cyclic inheritance.

The &-st problem, function name-confliction is caused by multiple inheritance. As the classes are arranged to
represent the is-a relationships among them, it is possible for a class to inherit properties from several super-
classes. This situation is called multiple inheritance IStefi 861. It leads to possible function name-confictions
between properties inherited from various superclasses (Bor 82][Car 88 . Another source of conact arises from the
possibility that a locally-defined class variable or method may have the same name as the one that is inherited.
These conflicts are partially resolved by giving the local definition precedence. Other conficts are resolved based
upon a user-supplied total ordering of the superclasses Car9ll. There have been many researches concuning
multiple inheritance discussed in Bor82][Car88][Car90] Aung 921 etc.

The second problem is the re B undant inheritance. OW, consider the situation in which the user, for three
given classes A, B, and C, declares A to be a subclass of B, B to be a subclass of C, and A to a subclass of C.
Since is-a relationship is transitive, the last declaration “A is a subclass of C is redundant in the seme that
it can be derived from other is-a relationships. We call such declaraction, “A i a a subclass of C a a redundant
inheritance.

The third problem is cyclic inheritance problem. Now, consider the situation in which the user, for three given
classes A,B and C, declares A to be a superclass of B (denoted by A -+ B), B to be a superclass of C (denoted by
B -+ C), and C to be a superclass of A (denoted by C -+ A). By the property of transitivity, we find that such
declaration will lead to a circuit (A 4 B + C -* A). A, B and Care actually the same class &e., A E B E C).
The circuit is also called, cyclic inheritance and these classes on the circuit are called redundant classes [Horowize

The situation of cyclic inheritance is undesirable because it suffers from the endless self-inheritance. The
class hierarchy design of object-oriented database (OODB) tends to be modified frequently during the software
or database lifetime and users tend to arrive at a preliminary design through trial and error using the schema

Although inhekitance mechanism supports thc good pro erties of reusability and incremental design [Cox86][Mey88],

911.

633 0-7803-0849-2192 $3.00 0 1992 IEEE

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:10:38 EDT from IEEE Xplore. Restrictions apply.

change operations [Banerjee 87). After the user modifies the class hierarchy, the resulting class hierarchy is prone
to enter the cyclic der i tance which leads to be in an inconsistent and redundant state.
To enhance the correctness of a class hierarchy design, the cyclic inheritance should be detected and eliminated.

One approach to solving the problem is finding out all the cyclic inheritances and getting rid of them. However,
the detection of all the cyclic inheritances is proved to be computationally hard. Instead of doing so, we reduce
these redundant classes to one class by ut ihi ig the refine or rename strategies [Meyer 881. This reduction will
help us to get rid of cyclic inheritances in a polynomial time for a class hierarchy. For most cases, the redundant
classes could be reduced to one class. However, in some cases, we cannot reduce these redundant classes into one
class successfully, because they involve the problems of type-checking and semantics. In this paper, we are not
concerned with these problems but assume that redundant classes could be reduced to class without any prework.
How to relax the assumptions is left to further researches.
In the next section, we use graph-representation to introduce the core concepts of inheritance mechanism,

including single inheritance, multiple inheritance and cyclic inheritance. In section 3, a cyclic inheritance detection
and reduction algorithm is proposed. Although detecting whether a class hierarchy contains cyclic inheritance
is 0 k) where k is the number of inheritance edges, finding out all cyclic inheritances (cycles) is a NP-complete
probiem. We propose a graph-theoretical reduction process to reduce all the cyclic inheritance in a polynomial
time O(nk . In section 4, we analyse the time complexity of this algorithm. Future researches are recommended
in the find section.

2 Inheritance and Graph Theorems
For a class h i d y design, there is an inheritance relationship C1 + Cz, if class C1 is a superclass of C,.
The class-superclass relationship C1 + Cz is an 'is-a" relationship in the sense that every instance of a class is
also an instance of the superclass. Using the terminology of the entity-relationship model, we say that C, is a
generalization of Cz and C, is a specialization of C1. We map the is-a relationship into an edge which connect
vertices C,, and C, in a graph representation.

An inheritance graph could be represented by a connected dikcted graph G=(V,E), where Vis a set of classes,
and E is a set of inheritance edges which are ordered relations such that E = { 2 -+ y I y inherits from z, where
z and y E V }. For an inheritance graph, it could be divided into three basic types: single inheritance graph,
multiple inheritance graph ,and cyclic inheritance graph

First, a single inheritance is that each dass inherits uniquely from one parent class. It is a tree structure and
no one class inherits from more than one parent class.

Second, if a class is permitted to inherit from more than one parent class, it is called a multiple inheritance
[Stefi 86 Cardelli 841. For example, if a class A inherits from two p-t classes, B and C B 4 A, C -+ A), this
case is c d e d multiple inheritance and prone to lead to name-conflictions. If, for example, L t h B and C contain
a function push stock, element), it is an ambiguity for class A, because A cannot distinguish it [Meyer 88

Third, for a Lass hierarchy with n classes, a cyclic inheritance is a sequence of relationships Ci -+ Ci+l, -,
Ci+z, . . , Cj-1 -, Cy such that the terminal class Cj coincides with initial class Cc, for 1 5 j 5 n. For example,
if there are n classes and Cl -+ C2, C2 -+ Cs, ..., C=-I + C,,, C,, -+ Cl. (see figure 1.)

Figure 1. An example of cyclic inheritance.

In this case, we h d that such declaration will lead to a circuit in a class hierarchy. This is an improper design
because it suffers from endless self-inheritance by the property of transitivity. What is much worse still is that it
leads to redundant classes (Cl Cz 5 ... 5 C,,). All the classes on the circuit are the same. In the following,
we derive a theorem to characterize the redundant class problem.

Theorem 1: If G = (V, E) is an inheritance graph with cyclic inheritance, then G must contain at least one
circuit (closed region).

Theorem 1 reveals that whether a class hierarchy contains a cyclic inheritance is equivalent to checking whether
it contains a circuit. Although it shows that cyclic inheritance leads to a circuit, how to detect a circuit is an
another problem. Fortunately, this detection is not difficult because it could be done easily by depth-first search.
In the following, we propose a graph theorem to show that time complexity of detecting a cyclic inheritance in

.

634

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:10:38 EDT from IEEE Xplore. Restrictions apply.

a class hierarchy is proportional to the number of inheritance edges. This theorem will help to reduce all cyclic
inheritances in a polynomial time in the next section.

Theorem e: Let G = (V, E be a diected graph. Then, the time complexity of determining whether it contains
a cyclic inheritance is O(k], where k is number of inheritance edges in E.

By theorem 2, we already show that detecting whether a class hierarchy contains cylcic inheritances is equivalent
to checking whether it contains circuits. Therefore, finding all cyclic inheritances is equivalent to detecting all
circuits. However, for given a graph, finding out all circuits is a NP-complete problem [Manber 89 That is, if we
want to detect all cyclic inheritances to remove them by resetting all the inheritances between c/,s and their
superclasses, this approach wi l l suffer from a NP-complete problem.

Theorem 9: Finding out all cyclic inheritances is a NP-complete problem.

In the next section, instead of actually finding out all cyclic inheritances, we present a graph-theoretical
methodology to reduce these circuits.

3 Cyclic Inheritance Reduction
In this section, a graph-theoretical methodology to reduce cyclic inheritances in a polynomial time is presented.
Theorem 2 shows that finding a cyclic inheritance is O(k where k is the number of inheritance edges. We will
take the advantage of this property to help to develop tke reduction methodology. The idea is that we find a
cyclic inheritance each time and reduce these redundant classes to one class. Repeat this process until there is
no cyclic inheritance.
An inheritance graph G = (V,E) containing a univers'e (dummy) class is built to represent the class hierarchy

design, where V are the set of classes, and E are edges representing all the inheritance relationships between all
classes. This universe class is used to connect all the separated class hierarchies such that the G is a connected
graph [Tsuda 911 (see figure 2). For an OODB, a class hierarchy design is usually composed of a set of subgraphs
(separated class hierarchies), the advantage for adding this universe class is that it ensures a connected graph
which will help to reduce the cyclic inheritance by depth-first traverse.

universe class

Fig.2 universe class connects all separated class hierarchies.

This mduction must sttart from the tlniuerse class and traverse all the class hierarchies from 1 to n, suppose
there are n class hierarchies. We add this universe class to connect all the separated class hierarchies.

Cyclic Inheritance Reduction

This reduction task is proceeded in a shift-and-reduce manner. This manner simplifies the relationships between
classes but it needs an extra memory (stack) to keep those shifted classes before finding a cyclic inheritance. We
shift in the classes in the order of the is-a relationships and check whether a cycle is found. If a circuit is found,
a reduction is performed.

A shift action is defined as travelling the inheritance graph along the inheritance edges by depth-first traverse.
For each being traversed class v, we must check whether it has appeared in stack or not, if it does not appear
yet and v is not tenninal class, then push it into stack. Otherwise, if it is a terminal class, then pop all terminal
classes in the top of the stack. Here, we define the terminal class as a class whose descendant classes have been
traversed already. If v does not satisfy both the two conditions, then there must be a cyclic inheritance in the
stack and we have to pop classes from the stack until v is encountered (i.e., a cyclic inheritance). In fact, at this
moment all the popped classes are just equal to the set of redundant classes on this reduced cyclic inheritance
and they could be reduced into one class. After the reduciton, the reduced class should be pushed into stack and
we shift in next is-a relationship. Note that checking whether a being traversed class v has appeared or not needs
an examination to the stack. That is we need to search for the stack to check whether the class v has appeared
in the stack. The search time which is proportional to the numbers of clases in Vis O(n). The shift-and-reduce
algorithm is described as follows:

635

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:10:38 EDT from IEEE Xplore. Restrictions apply.

Cyclic Inheritance Algorithm
{ A depth-first search of G is carried out beginning at the universe class p. A stack is initialized with 9. A
class (vertex array visited 1.~11 initially set false. }
Input: an der i tance grap$ G = (V, E), where V is the class sets and E is a set of is-a relationships
Output: a directed acyclic graph G = (V', E')
be* msited(pk=true;

For (eac vertex v adjacent to p and not visited[v])
begin

shift an is-a relationship (p -+ U along the inheritance edges by depth-first traverse

if U is not in stack and v # terminal node then
push it into stack;
CIR(v);

else if v = terminal class then
visited(v]:=true;
pop terminal classes;

while (stack[top] # p and stack[top] is not U)

check whether vertex v appeare d in stack;

else

pop stack;
reduce all the popped classes (redundant classes) to a new class;
push the new class into stack.

end {for}

The algorithm of the reduction of a cyclic inheritance is presented above. In the following, a theorem to ensme
that the resulting graph must be a DAG is presented.

Theorem 4. Let G = (V,E) be a connected dkected graph with cyclic inheritances, and k t G' = (V' ,E') be the
reduced graph of G by the reduction process above. Then, G' must be a directed acyclic graph.

end

4 Time Complexity Analysis
In the previous section, we have proved that the algorithm ensures a DAG. In the following, we want to analyze the
performance (time complexity) of the algorithm. The performance is proportional to the number of inheritance
edges O(k). When k = 2, if there exists a cyclic inheritance on them (A + B and B + A) in this case class
A is equivalent to class B, we can reduce either one of them. The reduction time is a constan;. The reduciion is
shown as below.

* A
B

Now consider the w e of k 2 3 and assume that G' = (V', E') is the resulting graph after reducing a circuit
(a set. of redundant classes) from the G= V,E), where kl is the number of E' and kl = k - numbers of reduced
anhentancc edges. By theorem 2, we alreaiy know that time complexity of detecting a circuit is O(k). Therefore,
Since G' E G, the reduction of G' is O(k1). Repeat this step until the inheritance graph contains no cydic
inheritance. Suppose i cyclic inheritances are found to be reduced by depth-first traverse and the remaining
inheritance edges for each reduction are kz, k3, . . . , k respectively, where i < n. Then, the total reduction time
is O(k,) + 0 b) + .:. + O(k) I 0 nk). Therefore for a cyclic inheritance graph, we can reduce it to a directed
cyclic graph [DAG) m a polynomia! time O(nk) under a worst case, where n are the number of classes and k are
the number of inheritance edges.

5 Conclusion
In this paper, we reveal that improper class hierarchy design will lead to cyclic inheritance. Detecting all the
cyclic inheritances is a NP-complete problem. We propose a graph-oriented reduction methodology to reduce all
the cycIic inheritances in a polynomial time O(nk). An algorithm to support this reduction is also presented.
However, we ignore the problems of type checkkrg and semantics between those redundant classes during the
reduction. The problem of how to ensure the correctness of the reduction is left to future researches. In addition,

636

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:10:38 EDT from IEEE Xplore. Restrictions apply.

the redundant is-a problem is undicussed in this paper. In fact, to detect all the redundant is-a relationships is
another NP-complete problem. However, with the e t a t i o n of space, we will introduce it in another paper.

References
o 76 A. Aho, J. Hoftaaft, and J. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley IAh Pa L lishing Company, 1976.

[Arisawa 861 H. Arisawa and T. Miura. On the properties of extended inclusion dependencies. IEEE Transaction
on Software Engineering,” SE12(11), 1986.

[Atzeni 861 P. Atzeni and D.s Parker. Formal Properties of net-based knowledge representation schemes. In Pro-
ceedings on Data Engineering Conference, 1986.

[Banerjee 861 J. Banerjee, H.J. Kim, W. Kim, and H.F. Korth. Schema evolution in object-oriented persistent
database. In Proceedings of the 6th Advanced Database Symposium, 1986.

[Bor 821 A.H Borning and D.H Ingalls, ‘Multiple Inheritance in Smalltalk 80,” Proc. of the AAAI’82conference,
Pittsburgh, 1982.

[Card& 841 Luca Card&, ‘A Semantics of Multiple Inheritance,” in Semantics of Data Types, Lecture Notes
in Computer Science 173, pp. 51-67, Springer-Verlag, New York, 1984.

[Car 881 B. Carre and G. Comyn, “On Multiple Classification,” Points of View and Object Evolution,” Artificial
Intelligence and Cognitive Science, Manchester University Press, J. Demongeot, T. H w e , V. R i d e and C.
Roche E&., 1988.

[Car 901 B. Carre and J.M Geib ‘The Point of View Notion for Multiple Inheritance,” OOPSLA, 1990.

(Chung 92 C.M. Chung and M.C. Lee ‘Object-oriented Programming Testing Methodology”, Fourth Interna-
tional Conf. on Software Engineering and Knowledge Engineering, SEKE’ 92, IEEE, Computer Society, Italy,
June, 1992. to be published.

[Cox 861 Cox, B. Object-oriented Analysis, Yourdon Press, 1990.

[Horowize 91 Ellis Horowize and Rajiv Gupta, Object-oriented Databases with Applications to Case, Networks,

[Lenzerini 871 M. Lenzerini. Covering and Disjointness Constraints in Type Networks. In Proceedings on Data

[Tsnda 911 K. Tsuda - ‘An Object-oriented Data Model with a Faculty for Changing Object Structures,” IEEE

(Meyer 881 . Object-oriented Software Construction, Prentice Hall 1988.

and V d I CAD, Prentice-Hall, 1991.

Engineering Conference, 1987.

trans. on Knowledge and Data Engineering, Dec. 1991, Vol3. No. 4, pp 444-460.

[SteHc 861 M. Stefik and D. Bobrow. Object-oriented Programming: Themes and Variations. AIMagatine, 6(4):

[Manber 89) Udi Manber, Introduction to Algorithms - A Creative Approach, Addison-Wesley, 1989.

40-62, 1986.

63 7

Authorized licensed use limited to: Tamkang University. Downloaded on March 23,2010 at 21:10:38 EDT from IEEE Xplore. Restrictions apply.

