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Abstract 

 
Two distributed system problems, the file and task placement 

problem and the dynamic load balancing problem, are investigated in 
this paper. To find the placement of files and tasks at sites with 
minimal total communication overhead, we propose using the 
Simulated Annealing approach and multiple objective functions. 
Experimental results show that our proposed approach depicts 
superior performance with much less complexity over the previously 
introduced Genetic Algorithm approach. 

Dynamic load balancing is employed to equalize processor loads 
in a distributed system. It allows excessive tasks at a heavily loaded 
processor to be migrated to another processor with a light load during 
execution. To effectively lift up the acceptance rates for such task 
migration requests, we propose an efficient new scheme that yields 
much improved acceptance rates, followed by reduced unnecessary 
request messages and communication overhead, when compared with 
the standard sender-initiated scheme and the fairly complicated 
GA-based approach. 
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1. Introduction 

Two distributed system problems, the file and 
task placement problem and the dynamic load 
balancing problem, are investigated in this paper. 
A distributed system is built to work on a 
distributed computing architecture composed of 
several sites which are connected by a 
communication network with a given topology. 
Each of the sites has its own memory and 
processors, stores a restricted number of files and 
is capable of running multiple tasks. Each task may 
access the files on its own site or access those on 
another site with some communication overhead 
that is determined by the topology and the speed of 
each link of the network. Hence, the main concern 

for the distributed file and task placement problem 
is to find the placement of files and tasks at the 
sites with minimal total communication overhead. 
To this end, a Genetic Algorithm (GA) has been 
developed [1]. 

The GA operates on a pool of chromosomes 
which represent candidate solutions to the 
problem. Chromosomes are selected following 
"survival of the fittest" and are passed on to the 
next generation in a process called "reproduction". 
An objective function is supplied and used to 
weigh the relative merits (the so-called "fitness 
value") of the chromosomes in the pool, and the 
reproduction is realized by the genetic operators, 
such as selection, crossover and mutation, to 
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generate new points in the search space. The GA 
approach claims better performance than the 
greedy heuristic approach in terms of 
communication overheads that arise from 
accessing the files required by the tasks [1]. 
Nevertheless, the genetic operations involved are 
quite complicated and time consuming. For 
improvement, we propose using the Simulated 
Annealing (SA) approach [2] together with 
multiple objective functions to upgrade the 
placement of files and tasks. The Guided 
Evolutionary Simulated Annealing (GESA) 
approach [3], an extension of the SA approach, is 
also evaluated to see its fitness for the placement 
problem. As experimental results demonstrate, our 
proposed SA approach depicts superior 
performance with much less complexity than both 
the GA and GESA approaches in obtaining 
desirable file and task placements. 

On the other hand, in a distributed system 
where processors are loosely connected by a 
communication network, the random arrival of 
tasks at each processor is likely to bring about 
uneven loads, that is, some processors may be 
heavily loaded while others may not. To equalize 
the loads at all processors, dynamic load balancing 
is usually employed. It allows excessive tasks at a 
heavily loaded processor to be migrated to another 
processor with a light load during execution. 
Various dynamic load balancing schemes, such as 
the standard sender-initiated scheme [4] and the 
scheme based on the genetic algorithm (GA) [5], 
have been introduced - with certain disadvantages. 
For example, in the standard sender-initiated 
scheme, a request for task migration is initially 
issued from a heavily loaded processor (the sender) 
to a selected processor (the potential receiver) 
randomly. When the selected receiver is not lightly 
loaded, the request might be rejected and sent back 
and forth repeatedly until a suitable receiver is 
found. The whole process can be very time- 
consuming due to a large number of unnecessary 
requests. The GA-based approach attempts to 
reduce such unnecessary requests and by doing so 
to lift up the request acceptance rate, but with its 
complex genetic operations, the effort proves 
unavailing. To realize efficient dynamic load 
balancing, we present a new scheme that is able to 
yield more desirable results with much simplified 
operations. Experimental evaluation shows that 
with only slightly higher time complexity over the 
standard sender-initiated scheme, our simplified 
new scheme realizes very remarkable elevation in 
request acceptance rates when performing dynamic 

load balancing, significantly reducing the number 
of unnecessary request messages as well as 
communication overheads. 

2. A Simulated Annealing Approach to         
Distributed File and Task Placements 

The distributed file and task placement 
problem, known to be NP-complete [1], is indeed 
the generalization of both the file allocation 
problem in distributed systems and the fragment 
allocation problem in distributed databases [6-9]. 
As mentioned, the major concern for such a 
problem is to find the placement of files and tasks 
at the sites with minimal total communication 
overhead so that the execution time can be 
trimmed down accordingly. As the genetic 
algorithm (GA) developed for the purpose [1] 
involves too complicated and time consuming 
operations, we propose using the simulated 
annealing (SA) approach together with multiple 
objective functions to obtain more desirable file 
and task placements. 

2.1 Background 
A distributed system is composed of tasks, 

files and sites. Assume that α tasks (t1, t2, …, tα) 
are to be run, β files (of sizes f1, f2, …, fβ) are 
needed by the tasks, and γ sites (of storage capacity 
s1, s2, …, sγ) can execute tasks and store files. Each 
file is required by at least one of the tasks. The 
distributed file and task placement problem is to 
find the placement of the β files at sites pf(j) (1 ≦ 
j ≦ β) and α tasks at sites pt(i) (1 ≦ i ≦α), 
where 1 ≦ pt(i), pf(j) ≦ γ, with minimal total 
communication overhead. The feasibility of the 
placement must subject to the problem constraints, 
e.g. the total size of the files placed in a site can 
not exceed the storage capacity of the site. 

As an adaptive search technique, the genetic 
algorithm (GA) provides an alternative to 
traditional optimization techniques by using 
directed random searches to locate optimal or near 
optimal solutions of complex problems and is 
rooted in the mechanisms of evolution and natural 
genetics [10-11]. It operates on a pool of 
chromosomes which represent candidate solutions 
to the problem under investigation. The placement 
problem is encoded into a chromosome with two 
parts: In one part, each gene represents the 
placement for a particular task; in the other, each 
represents that for a particular file. Thus the length 
of the chromosome is equal to the total numbers of 
tasks and files. 
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The GA selects chromosomes following 
"survival of the fittest" and passes them on to the 
next generation in a process called "reproduction". 
An objective function is supplied and used to 
weigh the fitness values of the chromosomes. 
Since the placement of the β files and α tasks must 
ensure the minimization of the total 
communication overhead, an objective function — 
the total communication overhead 

∑ ∑= =

α β

1 )(),(1 ,i jpipj ji ft
Cr  - needs to be minimized. 

It is assumed in the function that ri,j is a boolean 
value to indicate whether file j (fj) is required by 
task i (ti), and Cpt(i), pf(j) indicates the least 
communication overhead for ti at site pt(i) to access 
fj at site pf(j). Besides, to ensure the feasibility of 
each candidate solution, it is subject to the 
constraint that the number of tasks at any site, 
Σ{i|pt(i)=k} 1 for all k's where 1 ≦  k ≦  γ, is 
minimized (for balancing the task loads among all 
sites), and that the aggregate capacity of any site is 
not exceeded, that is, Σ{j|pf(j)=k} fj ≦ sk for all k's 
where 1 ≦ k ≦ γ. Reproduction is realized by 
genetic operators, such as selection, crossover and 
mutation, to generate new points in the search 
space. 

As mentioned, a single objective function is 
considered in [1] to calculate the fitness value of 
each chromosome, with the communication 
overhead taking into account only the tasks' 
accessing of required files at remote sites. To be 
more practical, the communication overhead due to 
task dependencies is also counted in our paper, and 
the constraint for pursuing load balancing in [1] 
also becomes an objective function in which total 
task length, instead of the number of tasks, at each 
site is considered. Thus multiple objective 
functions are supplied and properly used in our 
paper to calculate the fitness value of each 
candidate solution and the optimal solution aims to 
minimize the multiple objective functions, not just 
to minimize a single one. Similar minimization can 
be found in [12]. 

For solving the placement problem, the GA 
approach claims superior performance than the 
greedy heuristic approach in terms of 
communication overheads that result from 
accessing the files required by tasks, but its 
operations are too intricate and time consuming. 
(The greedy heuristic approach first assigns tasks 
to sites uniformly throughout the network of sites 
to ensure "absolute" load balancing. Then each file 
is placed to the feasible site so as to minimize the 
total communication overhead.) To attain more 

desirable performance, we adopt the simulated 
annealing (SA) approach [2] and the use of 
multiple objective functions. 

2.2 The Simulated Annealing Approach 
The SA approach is another alternative to 

traditional optimization techniques. Basically, it is 
an iterative random search procedure with adaptive 
moves to locate optimal or near optimal solutions 
of complex problems. As the name indicates, it 
needs an annealing schedule of the temperatures 
besides a random generator of "moves" and an 
objective function. By permitting "uphill moves" 
under the control of probabilistic criterion (a 
Boltzmann machine-like mechanism), the 
temperature is able to keep the algorithm from 
getting stuck. With the higher the temperatures, the 
larger the probability to do "uphill moves", it tends 
to avoid the first local minima encountered. The 
approach has been successfully applied in different 
combinatorial optimizations, such as the Travel 
Salesman Problem [2]. 

The SA approach randomly generates one 
initial solution which then generates a new solution 
based on the neighborhood structure. The two 
solutions then compete by using the Boltzmann 
machine-like mechanism. In the process of 
minimization, if the objective function value of the 
new solution is lower than that of the initial one, 
the new solution is selected. If the new solution has 
a higher value, it can still be selected under some 
probability which is usually assumed to result from 
the Boltzmann probability distribution function of 
the objective function value difference between the 
two "competing" solutions. The selected solution 
will generate another new solution and the 
competing process is repeated again. The iterative 
process continues until convergence or for a 
specified length of times. To solve the distributed 
file and task placement problem through our 
proposed SA approach, we let the solution be 
encoded in the same way as the chromosome in the 
GA approach (say pt(1)pt(2)…pt(α)pf(1)pf(2)…pf(β) 
for α tasks and β files). For convenience, each of 
pt(i), 1≦i≦α, and pf(j), 1≦  j≦β, is called an 
element of the encoded solution. 

To be more practical, multiple objective 
functions are considered. The constraint for 
pursuing load balancing considered in [1] now 
becomes an objective function 
max ∑

= })(|{ kipi
i

t

t for all k where 1≦ k≦γ        (2.1) 

in which total task length (assume that each task i 
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is characterized by its task length ti), rather than the 
number of tasks, at each site is considered because 
the task length is a better indicator of the "load". If 
expression (2.1) is minimized, the load could 
become balanced. We also believe that when 
expression (2.1) is considered as an objective 
function instead of a constraint, with a suitable 
value it can be helpful to reach solutions with 
much less communication overhead. In addition, 
we consider the communication overhead not only 
due to the tasks' accessing of the required files at 
remote sites (considered in [1] as a single objective 
function)  

∑∑
= =

α β

1 1
)(),(,

i j
jpipji ft

Cr                  (2.2) 

but also due to task dependencies 

∑∑
= =

α β

1 1
)(),(,

i j
jpipji ft

Cd                    (2.3) 

where di,j is a boolean value indicating the 
dependency between tasks i and j. Thus, the total 
communication overhead can be calculated by 
summing up equations (2.2) and (2.3). Multiple 
objective functions considered by us are henceforth 
denoted by ),(1 xφ ),(2 xφ and ),(3 xφ respectively 
representing expressions (2.1), (2.2) and (2.3). In 
fact, multiple objective functions have been used to 
evaluate and compare various solutions in [12]. 

The iterative process of the SA algorithm 
applied to the placement problem is given in the 
following. 

(1) Initialization 
Initialize the iteration count and the temperature. 

Generate one initial solution randomly. Set the 
initial solution the selected solution (x). 

(2) Iterative steps 
(a) Generation: Generate a new solution (x') 

from the selected solution (x) based on the 
neighborhood structure — that is, randomly choose 
an element from the selected encoded solution and 
change it to any other randomly chosen site 
number to generate a new solution. Calculate the 
difference between the objective function values of 
the new and the selected solutions, say ∆ kφ  = 

)(x'kφ － (x)kφ , for 1 ≦  k ≦  3. If all the 
objective function values of the new solution are 
not higher than those of the selected one, that is 
when ∆ kφ ≦ 0 for 1 ≦ k ≦ 3, the new solution 
becomes the selected solution. Otherwise, the new 
solution is selected with the probability 

r
T

x
J

k
k

kk

>

∆
−∑ =

)
)(

exp(

3

1 φ
φ

, where T is the 

temperature at the iteration, r is a random number 
uniformly distributed between 0 and 1, and if 
∆ kφ > 0, Jk = 1; otherwise, Jk = 0 (the same 
consideration as in [12]). Note that the above 
probability results from the Boltzmann probability 
distribution function to permit "uphill moves". 

(b) Cooling (lowering the temperature to reduce 
the probability of "uphill moves") 

(c) Convergence check 
(d) Terminal check according to the initialized 

iteration count 

2.3 Experimental Performance Comparison 
The SA approach to solving the placement 

problem has been programmed to obtain desirable 
file and task placements. Extensive simulation runs 
are conducted to collect results from various data 
sets for both the GA approach and our SA 
approach with more practical objective functions. 
Under our simulation model, It is assumed as in [1] 
that a requirement matrix, say R, is built to indicate 
the files required by each task, i.e., an element in 
the matrix, say ri,j, is a boolean value indicating the 
requirement by task i for file j. Each file is required 
by at least one of the tasks with the probability of 
0.8, and the communication overhead between 
sites is provided by a matrix, say C, where an 
element, say ci,j, indicates the least communication 
overhead needed for communication between sites 
i and j. Any two sites are adjacent with a given 
probability (= 0.8) which then determines the 
network topology. The least communication 
overhead required for each link traverse is assumed 
to follow a uniform distribution uniform(1,10) (i.e., 
the overhead is uniformly distributed between 1 
and 10). If any two sites are not able to connect 
each other due to the network topology, their 
corresponding element in the communication 
overhead matrix is assigned a big constant as a 
"penalty" [13]. The penalty makes it possible to 
avoid selecting some unfeasible solutions and to 
ensure feasible ones. A task dependency matrix, 
say D, is also provided where an element, say di,j, 
is a boolean value indicating the dependency 
between tasks ti and tj, and the probability that any 
two tasks are dependent is assumed to be 0.8. The 
task length and file size distributions are both 
assumed to be uniform(1,10). 

Simulation results under the above simulation 
model for the GA and SA approaches are listed in 
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Table 1 for comparison. (The results for the GA 
approach implemented by using a steady-state [14] 
and a generational [10,15] population model are 
shown in Table 2 for reference. In the steady-state 
model, a single pool is used; in the generational 
model, offsprings are saved in a separate pool until 
there are enough to replace the original pool. As 
can be seen, the results for both models are 
virtually the same.) The site capacity distribution 
for the four data sets, which represent rather large 
practical problems, are respectively assumed to be 
uniform(20,30), uniform(30,40), uniform(40,50) 
and uniform(50,55). Performance is evaluated from 
multiple objective functions. In the Tables, 1φ , 

2φ  and 3φ  are the same as in Section 2.2. The 
total communication overhead can be calculated by 

2φ  + 3φ , where 2φ  = ∑ ∑= =

α β

1 )(),(1 ,i jpipj ji ft
Cr  

(the communication overhead considered in [1]) 

and 3φ  =∑∑
= =

α β

1 1
)(),(,

i j
jpipji ft

Cd  (the communication 

overhead due to task dependencies). These results, 
which are obtained over 15 independent runs with 
the average value represented by 1φ  (the same for 

2φ  and ),3φ are reasonably accurate. For 
instance, for the first 1φ  value 17, given 95% 
confidence, the calculated confidence interval 
half-width over the 15 replications is 0.81, 
indicating we are 95% confident the true result 
would fall into the interval 17 ± 0.81, or 
equivalently, 17 ± 4.76%, with only less than 5% 
error. 

Table 1. Simulation results for the GA and SA approaches 
Data Set GA (Generational 

population model) 
SA 

t f s 1φ  2φ  3φ  τ 1φ  2φ  3φ  τ 
30 50 20 17 2818 1521 50 22 2154 1174 17 
40 60 20 21 5194 3131 52 28 3649 2350 27 
60 100 20 27 12882 7161 116 36 9478 5347 63 

120 200 40 30 49468 29032 395 38 39775 23380 250 
t: the number of tasks  f: the number of files  s: the number of sites 

 
Table 2. Simulation results for the GA approach with different models 

Data Set GA (Generational 
population model) 

GA (Steady state 
population model) 

t f s 1φ  2φ  3φ  τ 1φ  2φ  3φ  τ 
30 50 20 17 2818 1521 50 18 2866 1500 93 
40 60 20 21 5194 3131 52 20 5224 3150 111 
60 100 20 27 12882 7161 116 28 12955 7129 236 

120 200 40 30 49468 29032 395 30 49564 28978 805 
t: the number of tasks  f: the number of files  s: the number of sites 

 
As observed from the Tables, the placements 

of files and tasks with the GA approach result in 
more communication overheads ( 2φ + 3φ ) than the 
SA approach by 24%~39%. It is also interesting to 
observe that the SA approach gives slightly more 

1φ  value (for pursuing load balancing) for all the 
cases. The two facts practically demonstrate the 
advantage of putting the GA's load balancing 
constraint in our multiple objective functions to be 
considered with the total communication overhead. 
As a matter of fact, to reach the main goal of the 
placement problem, that is, to place files and tasks 
with minimal communication overhead, load  

 
balancing alone may not be helpful. For instance, 
the "absolute" load balancing achieved by the 
greedy heuristic approach results in much inferior 
performance and the GA approach, though 
attaining more balanced load for each site than the 
SA approach, apparently suffers worse 
communication overheads. By contrast, our SA 
approach is able to give suitable 1φ  values more 
effectively, which may result in less balanced load 
but can reduce overheads significantly. 

Simulation runs are carried out in a Sun Sparc 
system. The times needed for the results (τ) are 
also collected. The GA approach is shown to take 
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more time for both the steady state and the 
generational population models when compared 
with the SA approach for every data set. To give 
an example, for the largest data set (120 tasks, 200 
files and 40 sites), the SA takes only 250 seconds, 
while the GA takes an average of 805 and 395 
seconds. The result indicates when employed to 
find the optimal file and task placement, our SA 
gives rise to better performance with reduced time 
complexity compared with the rather complicated 
GA. 

2.4 The Guided Evolutionary SA Approach and 
Discussions 

The Guided Evolutionary Simulated 
Annealing (GESA) approach, an extension of the 
SA approach, has been proposed in [3]. To see if 
the new approach can be applied to the placement 
problem with more desirable performance would 
be interesting. The GESA approach allows many 
candidate solutions (not just one as in the SA) to 
be generated at the same time, and the generation 
of new solutions are guided into promising 
regions through local and global competitions. A 
set of initial solutions, say M solutions, are 
generated randomly, each of which is called a 
"parent" of a family. Each parent then generates a 
new set of solutions, say N solutions, which are 
called the "children" of the family. The M parents 
and the M × N children then compete by using the 
Boltzmann machine-like mechanism and the best 
solution will be selected as the parent of the next 
generation. Apparently, the better a family is 
(i.e., having a large number of good solutions), 
the more family members will be selected as new 
parents - the amount of members the family will 
have in the next generation is thus determined. 

Listed below are the iterative steps of the 
GESA algorithm applied to the placement 
problem. 

(1) Initialization 
Initialize the iteration count and the 

temperature as in the SA. Generate randomly a 
set of initial solutions, say M parents, x1 ~ xM. 
Find the best parent. 

(2) Iterative steps 
(a) Generation: Generate a set of solutions 

from each parent by choosing randomly an 
element and changing it to any randomly chosen 
site number. Find the best child in each family 
and then the global best child among the best 
children. 

(b) Selecting parents of the next generation: 
The best child of each family is compared with 

its parent to yield the difference: △ψ k=ψ

k(xi,j)- ψk(xi), where i is the ith family and xi,j is 
the jth child, i.e., the best child in the family. If 
all the objective function differences 0<∆ kφ  
for 1 ≦ k ≦ 3, the best child is chosen as the 
parent of its family for the next generation. 
Otherwise, the best child will be accepted as the 
new parent with the 

probability ,))(
'

exp(

3

1
r

T
x
J

k
k

kk

>

∆
−∑ = φ

φ

where 

)()(' , xx kjikk φφφ −=∆ , Jk = 1 (if 0'>∆ kφ ) or 
0 (otherwise), x is the best parent, T is the 
temperature at the iteration, and r is a random 
number uniformly distributed between 0 and 1. 

(c) Calculating the number of members 
accepted to the next generation for each family: 
Every child of each family is compared with its 
parent. Find the difference 

)()( , ikjikk xx φφφ −=∆  for 1 ≦  k ≦  3, 
where i is the ith family and j is the jth child in 
the family. If all the objective function 
differences 0<∆ kφ , the weight factor wi of 
family i for the next generation increases by 1. 
Otherwise, wi increases by 1 with the probability 

γφ
φ

>

∆
−∑ =

))(
'

exp(

3

1

T
x
J

k
k

kk

 (with the same 

representation as mentioned above except that x 
is the global best child here). After calculating all 
weight factors for all families, sum up these 

weight factors: ∑ =
=

M

i iws
1 . The number of 

accepted members for each family will be 

s
wNMA i

i ××= . 

(d) Cooling 
(e) Convergence check 
(f) Terminal check 

The GESA approach is also programmed to 
obtain desirable file and task placements with 
simulation results depicted in Table 3. It is 
observed that the performance of the GESA 
approach does not, as anticipated, advance that of 
the SA approach (on the contrary, it is inferior) 
and its time complexity is also worse than the 
SA. Thus when applied to the file and task 
placement problem, the SA apparently 
demonstrates better performance with less 
complexity than both the GA and GESA. On the 
other hand, when employed to solve problems 
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with continuous solutions, both the GA and 
GESA approaches may work better than the SA 
approach since they are able to generate a number 
of candidate solutions at the same time (the SA 
approach finds only one solution at a time). For 
the distributed file and task placement problem 
whose solutions are not continuous or located in 
a specific area, the neighboring solution cannot 
be obtained in the same way as when searching 
for continuous solutions (i.e., by adding a "small 
value" to the initial solution); instead, it will be 
obtained by changing one element in the encoded 
initial solution while leaving the rest of the 
elements unchanged. To randomly select one 
element in an encoded solution and change it to 
another randomly chosen site number indicates 
changing the placement of either a file or a task, 
which will largely affect the entire system. If the 
change is with file/task placement, the files 
stored/load for some site will be changed 
accordingly and so will the total communication 
overhead of the system. The situation is quite 
different from that of searching for continuous 
solutions where the difference between the initial 
and neighboring solutions are very small. To sum 
up, since the solutions for the distributed file and 
task placement problem are not continuous, the 
search for solutions must be carried out by 
looking through more "possible" solutions. That 
is, performance will be bettered if more 
generations are involved in the search. In this 
sense, the SA approach can work more 
effectively because with its simplified 
computation for each generation, the SA is able 
to obtain the optimal solution by increasing the 
number of generations to be searched. As for the 
GA and GESA, since the computation for each 
generation is rather complicated and time 
consuming, there exists the dilemma: If the 
generations are increased to ensure a more 
favorable solution, the search can be fairly 
lengthy; if the generations are decreased to trim 
down time overheads, the solution may turn out 
unsatisfactory. 

Table 3. Simulation results for the GESA approach 
Data Set GESA 

t f s 1φ  2φ  3φ  τ 
30 50 20 18 3271 1814 50 
40 60 20 24 5777 3642 71 
60 100 20 32 13079 8032 158 

120 200 40 36 50074 29611 665 
t: the number of tasks  f: the number of files   
s: the number of sites 

3. An Efficient Dynamic Load Balancing 
Scheme for Distributed Systems 

As mentioned, the random arrival of tasks at 
each processor is likely to bring about uneven 
processor loads in a distributed system. To 
equalize processor loads, dynamic load 
balancing is usually employed in which 
excessive tasks at a heavily loaded processor can 
be migrated to another processor with a light 
load during execution. To realize efficient 
dynamic load balancing then means to lift up the 
acceptance rate of task migration requests and to 
trim down communication overheads accordingly. 
The standard sender-initiated scheme [4] and the 
GA-based scheme [5] are schemes established to 
balance such processor loads, but they either 
ignore enhancing the acceptance rate or involve 
too complicated operations. For improvement, 
we propose a simplified new scheme which is 
very efficient in performing dynamic load 
balancing in a distributed system. 

3.1 Background 
To balance the uneven processor loads in a 

distributed system, thresholds (expressed in units 
of load) can be employed [4]. If the load at a 
processor exceeds a threshold Th, it is heavy; if 
falling below a threshold Tl, it is light. In the 
sender-initiated dynamic load balancing scheme 
[4], a request for task migration is initially issued 
from a processor with a heavy load (the sender) 
to another randomly selected processor (the 
potential receiver). If the selected receiver is not 
lightly loaded, the request might be rejected and 
sent back and forth repeatedly until a suitable 
receiver is found. To restrain the overhead, the 
number of requests is restricted by a request 
limit.  Task migration will not happen if no 
suitable receiver is found within the request limit, 
and the sender processor will have to execute the 
task itself.  The whole process can be very 
time-consuming due to unnecessary requests.  

To realize efficient dynamic load balancing, 
the acceptance rate for migration requests must 
be uplifted in the first place, that is, a potential 
receiver should be decided swiftly and a 
"qualified" receiver must be selected within less 
tries.  The simplest way to decide a potential 
receiver is, as in the standard sender-initiated 
scheme, to select it randomly [4,16]. But, having 
no concern for the acceptance rate, it fails to 
reduce the number of unnecessary requests.  To 
improve it, another scheme based on the Genetic 
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Algorithm (GA) is proposed [5].  The 
GA-based scheme applies genetic operators, 
such as selection, crossover and mutation, to a 
population of strings kept in each processor.  
Each string, defined as a binary-coded vector <v0, 
v1, …, vn-1> (assuming there are n processors in 
the system), represents the combination of 
processors to which a request message from a 
heavily loaded processor should be sent off. That 
is, a request message will be sent off to processor 
Pi if vi = 1, while none will be sent if vi = 0, 
where 0 ≦ i ≦ n-1. 

Each string is associated with its payoff 
values and has its own fitness value. If any of the 
requests according to a string is accepted, the 
string is awarded with a positive payoff value 
inversely proportional to the number of requests 
sent; if no request is accepted, the payoff value is 
zero. It is obvious that the payoff will be higher 
when the requests sent over are less. For example, 
when at least one request according to a string is 
accepted, the payoff value of the string can be 

defined to be 
x

1
, where x is the number of 

requests sent. The fitness value of a string is an 
average of the last ζ payoff values, where ζ 
is predetermined.  A string is selected at a 
probability proportional to its fitness, and 
requests are sent to processors indicated by the 
string.  For instance, in a system with 8 
processors, suppose the selected string 
<0,1,0,1,-,0,1,0> is in P4; P4 will send request 
messages to, say, P1, P3, and P6.  If an accept 
message is sent back from P3 which is 
lightly-loaded, P4 will then migrate the task to P3.  
In case two or more accept messages are 
returned, one is selected randomly.  After task 
migration, P4 calculates the fitness value of the 
string <0,1,0,1,-,0,1,0> and applies genetic 
operators to its own population. 

With such complicated genetic operations in 
deciding potential receivers, the GA approach 
fails to lift the acceptance rate as much as 
anticipated. Besides, in order to calculate the 
fitness values and to apply the genetic operators, 
a request message must be sent off to all 
processors with corresponding bits in the string 
being 1's, resulting in more unnecessary requests 
and redundant acceptances. 

For improvement, we propose a simple and 
efficient new scheme which is a modification of 
the standard sender-initiated scheme. In our new 
scheme, a request for task migration will be sent 

to a processor according to a list of state values 
kept in each processor, and, by a simple list 
lookup, the request can be sent to the most fitting 
processor. 

3.2 Our New Scheme 
Unlike the standard sender-initiated scheme 

which selects a potential receiver processor 
randomly, our proposed new scheme selects it 
according to a list of state values kept in each 
processor. The list records the state values of all 
the other processors. Each state value, initialized 
to be the allowed task queue length in a 
processor, is determined by the unused task 
queue length in the processor. 

The list of state values can be used to 
achieve desirable dynamic load balancing as 
follows. Let Px be a processor, x be the state 
value, w indicate the length (in terms of the 
execution time) of a task, and m / n respectively 
refer to the heavy / light load threshold values 
for the processor. Before a task in the waiting 
queue of Px enters the system for execution, go 
through the check_load process first to get x and 
then compare x with m. If x > m and x > w, the 
task directly enters the task queue of Px. If x < m 
(that is, Px is in heavy load) or x > m but x < w 
(that is, the task queue is unable to accommodate 
the task), another processor should be found to 
assist. 

During the find_processor process, Px will 
operate the select procedure by checking through 
the state values of all the other processors 
recorded in the list, and send the request (the 
length of the task to be transferred) to another 
processor, say Py. Upon receiving the request, Py 
goes through the check_load process to get the 
value of the unused task queue length y, and 
compare y with n (the light load threshold value). 
If y > n, Py is in light load and is able to accept 
the request. It will send y over to Px. (If Py 
receives another request before taking in the task 
to be transferred from Px, it has to deduct w from 
y and takes the updated value (y - w) as its new 
state value after the operation of check_load. 
Then compare the new state value with n.) After 
receiving value y, comparing y with n and 
realizing Py is able to accommodate the task, Px 
will send the task over to the task queue in Py 
through the task_migration operation, and 
meanwhile update the state value of Py into y - w. 

On the other hand, if y < n, Py is not in light 
load and therefore cannot accept the task from Px. 
It will send y to Px which, after comparing y with 
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n, realizes the fact, changes the state value of Py 
in the list into y, and then continues the select 
procedure to find another potential receiver. In 
this way, Py simply gives response to Px with 
value y whatever the situation is, and Px gains a 
chance through such communication to update 
the state value of Py. Some simple calculations 
(state_adjust functions) can be employed at the 
same time to further lift up the acceptance rate: 
If a request is accepted/rejected by a processor, 
state_adjust functions are applied to the unused 
queue length of the processor to get the state 
value so that a processor with bigger/smaller 
unused queue length gets more proportion of 
increase/decrease in its state value and hence 
more/less chance to be selected. 

As stated above, our scheme involves only a 
simple list lookup in determining a receiver 
processor.  Experimental evaluation shows that 
with slightly higher time complexity over the 
standard sender-initiated scheme, our new 
approach realizes very significant elevation in 
the acceptance rates and, as a result, is able to 
reduce unnecessary request messages as well as 
communication overheads. In contrast to the 
complicated operations the GA-based approach 
adopts in determining potential receivers, our 
approach is apparently simpler and more 
effective. 

3.3 Experimental Results 
Extensive simulation runs are conducted to 

collect the results for the standard 
sender-initiated, the GA-based, and our new 
schemes. In our simulation model, 16 processors 
are connected via a network at a communication 
speed 10K bytes per milliseconds, with incoming 
tasks arriving at only 12 of the 16 processors for 
easy observation of the results. Independent 
tasks come randomly at the same mean arrival 
rate to each of the 12 processors.  Execution 
times of the tasks and task sizes are 
exponentially distributed with a mean 100 
milliseconds and a mean 10K bytes respectively.  
The size of a request, accept, or reject message 
is 1024 bytes. The queue length (in terms of 
execution time) for a processor indicates its load, 
and a processor is considered to be heavily 
loaded when its queue length is over 400 (the 
threshold Th = 400) or lightly loaded when less 
than 200 (the threshold Tl = 200).  For the 
standard sender- initiated scheme and our new 

scheme, the request limit is 8.  For the 
GA-based scheme, the number of strings in each 
population is 10; the crossover rate and the 
mutation rate are 0.04 and 0.05 respectively.  If 
any of the requests according to a string is 
accepted, the string is awarded with a payoff 
value equal to the difference between the number 
of processors and the number of request 
messages sent, i.e., the number of 1's in the 
string. (Note that the payoff values calculated in 
this way result in the best performance for the 
GA-based scheme, even better than calculated by 

x
1  [5], where x is the number of requests sent.) 

If no request is accepted, the payoff value is zero. 
The fitness value of a string is the average of the 
last 5 payoff values (i.e., ζ = 5). 

The state value in our new scheme is 
initialized to be the allowed task queue length (= 
1000) in a processor and is determined by the 
unused task queue length in it. If a request is 

accepted by a processor, state_adjust 
799

2ξ  is 

applied to the unused queue length ξ of the 
processor to get the state value. In this way, a 
processor with bigger ξ gets more proportion 
of increase in its state value, and hence more 
chance to be selected. For instance, the 
processors with ξ = 810, 820 and 850 each get 
state values = 821, 842 and 904 (the individual 
increase is 11, 22, and 54). On the other hand, if 
a request is rejected by a processor, state_adjust 

100
100

−
×

η
ξ  (where η  is the queue length) is 

applied to the ξ of the processor to get the 
state value, making the processor with smaller 
ξ get bigger proportion of decrease in its state 
value and hence less chance to be selected. The 
simulation continues until 10000 tasks are 
executed. 

Simulation results listed in Tables 4 to 7 are 
obtained over 10 independent runs and are 
reasonably accurate. For instance, for the first 
mean response time value 157, given 95% 
confidence, the calculated confidence interval 
half-width over the 10 replications is 2, meaning 
that we are 95% confident the true result would 
fall into the interval 157 ± 2, or equivalently, 
157 ±1.3%, with less than 2% error. 
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Table 4. Mean response time for different schemes 
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

tandard sender-initiated 157 184 215 255 292 334 378 
GA-based 157 184 218 255 294 333 375 

our new scheme 157 183 214 247 279 311 353 
 

Table 5. Total numbers of messages sent during the simulation period 
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

standard sender-initiated 202 536 1115 2378 4613 9182 18453 
GA-based 1504 3310 7004 12044 18480 28918 40934 

our new scheme 192 488 1011 1937 3194 5160 10993 
 

Table 6. Frequency for tasks to enter heavily loaded processors 
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

standard sender-initiated 90 232 455 872 1438 2228 3221 
GA-based 100 229 491 878 1433 2246 3138 

our new scheme 92 231 459 846 1306 1918 2745 
 

Table 7. Mean acceptance rates for different schemes 
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

standard sender-initiated 0.94 0.93 0.9 0.86 0.79 0.7 0.57 
GA-based 0.14 0.15 0.15 0.16 0.17 0.16 0.15 

our new scheme 0.98 0.98 0.95 0.93 0.9 0.87 0.74 
 

The mean response time listed in Table 4 is 
the time from the task's arrival till its execution 
completed.  As can be seen, our proposed 
scheme depicts consistently less mean response 
time, though the difference is not eminent. It 
should be observed that when load balancing is 
applied, each scheme brings about the same 
degree of balance that makes the queuing time 
for each task equal and therefore results in 
almost equal response time. The only difference 
may come from the communication overhead for 
load balancing. Since the communication time 
per request, accept or reject message in our 
simulation model is assumed to be much smaller 
than the task execution time and the queuing 
time, the above difference of response time 
would become bigger when the overhead per 
message increases. 

Communication overheads are listed in 
Table 5 with the numbers of total messages 
(including the request, accept, and reject 
messages) sent. The number for the GA-based 
scheme is conspicuously big because once a task 
enters a heavily loaded processor, it has to send 
request messages to all of the processors with 
corresponding bits in the string being 1's . By 
contrast, the number for our scheme is 

apparently smaller at any arrival rate, and when 
the arrival rate grows (that is, when the system 
load increases), the difference becomes more 
eminent. For our scheme, the significant 
reduction in numbers of messages sent is indeed 
the plain effect of lifted acceptance rates. Table 6 
lists the frequency for tasks to enter heavily 
loaded processors. It shows that tasks are less 
likely to enter heavily loaded processors for our 
scheme, esp. when the arrival rate grows higher, 
helping reduce unnecessary messages and 
communication overheads. Table 7 gives the 
mean acceptance rates. The acceptance rate will 
be 0 if all the request messages sent out are 
rejected.  When a request message is eventually 
accepted (that is, when task transfer is to happen), 
the acceptance rate will be the reciprocal of the 
total number of request messages sent at this 
attempt, and the mean acceptance rate can be so 
obtained (average over the number of times 
listed in Table 6). The acceptance rate for our 
scheme, as demonstrated, is remarkably higher 
than the other two schemes, a very significant 
indicator for performing efficient dynamic load 
balancing. As a matter of fact, the much 
improved acceptance rate and the consequent 
reduced  communication  overhead  for  our 
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proposed scheme are achieved mainly due to our 
ability to reduce unnecessary request messages. 

4. Conclusions 
It has been realized that one of the major 

concerns for a distributed computing system is to 
find the placements of files and tasks at the sites 
with minimal total communication overhead. To 
this end, a Genetic Algorithm (GA) has been 
developed, but its operations are fairly 
complicated and time consuming. For 
improvement, we propose to use the Simulated 
Annealing (SA) approach. The SA approach is 
able to avoid the first local minima encountered 
by maintaining an annealing schedule of the 
temperatures to keep the searching for the 
optimal solution from getting stuck. Multiple 
objective functions are also supplied and 
properly used to calculate the objective function 
value of each candidate solution (with the 
optimal solution aiming to minimize the multiple 
objective functions), resulting in more practical 
and favorable solutions. For further evaluation 
and comparison, we also investigate the Guided 
Evolutionary Simulated Annealing (GESA) 
approach, an extension of the SA approach. 
Experimental results demonstrate that in 
obtaining desirable file and task placements, our 
proposed SA approach depicts superior 
performance with much less complexity over the 
GA and GESA approaches. 

In dealing with the dynamic load balancing 
problem in a distributed system, the standard 
sender-initiated scheme and the GA-based 
scheme are found to be either inefficient or too 
intricate. To realize more efficient dynamic load 
balancing, we propose a simple new scheme in 
which a potential receiver for a task migration 
request message is selected according to a list of 
state values kept in each processor. By only a 
simple lookup at the list, the selection of a most 
fitting receiver processor for a task migration 
request message can be achieved. Experimental 
results show that, with only slightly higher time 
complexity than the standard sender-initiated 
scheme, our new scheme is able to yield much 
enhanced acceptance rates, significantly 
reducing the number of unnecessary request 
messages and hence the communication 
overhead. 

References 
[1] Corcoran, A. L. and Schoenefeld, D. A., “A 

Genetic Algorithm for File and Task 
Placement in a Distributed System,” Proc. 
1st IEEE Conf. on Evolutionary 
Computation, pp. 340-344 (1994). 

[2] Kirkpatrick, S., Gelatt, C. D., Jr. and 
Vecchi, M. P., “Optimization by Simulated 
Annealing,” Science, Vol. 220, pp. 671-680 
(1983). 

[3] Yip, P., “The Role of Regional Guidance: 
The Guided Evolutionary Simulated 
Annealing Approach,” Ph.D. Dissertation, 
Department of Electrical Engineering and 
Applied Physics, Case Western Reserve 
University, Cleveland, U.S.A. (1993). 

[4] Shivaratri, N. G., Krueger, P. and Singhal, 
M., “Load Distributing for Locally 
Distributed Systems,” IEEE Computer, Vol. 
25, pp. 33-44 (1992). 

[5] Munetomo, M., Takai Y. and Sato, Y., “A 
Genetic Approach to Dynamic Load 
Balancing in a Distributed Computing 
System,” Proc. 6th Int'l Conf. on Genetic 
Algorithms, pp. 418-421 (1994). 

[6] Bell, D. A., “Difficult Data Placement 
Problems,” Computer Journal, Vol. 27, pp. 
315-320, (1984). 

[7] Chang, C. C. and Shielke, “On the 
Complexity of the File Allocation 
Problem,” Proc. Conf. on Foundations of 
Data Organization (1985). 

[8] Dowdy, L. W. and Foster, D. V., 
“Comparative Models of the File 
Assignment Problem,” ACM Computing 
Surveys, Vol. 14, (1982). 

[9] Ceri S., Martella, G. and Pelagatti, G., 
“Optimal File Allocation for a Distributed 
Database on A Network of 
Minicomputers,” Proc. ICOD 1 Conf. 
(1980). 

[10] Holland, J. H., Adaptation in Natural and 
Artificial Systems, Univ. of Michigan Press, 
Ann Arbor, U.S.A. (1975). 

[11] Srinivas, M. and Patnaik, L. M., “Genetic 
Algorithms: A Survey,” IEEE Computer, 
Vol. 27, pp. 17-26 (1994). 

[12] Corana, A., Marchesi, M., Martini, C. and 
Ridella, S., “Minimizing Multimodal 
Functions of Continuous Variables with the 
Simulated Annealing Algorithm,” ACM 
Trans. on Mathematical Software, Vol. 13, 
pp. 262-280 (1987). 

[13] Richardson, J. T., Palmer, M. R., G. E. 
Liepens G. E. and Hilliard, M., “Some 
Guidelines for Genetic Algorithms with 



 
 
252                                      Po-Jen Chuang and Chi-Wei Cheng 

Penalty Functions,” Proc. 3rd Intl. Conf. on 
Genetic Algorithms (1989). 

[14] Whitley, D. and Kauth, J., “genitor: A 
Different Genetic Algorithm,” Proc. Rocky 
Mountain Conf. on Artificial Intelligence, 
pp. 118-30 (1988). 

[15] Goldberg, D. E., Genetic Algorithms in 
Search, Optimization, and Machine 
Learning, Addison-Wesley, Reading, 
U.S.A. (1989). 

[16] Eager, D. L., Lazowska, E. D. and 
Zahorjan, J., “Adaptive Load Sharing in 
Homogeneous Distributed Systems,” IEEE 
Trans. on Software Engineering, Vol. 12, 
pp. 662-675 (1986). 

  
 
 

Manuscript Received: Jul. 24, 2001 
       and Accepted: Nov. 6, 2002 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


