

Tamkang Journal of Science and Engineering, Vol. 5, No. 4, pp. 241-252 (2002) 241

On File and Task Placements and Dynamic Load Balancing in
Distributed Systems

Po-Jen Chuang and Chi-Wei Cheng

Department of Electrical Engineering

Tamkang University
Tamsui,Taiwan 251, R.O.C.

E-mail: pjchuang@ee.tku.edu.tw

Abstract

Two distributed system problems, the file and task placement

problem and the dynamic load balancing problem, are investigated in
this paper. To find the placement of files and tasks at sites with
minimal total communication overhead, we propose using the
Simulated Annealing approach and multiple objective functions.
Experimental results show that our proposed approach depicts
superior performance with much less complexity over the previously
introduced Genetic Algorithm approach.

Dynamic load balancing is employed to equalize processor loads
in a distributed system. It allows excessive tasks at a heavily loaded
processor to be migrated to another processor with a light load during
execution. To effectively lift up the acceptance rates for such task
migration requests, we propose an efficient new scheme that yields
much improved acceptance rates, followed by reduced unnecessary
request messages and communication overhead, when compared with
the standard sender-initiated scheme and the fairly complicated
GA-based approach.

Key Words: Distributed Systems, Dynamic Load Balancing, File and

Task Placements, Genetic Algorithms, Objective
Functions, Request Acceptance Rates, Sender-Initiated,
Simulated Annealing

1. Introduction

Two distributed system problems, the file and
task placement problem and the dynamic load
balancing problem, are investigated in this paper.
A distributed system is built to work on a
distributed computing architecture composed of
several sites which are connected by a
communication network with a given topology.
Each of the sites has its own memory and
processors, stores a restricted number of files and
is capable of running multiple tasks. Each task may
access the files on its own site or access those on
another site with some communication overhead
that is determined by the topology and the speed of
each link of the network. Hence, the main concern

for the distributed file and task placement problem
is to find the placement of files and tasks at the
sites with minimal total communication overhead.
To this end, a Genetic Algorithm (GA) has been
developed [1].

The GA operates on a pool of chromosomes
which represent candidate solutions to the
problem. Chromosomes are selected following
"survival of the fittest" and are passed on to the
next generation in a process called "reproduction".
An objective function is supplied and used to
weigh the relative merits (the so-called "fitness
value") of the chromosomes in the pool, and the
reproduction is realized by the genetic operators,
such as selection, crossover and mutation, to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225191065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

242 Po-Jen Chuang and Chi-Wei Cheng

generate new points in the search space. The GA
approach claims better performance than the
greedy heuristic approach in terms of
communication overheads that arise from
accessing the files required by the tasks [1].
Nevertheless, the genetic operations involved are
quite complicated and time consuming. For
improvement, we propose using the Simulated
Annealing (SA) approach [2] together with
multiple objective functions to upgrade the
placement of files and tasks. The Guided
Evolutionary Simulated Annealing (GESA)
approach [3], an extension of the SA approach, is
also evaluated to see its fitness for the placement
problem. As experimental results demonstrate, our
proposed SA approach depicts superior
performance with much less complexity than both
the GA and GESA approaches in obtaining
desirable file and task placements.

On the other hand, in a distributed system
where processors are loosely connected by a
communication network, the random arrival of
tasks at each processor is likely to bring about
uneven loads, that is, some processors may be
heavily loaded while others may not. To equalize
the loads at all processors, dynamic load balancing
is usually employed. It allows excessive tasks at a
heavily loaded processor to be migrated to another
processor with a light load during execution.
Various dynamic load balancing schemes, such as
the standard sender-initiated scheme [4] and the
scheme based on the genetic algorithm (GA) [5],
have been introduced - with certain disadvantages.
For example, in the standard sender-initiated
scheme, a request for task migration is initially
issued from a heavily loaded processor (the sender)
to a selected processor (the potential receiver)
randomly. When the selected receiver is not lightly
loaded, the request might be rejected and sent back
and forth repeatedly until a suitable receiver is
found. The whole process can be very time-
consuming due to a large number of unnecessary
requests. The GA-based approach attempts to
reduce such unnecessary requests and by doing so
to lift up the request acceptance rate, but with its
complex genetic operations, the effort proves
unavailing. To realize efficient dynamic load
balancing, we present a new scheme that is able to
yield more desirable results with much simplified
operations. Experimental evaluation shows that
with only slightly higher time complexity over the
standard sender-initiated scheme, our simplified
new scheme realizes very remarkable elevation in
request acceptance rates when performing dynamic

load balancing, significantly reducing the number
of unnecessary request messages as well as
communication overheads.

2. A Simulated Annealing Approach to
Distributed File and Task Placements

The distributed file and task placement
problem, known to be NP-complete [1], is indeed
the generalization of both the file allocation
problem in distributed systems and the fragment
allocation problem in distributed databases [6-9].
As mentioned, the major concern for such a
problem is to find the placement of files and tasks
at the sites with minimal total communication
overhead so that the execution time can be
trimmed down accordingly. As the genetic
algorithm (GA) developed for the purpose [1]
involves too complicated and time consuming
operations, we propose using the simulated
annealing (SA) approach together with multiple
objective functions to obtain more desirable file
and task placements.

2.1 Background
A distributed system is composed of tasks,

files and sites. Assume that α tasks (t1, t2, …, tα)
are to be run, β files (of sizes f1, f2, …, fβ) are
needed by the tasks, and γ sites (of storage capacity
s1, s2, …, sγ) can execute tasks and store files. Each
file is required by at least one of the tasks. The
distributed file and task placement problem is to
find the placement of the β files at sites pf(j) (1 ≦
j ≦ β) and α tasks at sites pt(i) (1 ≦ i ≦α),
where 1 ≦ pt(i), pf(j) ≦ γ, with minimal total
communication overhead. The feasibility of the
placement must subject to the problem constraints,
e.g. the total size of the files placed in a site can
not exceed the storage capacity of the site.

As an adaptive search technique, the genetic
algorithm (GA) provides an alternative to
traditional optimization techniques by using
directed random searches to locate optimal or near
optimal solutions of complex problems and is
rooted in the mechanisms of evolution and natural
genetics [10-11]. It operates on a pool of
chromosomes which represent candidate solutions
to the problem under investigation. The placement
problem is encoded into a chromosome with two
parts: In one part, each gene represents the
placement for a particular task; in the other, each
represents that for a particular file. Thus the length
of the chromosome is equal to the total numbers of
tasks and files.

On File and Task Placements and Dynamic Load Balancing in Distributed Systems 243

The GA selects chromosomes following
"survival of the fittest" and passes them on to the
next generation in a process called "reproduction".
An objective function is supplied and used to
weigh the fitness values of the chromosomes.
Since the placement of the β files and α tasks must
ensure the minimization of the total
communication overhead, an objective function —
the total communication overhead

∑ ∑= =

α β

1)(),(1 ,i jpipj ji ft
Cr - needs to be minimized.

It is assumed in the function that ri,j is a boolean
value to indicate whether file j (fj) is required by
task i (ti), and Cpt(i), pf(j) indicates the least
communication overhead for ti at site pt(i) to access
fj at site pf(j). Besides, to ensure the feasibility of
each candidate solution, it is subject to the
constraint that the number of tasks at any site,
Σ{i|pt(i)=k} 1 for all k's where 1 ≦ k ≦ γ, is
minimized (for balancing the task loads among all
sites), and that the aggregate capacity of any site is
not exceeded, that is, Σ{j|pf(j)=k} fj ≦ sk for all k's
where 1 ≦ k ≦ γ. Reproduction is realized by
genetic operators, such as selection, crossover and
mutation, to generate new points in the search
space.

As mentioned, a single objective function is
considered in [1] to calculate the fitness value of
each chromosome, with the communication
overhead taking into account only the tasks'
accessing of required files at remote sites. To be
more practical, the communication overhead due to
task dependencies is also counted in our paper, and
the constraint for pursuing load balancing in [1]
also becomes an objective function in which total
task length, instead of the number of tasks, at each
site is considered. Thus multiple objective
functions are supplied and properly used in our
paper to calculate the fitness value of each
candidate solution and the optimal solution aims to
minimize the multiple objective functions, not just
to minimize a single one. Similar minimization can
be found in [12].

For solving the placement problem, the GA
approach claims superior performance than the
greedy heuristic approach in terms of
communication overheads that result from
accessing the files required by tasks, but its
operations are too intricate and time consuming.
(The greedy heuristic approach first assigns tasks
to sites uniformly throughout the network of sites
to ensure "absolute" load balancing. Then each file
is placed to the feasible site so as to minimize the
total communication overhead.) To attain more

desirable performance, we adopt the simulated
annealing (SA) approach [2] and the use of
multiple objective functions.

2.2 The Simulated Annealing Approach
The SA approach is another alternative to

traditional optimization techniques. Basically, it is
an iterative random search procedure with adaptive
moves to locate optimal or near optimal solutions
of complex problems. As the name indicates, it
needs an annealing schedule of the temperatures
besides a random generator of "moves" and an
objective function. By permitting "uphill moves"
under the control of probabilistic criterion (a
Boltzmann machine-like mechanism), the
temperature is able to keep the algorithm from
getting stuck. With the higher the temperatures, the
larger the probability to do "uphill moves", it tends
to avoid the first local minima encountered. The
approach has been successfully applied in different
combinatorial optimizations, such as the Travel
Salesman Problem [2].

The SA approach randomly generates one
initial solution which then generates a new solution
based on the neighborhood structure. The two
solutions then compete by using the Boltzmann
machine-like mechanism. In the process of
minimization, if the objective function value of the
new solution is lower than that of the initial one,
the new solution is selected. If the new solution has
a higher value, it can still be selected under some
probability which is usually assumed to result from
the Boltzmann probability distribution function of
the objective function value difference between the
two "competing" solutions. The selected solution
will generate another new solution and the
competing process is repeated again. The iterative
process continues until convergence or for a
specified length of times. To solve the distributed
file and task placement problem through our
proposed SA approach, we let the solution be
encoded in the same way as the chromosome in the
GA approach (say pt(1)pt(2)…pt(α)pf(1)pf(2)…pf(β)
for α tasks and β files). For convenience, each of
pt(i), 1≦i≦α, and pf(j), 1≦ j≦β, is called an
element of the encoded solution.

To be more practical, multiple objective
functions are considered. The constraint for
pursuing load balancing considered in [1] now
becomes an objective function
max ∑

= })(|{ kipi
i

t

t for all k where 1≦ k≦γ (2.1)

in which total task length (assume that each task i

244 Po-Jen Chuang and Chi-Wei Cheng

is characterized by its task length ti), rather than the
number of tasks, at each site is considered because
the task length is a better indicator of the "load". If
expression (2.1) is minimized, the load could
become balanced. We also believe that when
expression (2.1) is considered as an objective
function instead of a constraint, with a suitable
value it can be helpful to reach solutions with
much less communication overhead. In addition,
we consider the communication overhead not only
due to the tasks' accessing of the required files at
remote sites (considered in [1] as a single objective
function)

∑∑
= =

α β

1 1
)(),(,

i j
jpipji ft

Cr (2.2)

but also due to task dependencies

∑∑
= =

α β

1 1
)(),(,

i j
jpipji ft

Cd (2.3)

where di,j is a boolean value indicating the
dependency between tasks i and j. Thus, the total
communication overhead can be calculated by
summing up equations (2.2) and (2.3). Multiple
objective functions considered by us are henceforth
denoted by),(1 xφ),(2 xφ and),(3 xφ respectively
representing expressions (2.1), (2.2) and (2.3). In
fact, multiple objective functions have been used to
evaluate and compare various solutions in [12].

The iterative process of the SA algorithm
applied to the placement problem is given in the
following.

(1) Initialization
Initialize the iteration count and the temperature.

Generate one initial solution randomly. Set the
initial solution the selected solution (x).

(2) Iterative steps
(a) Generation: Generate a new solution (x')

from the selected solution (x) based on the
neighborhood structure — that is, randomly choose
an element from the selected encoded solution and
change it to any other randomly chosen site
number to generate a new solution. Calculate the
difference between the objective function values of
the new and the selected solutions, say ∆ kφ =

)(x'kφ － (x)kφ , for 1 ≦ k ≦ 3. If all the
objective function values of the new solution are
not higher than those of the selected one, that is
when ∆ kφ ≦ 0 for 1 ≦ k ≦ 3, the new solution
becomes the selected solution. Otherwise, the new
solution is selected with the probability

r
T

x
J

k
k

kk

>

∆
−∑ =

)
)(

exp(

3

1 φ
φ

, where T is the

temperature at the iteration, r is a random number
uniformly distributed between 0 and 1, and if
∆ kφ > 0, Jk = 1; otherwise, Jk = 0 (the same
consideration as in [12]). Note that the above
probability results from the Boltzmann probability
distribution function to permit "uphill moves".

(b) Cooling (lowering the temperature to reduce
the probability of "uphill moves")

(c) Convergence check
(d) Terminal check according to the initialized

iteration count

2.3 Experimental Performance Comparison
The SA approach to solving the placement

problem has been programmed to obtain desirable
file and task placements. Extensive simulation runs
are conducted to collect results from various data
sets for both the GA approach and our SA
approach with more practical objective functions.
Under our simulation model, It is assumed as in [1]
that a requirement matrix, say R, is built to indicate
the files required by each task, i.e., an element in
the matrix, say ri,j, is a boolean value indicating the
requirement by task i for file j. Each file is required
by at least one of the tasks with the probability of
0.8, and the communication overhead between
sites is provided by a matrix, say C, where an
element, say ci,j, indicates the least communication
overhead needed for communication between sites
i and j. Any two sites are adjacent with a given
probability (= 0.8) which then determines the
network topology. The least communication
overhead required for each link traverse is assumed
to follow a uniform distribution uniform(1,10) (i.e.,
the overhead is uniformly distributed between 1
and 10). If any two sites are not able to connect
each other due to the network topology, their
corresponding element in the communication
overhead matrix is assigned a big constant as a
"penalty" [13]. The penalty makes it possible to
avoid selecting some unfeasible solutions and to
ensure feasible ones. A task dependency matrix,
say D, is also provided where an element, say di,j,
is a boolean value indicating the dependency
between tasks ti and tj, and the probability that any
two tasks are dependent is assumed to be 0.8. The
task length and file size distributions are both
assumed to be uniform(1,10).

Simulation results under the above simulation
model for the GA and SA approaches are listed in

On File and Task Placements and Dynamic Load Balancing in Distributed Systems 245

Table 1 for comparison. (The results for the GA
approach implemented by using a steady-state [14]
and a generational [10,15] population model are
shown in Table 2 for reference. In the steady-state
model, a single pool is used; in the generational
model, offsprings are saved in a separate pool until
there are enough to replace the original pool. As
can be seen, the results for both models are
virtually the same.) The site capacity distribution
for the four data sets, which represent rather large
practical problems, are respectively assumed to be
uniform(20,30), uniform(30,40), uniform(40,50)
and uniform(50,55). Performance is evaluated from
multiple objective functions. In the Tables, 1φ ,

2φ and 3φ are the same as in Section 2.2. The
total communication overhead can be calculated by

2φ + 3φ , where 2φ = ∑ ∑= =

α β

1)(),(1 ,i jpipj ji ft
Cr

(the communication overhead considered in [1])

and 3φ =∑∑
= =

α β

1 1
)(),(,

i j
jpipji ft

Cd (the communication

overhead due to task dependencies). These results,
which are obtained over 15 independent runs with
the average value represented by 1φ (the same for

2φ and),3φ are reasonably accurate. For
instance, for the first 1φ value 17, given 95%
confidence, the calculated confidence interval
half-width over the 15 replications is 0.81,
indicating we are 95% confident the true result
would fall into the interval 17 ± 0.81, or
equivalently, 17 ± 4.76%, with only less than 5%
error.

Table 1. Simulation results for the GA and SA approaches
Data Set GA (Generational

population model)
SA

t f s 1φ 2φ 3φ τ 1φ 2φ 3φ τ
30 50 20 17 2818 1521 50 22 2154 1174 17
40 60 20 21 5194 3131 52 28 3649 2350 27
60 100 20 27 12882 7161 116 36 9478 5347 63

120 200 40 30 49468 29032 395 38 39775 23380 250
t: the number of tasks f: the number of files s: the number of sites

Table 2. Simulation results for the GA approach with different models

Data Set GA (Generational
population model)

GA (Steady state
population model)

t f s 1φ 2φ 3φ τ 1φ 2φ 3φ τ
30 50 20 17 2818 1521 50 18 2866 1500 93
40 60 20 21 5194 3131 52 20 5224 3150 111
60 100 20 27 12882 7161 116 28 12955 7129 236

120 200 40 30 49468 29032 395 30 49564 28978 805
t: the number of tasks f: the number of files s: the number of sites

As observed from the Tables, the placements

of files and tasks with the GA approach result in
more communication overheads (2φ + 3φ) than the
SA approach by 24%~39%. It is also interesting to
observe that the SA approach gives slightly more

1φ value (for pursuing load balancing) for all the
cases. The two facts practically demonstrate the
advantage of putting the GA's load balancing
constraint in our multiple objective functions to be
considered with the total communication overhead.
As a matter of fact, to reach the main goal of the
placement problem, that is, to place files and tasks
with minimal communication overhead, load

balancing alone may not be helpful. For instance,
the "absolute" load balancing achieved by the
greedy heuristic approach results in much inferior
performance and the GA approach, though
attaining more balanced load for each site than the
SA approach, apparently suffers worse
communication overheads. By contrast, our SA
approach is able to give suitable 1φ values more
effectively, which may result in less balanced load
but can reduce overheads significantly.

Simulation runs are carried out in a Sun Sparc
system. The times needed for the results (τ) are
also collected. The GA approach is shown to take

246 Po-Jen Chuang and Chi-Wei Cheng

more time for both the steady state and the
generational population models when compared
with the SA approach for every data set. To give
an example, for the largest data set (120 tasks, 200
files and 40 sites), the SA takes only 250 seconds,
while the GA takes an average of 805 and 395
seconds. The result indicates when employed to
find the optimal file and task placement, our SA
gives rise to better performance with reduced time
complexity compared with the rather complicated
GA.

2.4 The Guided Evolutionary SA Approach and
Discussions

The Guided Evolutionary Simulated
Annealing (GESA) approach, an extension of the
SA approach, has been proposed in [3]. To see if
the new approach can be applied to the placement
problem with more desirable performance would
be interesting. The GESA approach allows many
candidate solutions (not just one as in the SA) to
be generated at the same time, and the generation
of new solutions are guided into promising
regions through local and global competitions. A
set of initial solutions, say M solutions, are
generated randomly, each of which is called a
"parent" of a family. Each parent then generates a
new set of solutions, say N solutions, which are
called the "children" of the family. The M parents
and the M × N children then compete by using the
Boltzmann machine-like mechanism and the best
solution will be selected as the parent of the next
generation. Apparently, the better a family is
(i.e., having a large number of good solutions),
the more family members will be selected as new
parents - the amount of members the family will
have in the next generation is thus determined.

Listed below are the iterative steps of the
GESA algorithm applied to the placement
problem.

(1) Initialization
Initialize the iteration count and the

temperature as in the SA. Generate randomly a
set of initial solutions, say M parents, x1 ~ xM.
Find the best parent.

(2) Iterative steps
(a) Generation: Generate a set of solutions

from each parent by choosing randomly an
element and changing it to any randomly chosen
site number. Find the best child in each family
and then the global best child among the best
children.

(b) Selecting parents of the next generation:
The best child of each family is compared with

its parent to yield the difference: △ψ k=ψ

k(xi,j)- ψk(xi), where i is the ith family and xi,j is
the jth child, i.e., the best child in the family. If
all the objective function differences 0<∆ kφ
for 1 ≦ k ≦ 3, the best child is chosen as the
parent of its family for the next generation.
Otherwise, the best child will be accepted as the
new parent with the

probability ,))(
'

exp(

3

1
r

T
x
J

k
k

kk

>

∆
−∑ = φ

φ

where

)()(' , xx kjikk φφφ −=∆ , Jk = 1 (if 0'>∆ kφ) or
0 (otherwise), x is the best parent, T is the
temperature at the iteration, and r is a random
number uniformly distributed between 0 and 1.

(c) Calculating the number of members
accepted to the next generation for each family:
Every child of each family is compared with its
parent. Find the difference

)()(, ikjikk xx φφφ −=∆ for 1 ≦ k ≦ 3,
where i is the ith family and j is the jth child in
the family. If all the objective function
differences 0<∆ kφ , the weight factor wi of
family i for the next generation increases by 1.
Otherwise, wi increases by 1 with the probability

γφ
φ

>

∆
−∑ =

))(
'

exp(

3

1

T
x
J

k
k

kk

 (with the same

representation as mentioned above except that x
is the global best child here). After calculating all
weight factors for all families, sum up these

weight factors: ∑ =
=

M

i iws
1 . The number of

accepted members for each family will be

s
wNMA i

i ××= .

(d) Cooling
(e) Convergence check
(f) Terminal check

The GESA approach is also programmed to
obtain desirable file and task placements with
simulation results depicted in Table 3. It is
observed that the performance of the GESA
approach does not, as anticipated, advance that of
the SA approach (on the contrary, it is inferior)
and its time complexity is also worse than the
SA. Thus when applied to the file and task
placement problem, the SA apparently
demonstrates better performance with less
complexity than both the GA and GESA. On the
other hand, when employed to solve problems

On File and Task Placements and Dynamic Load Balancing in Distributed Systems 247

with continuous solutions, both the GA and
GESA approaches may work better than the SA
approach since they are able to generate a number
of candidate solutions at the same time (the SA
approach finds only one solution at a time). For
the distributed file and task placement problem
whose solutions are not continuous or located in
a specific area, the neighboring solution cannot
be obtained in the same way as when searching
for continuous solutions (i.e., by adding a "small
value" to the initial solution); instead, it will be
obtained by changing one element in the encoded
initial solution while leaving the rest of the
elements unchanged. To randomly select one
element in an encoded solution and change it to
another randomly chosen site number indicates
changing the placement of either a file or a task,
which will largely affect the entire system. If the
change is with file/task placement, the files
stored/load for some site will be changed
accordingly and so will the total communication
overhead of the system. The situation is quite
different from that of searching for continuous
solutions where the difference between the initial
and neighboring solutions are very small. To sum
up, since the solutions for the distributed file and
task placement problem are not continuous, the
search for solutions must be carried out by
looking through more "possible" solutions. That
is, performance will be bettered if more
generations are involved in the search. In this
sense, the SA approach can work more
effectively because with its simplified
computation for each generation, the SA is able
to obtain the optimal solution by increasing the
number of generations to be searched. As for the
GA and GESA, since the computation for each
generation is rather complicated and time
consuming, there exists the dilemma: If the
generations are increased to ensure a more
favorable solution, the search can be fairly
lengthy; if the generations are decreased to trim
down time overheads, the solution may turn out
unsatisfactory.

Table 3. Simulation results for the GESA approach
Data Set GESA

t f s 1φ 2φ 3φ τ
30 50 20 18 3271 1814 50
40 60 20 24 5777 3642 71
60 100 20 32 13079 8032 158

120 200 40 36 50074 29611 665
t: the number of tasks f: the number of files
s: the number of sites

3. An Efficient Dynamic Load Balancing
Scheme for Distributed Systems

As mentioned, the random arrival of tasks at
each processor is likely to bring about uneven
processor loads in a distributed system. To
equalize processor loads, dynamic load
balancing is usually employed in which
excessive tasks at a heavily loaded processor can
be migrated to another processor with a light
load during execution. To realize efficient
dynamic load balancing then means to lift up the
acceptance rate of task migration requests and to
trim down communication overheads accordingly.
The standard sender-initiated scheme [4] and the
GA-based scheme [5] are schemes established to
balance such processor loads, but they either
ignore enhancing the acceptance rate or involve
too complicated operations. For improvement,
we propose a simplified new scheme which is
very efficient in performing dynamic load
balancing in a distributed system.

3.1 Background
To balance the uneven processor loads in a

distributed system, thresholds (expressed in units
of load) can be employed [4]. If the load at a
processor exceeds a threshold Th, it is heavy; if
falling below a threshold Tl, it is light. In the
sender-initiated dynamic load balancing scheme
[4], a request for task migration is initially issued
from a processor with a heavy load (the sender)
to another randomly selected processor (the
potential receiver). If the selected receiver is not
lightly loaded, the request might be rejected and
sent back and forth repeatedly until a suitable
receiver is found. To restrain the overhead, the
number of requests is restricted by a request
limit. Task migration will not happen if no
suitable receiver is found within the request limit,
and the sender processor will have to execute the
task itself. The whole process can be very
time-consuming due to unnecessary requests.

To realize efficient dynamic load balancing,
the acceptance rate for migration requests must
be uplifted in the first place, that is, a potential
receiver should be decided swiftly and a
"qualified" receiver must be selected within less
tries. The simplest way to decide a potential
receiver is, as in the standard sender-initiated
scheme, to select it randomly [4,16]. But, having
no concern for the acceptance rate, it fails to
reduce the number of unnecessary requests. To
improve it, another scheme based on the Genetic

248 Po-Jen Chuang and Chi-Wei Cheng

Algorithm (GA) is proposed [5]. The
GA-based scheme applies genetic operators,
such as selection, crossover and mutation, to a
population of strings kept in each processor.
Each string, defined as a binary-coded vector <v0,
v1, …, vn-1> (assuming there are n processors in
the system), represents the combination of
processors to which a request message from a
heavily loaded processor should be sent off. That
is, a request message will be sent off to processor
Pi if vi = 1, while none will be sent if vi = 0,
where 0 ≦ i ≦ n-1.

Each string is associated with its payoff
values and has its own fitness value. If any of the
requests according to a string is accepted, the
string is awarded with a positive payoff value
inversely proportional to the number of requests
sent; if no request is accepted, the payoff value is
zero. It is obvious that the payoff will be higher
when the requests sent over are less. For example,
when at least one request according to a string is
accepted, the payoff value of the string can be

defined to be
x

1
, where x is the number of

requests sent. The fitness value of a string is an
average of the last ζ payoff values, where ζ
is predetermined. A string is selected at a
probability proportional to its fitness, and
requests are sent to processors indicated by the
string. For instance, in a system with 8
processors, suppose the selected string
<0,1,0,1,-,0,1,0> is in P4; P4 will send request
messages to, say, P1, P3, and P6. If an accept
message is sent back from P3 which is
lightly-loaded, P4 will then migrate the task to P3.
In case two or more accept messages are
returned, one is selected randomly. After task
migration, P4 calculates the fitness value of the
string <0,1,0,1,-,0,1,0> and applies genetic
operators to its own population.

With such complicated genetic operations in
deciding potential receivers, the GA approach
fails to lift the acceptance rate as much as
anticipated. Besides, in order to calculate the
fitness values and to apply the genetic operators,
a request message must be sent off to all
processors with corresponding bits in the string
being 1's, resulting in more unnecessary requests
and redundant acceptances.

For improvement, we propose a simple and
efficient new scheme which is a modification of
the standard sender-initiated scheme. In our new
scheme, a request for task migration will be sent

to a processor according to a list of state values
kept in each processor, and, by a simple list
lookup, the request can be sent to the most fitting
processor.

3.2 Our New Scheme
Unlike the standard sender-initiated scheme

which selects a potential receiver processor
randomly, our proposed new scheme selects it
according to a list of state values kept in each
processor. The list records the state values of all
the other processors. Each state value, initialized
to be the allowed task queue length in a
processor, is determined by the unused task
queue length in the processor.

The list of state values can be used to
achieve desirable dynamic load balancing as
follows. Let Px be a processor, x be the state
value, w indicate the length (in terms of the
execution time) of a task, and m / n respectively
refer to the heavy / light load threshold values
for the processor. Before a task in the waiting
queue of Px enters the system for execution, go
through the check_load process first to get x and
then compare x with m. If x > m and x > w, the
task directly enters the task queue of Px. If x < m
(that is, Px is in heavy load) or x > m but x < w
(that is, the task queue is unable to accommodate
the task), another processor should be found to
assist.

During the find_processor process, Px will
operate the select procedure by checking through
the state values of all the other processors
recorded in the list, and send the request (the
length of the task to be transferred) to another
processor, say Py. Upon receiving the request, Py
goes through the check_load process to get the
value of the unused task queue length y, and
compare y with n (the light load threshold value).
If y > n, Py is in light load and is able to accept
the request. It will send y over to Px. (If Py
receives another request before taking in the task
to be transferred from Px, it has to deduct w from
y and takes the updated value (y - w) as its new
state value after the operation of check_load.
Then compare the new state value with n.) After
receiving value y, comparing y with n and
realizing Py is able to accommodate the task, Px
will send the task over to the task queue in Py
through the task_migration operation, and
meanwhile update the state value of Py into y - w.

On the other hand, if y < n, Py is not in light
load and therefore cannot accept the task from Px.
It will send y to Px which, after comparing y with

On File and Task Placements and Dynamic Load Balancing in Distributed Systems 249

n, realizes the fact, changes the state value of Py
in the list into y, and then continues the select
procedure to find another potential receiver. In
this way, Py simply gives response to Px with
value y whatever the situation is, and Px gains a
chance through such communication to update
the state value of Py. Some simple calculations
(state_adjust functions) can be employed at the
same time to further lift up the acceptance rate:
If a request is accepted/rejected by a processor,
state_adjust functions are applied to the unused
queue length of the processor to get the state
value so that a processor with bigger/smaller
unused queue length gets more proportion of
increase/decrease in its state value and hence
more/less chance to be selected.

As stated above, our scheme involves only a
simple list lookup in determining a receiver
processor. Experimental evaluation shows that
with slightly higher time complexity over the
standard sender-initiated scheme, our new
approach realizes very significant elevation in
the acceptance rates and, as a result, is able to
reduce unnecessary request messages as well as
communication overheads. In contrast to the
complicated operations the GA-based approach
adopts in determining potential receivers, our
approach is apparently simpler and more
effective.

3.3 Experimental Results
Extensive simulation runs are conducted to

collect the results for the standard
sender-initiated, the GA-based, and our new
schemes. In our simulation model, 16 processors
are connected via a network at a communication
speed 10K bytes per milliseconds, with incoming
tasks arriving at only 12 of the 16 processors for
easy observation of the results. Independent
tasks come randomly at the same mean arrival
rate to each of the 12 processors. Execution
times of the tasks and task sizes are
exponentially distributed with a mean 100
milliseconds and a mean 10K bytes respectively.
The size of a request, accept, or reject message
is 1024 bytes. The queue length (in terms of
execution time) for a processor indicates its load,
and a processor is considered to be heavily
loaded when its queue length is over 400 (the
threshold Th = 400) or lightly loaded when less
than 200 (the threshold Tl = 200). For the
standard sender- initiated scheme and our new

scheme, the request limit is 8. For the
GA-based scheme, the number of strings in each
population is 10; the crossover rate and the
mutation rate are 0.04 and 0.05 respectively. If
any of the requests according to a string is
accepted, the string is awarded with a payoff
value equal to the difference between the number
of processors and the number of request
messages sent, i.e., the number of 1's in the
string. (Note that the payoff values calculated in
this way result in the best performance for the
GA-based scheme, even better than calculated by

x
1 [5], where x is the number of requests sent.)

If no request is accepted, the payoff value is zero.
The fitness value of a string is the average of the
last 5 payoff values (i.e., ζ = 5).

The state value in our new scheme is
initialized to be the allowed task queue length (=
1000) in a processor and is determined by the
unused task queue length in it. If a request is

accepted by a processor, state_adjust
799

2ξ is

applied to the unused queue length ξ of the
processor to get the state value. In this way, a
processor with bigger ξ gets more proportion
of increase in its state value, and hence more
chance to be selected. For instance, the
processors with ξ = 810, 820 and 850 each get
state values = 821, 842 and 904 (the individual
increase is 11, 22, and 54). On the other hand, if
a request is rejected by a processor, state_adjust

100
100

−
×

η
ξ (where η is the queue length) is

applied to the ξ of the processor to get the
state value, making the processor with smaller
ξ get bigger proportion of decrease in its state
value and hence less chance to be selected. The
simulation continues until 10000 tasks are
executed.

Simulation results listed in Tables 4 to 7 are
obtained over 10 independent runs and are
reasonably accurate. For instance, for the first
mean response time value 157, given 95%
confidence, the calculated confidence interval
half-width over the 10 replications is 2, meaning
that we are 95% confident the true result would
fall into the interval 157 ± 2, or equivalently,
157 ±1.3%, with less than 2% error.

250 Po-Jen Chuang and Chi-Wei Cheng

Table 4. Mean response time for different schemes
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tandard sender-initiated 157 184 215 255 292 334 378
GA-based 157 184 218 255 294 333 375

our new scheme 157 183 214 247 279 311 353

Table 5. Total numbers of messages sent during the simulation period
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9

standard sender-initiated 202 536 1115 2378 4613 9182 18453
GA-based 1504 3310 7004 12044 18480 28918 40934

our new scheme 192 488 1011 1937 3194 5160 10993

Table 6. Frequency for tasks to enter heavily loaded processors
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9

standard sender-initiated 90 232 455 872 1438 2228 3221
GA-based 100 229 491 878 1433 2246 3138

our new scheme 92 231 459 846 1306 1918 2745

Table 7. Mean acceptance rates for different schemes
arrival rate 0.3 0.4 0.5 0.6 0.7 0.8 0.9

standard sender-initiated 0.94 0.93 0.9 0.86 0.79 0.7 0.57
GA-based 0.14 0.15 0.15 0.16 0.17 0.16 0.15

our new scheme 0.98 0.98 0.95 0.93 0.9 0.87 0.74

The mean response time listed in Table 4 is
the time from the task's arrival till its execution
completed. As can be seen, our proposed
scheme depicts consistently less mean response
time, though the difference is not eminent. It
should be observed that when load balancing is
applied, each scheme brings about the same
degree of balance that makes the queuing time
for each task equal and therefore results in
almost equal response time. The only difference
may come from the communication overhead for
load balancing. Since the communication time
per request, accept or reject message in our
simulation model is assumed to be much smaller
than the task execution time and the queuing
time, the above difference of response time
would become bigger when the overhead per
message increases.

Communication overheads are listed in
Table 5 with the numbers of total messages
(including the request, accept, and reject
messages) sent. The number for the GA-based
scheme is conspicuously big because once a task
enters a heavily loaded processor, it has to send
request messages to all of the processors with
corresponding bits in the string being 1's . By
contrast, the number for our scheme is

apparently smaller at any arrival rate, and when
the arrival rate grows (that is, when the system
load increases), the difference becomes more
eminent. For our scheme, the significant
reduction in numbers of messages sent is indeed
the plain effect of lifted acceptance rates. Table 6
lists the frequency for tasks to enter heavily
loaded processors. It shows that tasks are less
likely to enter heavily loaded processors for our
scheme, esp. when the arrival rate grows higher,
helping reduce unnecessary messages and
communication overheads. Table 7 gives the
mean acceptance rates. The acceptance rate will
be 0 if all the request messages sent out are
rejected. When a request message is eventually
accepted (that is, when task transfer is to happen),
the acceptance rate will be the reciprocal of the
total number of request messages sent at this
attempt, and the mean acceptance rate can be so
obtained (average over the number of times
listed in Table 6). The acceptance rate for our
scheme, as demonstrated, is remarkably higher
than the other two schemes, a very significant
indicator for performing efficient dynamic load
balancing. As a matter of fact, the much
improved acceptance rate and the consequent
reduced communication overhead for our

On File and Task Placements and Dynamic Load Balancing in Distributed Systems 251

proposed scheme are achieved mainly due to our
ability to reduce unnecessary request messages.

4. Conclusions
It has been realized that one of the major

concerns for a distributed computing system is to
find the placements of files and tasks at the sites
with minimal total communication overhead. To
this end, a Genetic Algorithm (GA) has been
developed, but its operations are fairly
complicated and time consuming. For
improvement, we propose to use the Simulated
Annealing (SA) approach. The SA approach is
able to avoid the first local minima encountered
by maintaining an annealing schedule of the
temperatures to keep the searching for the
optimal solution from getting stuck. Multiple
objective functions are also supplied and
properly used to calculate the objective function
value of each candidate solution (with the
optimal solution aiming to minimize the multiple
objective functions), resulting in more practical
and favorable solutions. For further evaluation
and comparison, we also investigate the Guided
Evolutionary Simulated Annealing (GESA)
approach, an extension of the SA approach.
Experimental results demonstrate that in
obtaining desirable file and task placements, our
proposed SA approach depicts superior
performance with much less complexity over the
GA and GESA approaches.

In dealing with the dynamic load balancing
problem in a distributed system, the standard
sender-initiated scheme and the GA-based
scheme are found to be either inefficient or too
intricate. To realize more efficient dynamic load
balancing, we propose a simple new scheme in
which a potential receiver for a task migration
request message is selected according to a list of
state values kept in each processor. By only a
simple lookup at the list, the selection of a most
fitting receiver processor for a task migration
request message can be achieved. Experimental
results show that, with only slightly higher time
complexity than the standard sender-initiated
scheme, our new scheme is able to yield much
enhanced acceptance rates, significantly
reducing the number of unnecessary request
messages and hence the communication
overhead.

References
[1] Corcoran, A. L. and Schoenefeld, D. A., “A

Genetic Algorithm for File and Task
Placement in a Distributed System,” Proc.
1st IEEE Conf. on Evolutionary
Computation, pp. 340-344 (1994).

[2] Kirkpatrick, S., Gelatt, C. D., Jr. and
Vecchi, M. P., “Optimization by Simulated
Annealing,” Science, Vol. 220, pp. 671-680
(1983).

[3] Yip, P., “The Role of Regional Guidance:
The Guided Evolutionary Simulated
Annealing Approach,” Ph.D. Dissertation,
Department of Electrical Engineering and
Applied Physics, Case Western Reserve
University, Cleveland, U.S.A. (1993).

[4] Shivaratri, N. G., Krueger, P. and Singhal,
M., “Load Distributing for Locally
Distributed Systems,” IEEE Computer, Vol.
25, pp. 33-44 (1992).

[5] Munetomo, M., Takai Y. and Sato, Y., “A
Genetic Approach to Dynamic Load
Balancing in a Distributed Computing
System,” Proc. 6th Int'l Conf. on Genetic
Algorithms, pp. 418-421 (1994).

[6] Bell, D. A., “Difficult Data Placement
Problems,” Computer Journal, Vol. 27, pp.
315-320, (1984).

[7] Chang, C. C. and Shielke, “On the
Complexity of the File Allocation
Problem,” Proc. Conf. on Foundations of
Data Organization (1985).

[8] Dowdy, L. W. and Foster, D. V.,
“Comparative Models of the File
Assignment Problem,” ACM Computing
Surveys, Vol. 14, (1982).

[9] Ceri S., Martella, G. and Pelagatti, G.,
“Optimal File Allocation for a Distributed
Database on A Network of
Minicomputers,” Proc. ICOD 1 Conf.
(1980).

[10] Holland, J. H., Adaptation in Natural and
Artificial Systems, Univ. of Michigan Press,
Ann Arbor, U.S.A. (1975).

[11] Srinivas, M. and Patnaik, L. M., “Genetic
Algorithms: A Survey,” IEEE Computer,
Vol. 27, pp. 17-26 (1994).

[12] Corana, A., Marchesi, M., Martini, C. and
Ridella, S., “Minimizing Multimodal
Functions of Continuous Variables with the
Simulated Annealing Algorithm,” ACM
Trans. on Mathematical Software, Vol. 13,
pp. 262-280 (1987).

[13] Richardson, J. T., Palmer, M. R., G. E.
Liepens G. E. and Hilliard, M., “Some
Guidelines for Genetic Algorithms with

252 Po-Jen Chuang and Chi-Wei Cheng

Penalty Functions,” Proc. 3rd Intl. Conf. on
Genetic Algorithms (1989).

[14] Whitley, D. and Kauth, J., “genitor: A
Different Genetic Algorithm,” Proc. Rocky
Mountain Conf. on Artificial Intelligence,
pp. 118-30 (1988).

[15] Goldberg, D. E., Genetic Algorithms in
Search, Optimization, and Machine
Learning, Addison-Wesley, Reading,
U.S.A. (1989).

[16] Eager, D. L., Lazowska, E. D. and
Zahorjan, J., “Adaptive Load Sharing in
Homogeneous Distributed Systems,” IEEE
Trans. on Software Engineering, Vol. 12,
pp. 662-675 (1986).

Manuscript Received: Jul. 24, 2001
 and Accepted: Nov. 6, 2002

