
Tamkang Journal of Science and Engineering, vol. 2, No. 1 pp. 37-43 (1999) 37

A Radix-2 Non-Restoring 32-b/32-b Ring Divider with Asynchronous
Control Scheme

Jen-Shiun Chiang, Eugene Lai and Jun-Yao Liao
Department of Electrical Engineering

Tamkang University
Tamsui,251, Taiwan, R. O. C.
E-mail chiang@ee.tku.edu.tw

Abstract

 Division operation is very important in the computer system.
Nowadays people use a hardware module─divider to implement the
division algorithm. Conventionally synchronous techniques are
applied to implement the divider. The synchronous systems always
need system clock signals to trigger the system. However, the system
clock of the synchronous system may cause some problems, such as
clock skew, dynamic power consumption, ..., etc. Compared to
synchronous systems, asynchronous circuits do not need system clock
signals and thus the asynchronous system does not have the
shortcomings mentioned above. Here we will propose a new
asynchronous architecture for the divider. In this asynchronous
scheme, the architecture is of simplicity and is very easy for the VLSI
implementation. By this asynchronous architecture, we use TSMC’s
0.6um SPDM process to design a 32-b/32-b radix-2 non-restoring
divider and the spice simulation proves it works. The HSPICE
simulation shows that it can finish a 32-b/32-b division in between
3.7ns to 160.2ns.

Key Words: Asynchronous circuits, conditional carry-selection
 adder, divider, radix-2 non-restoring division
 algorithm, synchronous circuits, VLSI.

1. Introduction

 The divider is a very important device in the
computer central processing unit (CPU). Basically
dividers are sequential circuits. Conventionally
people use synchronous design technique to design
the divider (Kuo et al., 1993). In the synchronous
system, we need a global clock to activate the
operation of the system. The global clock scheme
used in the synchronous circuits makes the design
of a system be easy (Sutherland, 1989). However,
there are several drawbacks in the synchronous
system with global clock signals (Unger, 1995;
Hauck, 1995). First, the long path of the system
clock signals may cause clock skew, and that may
cause very severe problems and the system may
thus be malfunctioned. Second, the clock frequency
of the system clock is decided by the longest period
among the states. In order to increase the clock
frequency, people have to do a lot of efforts to

separate the states to be almost equal operation time,
and this may reduce the design efficiency and
increase the design time. Third, nowadays people
like to use dynamic devices to design circuits (Yuan
and Svensson, 1989), and the charge and discharge
of the circuits consume power. The higher the
frequency of the clock is, the more the power
consumes. Fourth, the VLSI technology progresses
significantly nowadays. The implementation
processes are dependent prone, and that means the
circuit works in one VLSI implementation process
may not function properly in another VLSI process
(Hauck, 1995). Therefore, the same circuit has to be
redesigned in different implementation processes.
This characteristic reduces the life time of a
product.
 Besides the synchronous design technique,
there is another design technique ─asynchronous
design technique. The asynchronous circuit (Jacob

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225191053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

38 Tamkang Journal of Science and Engineering, vol. 2, No. 1 (1999)

and Brobersen, 1991; Pigeut, 1991; Williams and
Horowitz, 1991; Renaudin et al. 1996) is activated
by the input event, therefore, there is no need of
system clocks. In the asynchronous system we do
not need to worry about the problems which are
caused by the system clock. There are several
approaches to design an asynchronous circuit
(Hauck, 1995), such as bounded delay models,
micropipelines (Sutherland, 1989), delay insensitive
circuits, and quasi delay insensitive circuits (Molina
et al. 1996). The bounded delay models are the
conventional approach; we have to generate the
flow table and assign the internal states very
carefully to prevent the critical race. Due to the
unpredictable delays we have to do a lot of effort to
make the state transitions properly, therefore it is
not practical to the real circuit design (Hauck,
1995). The other approaches, such as delay
insensitive circuits and quasi delay insensitive
circuits, are classified as handshaking mechanism
approaches which are the main stream of the
asynchronous design recently. Since the circuit is
activated by the input event and the handshaking
signals in the asynchronous circuits, so we do not
need to take special care of the system clock path
routing to avoid the clock skew problems.
Therefore, the asynchronous designs are
implementation process independent (Hauck, 1995).
That means the asynchronous design can be fit to
any kind of VLSI process and do not affect the
function of the design. There is no system clocks in
the asynchronous circuits, the power consumption
which we worry about in the synchronous circuits
is thus prevented.
 The divider proposed in this paper is in the
asynchronous manner, and there is no system clock
signal to activate the division operation. We use a
single stage ring to finish the radix-2 non-restoring
division (Hwang, 1979; Koren, 1993), so the
hardware is small. About the asynchronous
controller, we use the very commonly used devices,
such as exclusive-or gates and latches, and pseudo
NMOS technique (Wesete and Eshraghhing, 1993)
to implement this 32-b/32-b divider. In order to
increase the operation speed, the conditional
carry-selection adder (CCSA) (Ohkubo and Suzuki,
1995) is adopted. This divider is designed in a
parallel-in serial-out manner and takes only 4,051
MOS transistors. The HSPICE simulation shows
this divider works well.
 This paper is arranged as follows. Section I is
introduction. Section II will describe the
background of the radix-2 non-restoring division
algorithm. Based on Section II we propose an
architecture of the 32-b/32-b divider and is

expressed in Section III. The circuit design is
shown in Section IV. The VLSI layout is also
shown in Section IV. The simulation and certain
results are shown in Section V. Finally we will give
the concluding remarks which are shown in
Section VI.

2. Radix-2 Non-Restoring Division

 Division is the most difficult operation in the
computer arithmetic. Basically the division
algorithm can be classified as multiplicative and
subtractive approaches. In the multiplicative
approach, we try to find the multiplicative inverse
to calculate the quotient. On the other hand, we
subtract the divisor form the partial remainder
(dividend) recursively to find the quotient and
remainder. Here we will concentrate ourselves to
the subtractive approach. In the subtractive idea the
algorithm is the same as the division methods that
we were taught in the elementary school. Suppose
that there are two n-digit numbers, X and D, which
represent the dividend and divisor respectively. By
the division operation we can find a n-digit quotient
and a n-digit remainder denoted as Q and R
respectively. The mathematical representations of X,
D, Q, and R are as following (Koren, 1993),

 R r R q Dj j

j
() ()+

+= × − ×1
1 (1)

The final quotient is represented as
Q q q q qn= 1 2 3 ...

 Due to the complexity and the hardware cost,
we use radix-2, i.e., r=2, for our design. Therefore,
equation (1) can be rewritten and represented in
equation (2) as follows (Koren, 1993).

R R q Dj j

j
() ()+

+= × − ×1
12 (2)

 In the hardware design we have to check the
subtraction at each step to decide the quotient in
that digit. There are two ways to find the quotient
of the current digit. One is the restoring method,
and the other is the non-restoring method. Without
loss of generality let us discuss the two methods in
the radix-2 number system. In the restoring
approach, when the current partial remainder,

Where j = 0, 1, 2, …, n-1 is the iteration number.
 Rj is the partial remainder at iteration j.
 r is the radix number.
 q j +1 is the j+1th digit of the quotient.

Jen-Shiun Chiang, Eugene Lai and Jun-Yao Liao: A Radix-2 Non-Restoring 32-b/32-b Ring Divider with 39
Asynchronous Control Scheme

R j()+1 , is positive, the current quotient bit is equal
to 1. On the other hand, if the current partial
remainder is less than 0, then the current quotient
bit is set to 0, and then the partial remainder should
be added with the divisor and restore back to the
previous partial remainder, R j() , and it is so called
the “restoring” method. In the non-restoring method,
if the current partial remainder, R j()+1 , is positive,
the current quotient bit is equal to 1. On the other
hand, if the current partial remainder is less than 0,
then the current quotient bit is set to -1, and at the
next step we have to add the divisor to the current
partial remainder, R j()+1 , to form the next partial
remainder, R j()+2 . The quotient map is shown in
Fig. 1. By this method, there is no need to add
divisor to restore the previous partial remainder.
However, the quotient in the non-restoring scheme
is represented in the signed bit (digit) format.
Therefore, after we finish the division process, the
non-restoring method needs an additional step to
convert the signed bit format to the binary number
representation. Since we do not need to check the
polarity of the partial remainder to do the restoring
of the partial remainder. Therefore, the speed of the
non-restoring division algorithm is faster than the
speed of the restoring division algorithm (Hwang,
1979; Koren, 1993).

-D

-D

D

D 2D-2D

ri

2ri-1

qi= -1 qi= 1

Fig. 1. The Quotient Map of Non-Restoring

Division

 In the radix-2 division, dividend and divisor
are usually represented in the normalized format. A
normalized binary number can be represented in the
following format.

A a a an= (. ...)0 1 1 2 2

 By the non-restoring division approach, we
find the -1 of the quotient bit can be simply set to 0,
and the quotient is the actual quotient that we want
to find. We use a simple example to describe the

normalized radix-2 non-restoring division algorithm.
Suppose that we have two numbers, 011011111 and
01001, where the decimal points are abbreviated
and the first bits of the dividend and divisor
represent the sign bits. The division is executing as
the following procedures.

Example:

011010000 / 01001 => Q = 010111 &R
= 0001
 011010000
 -) 01001 (+10111)
 001000000 q1 = 1
 -) 01001 (+10111)
 11111000 q2 = 0
 +) 01001
 0011100 q3 =1
 -) 01001 (+10111)
 001010 q4 =1
 -) 01001 (+10111)
R = 0001 <= 00001 q5
=1 => Q = 010111

 That means in the radix-2 non-restoring
division approach; we do not need to convert the
signed digit quotient to the binary representation
and the calculated quotient is the number that we
want in the hardware design. For the benefit of the
speed and hardware cost, we use normalized
radix-2 non-restoring division algorithm to build
our divider.

3. The Architecture of the Asynchronous
Divider

 The architecture of the divider is shown in
Fig. 2. The basic components of this divider
consists of multiplexers, counters, adders, shift
registers, and latches. The operating procedures are
described in next paragraph. From Fig. 2, we can
find that the architecture has the characteristics of
simplicity, and the hardware is small.
 Suppose that the divisor and dividend are
ready, we give a starting signal to start the divider.
According to the non-restoring division algorithm,
the multiplexer of the divisor will select the positive
or negative divisor which depends on the sign of
the result of the 32-b adder (partial remainder). If
the partial remainder is positive the quotient bit is
set to 1, and the multiplexer selects the negative
divisor for the next iteration. On the other hand, the
quotient bit is set to 0, and the

40 Tamkang Journal of Science and Engineering, vol. 2, No. 1 (1999)

32-b Adder

MUX MUX

Latch

GC

Completed signal

Counter

Shift register

Signed bit

Quotient

+ _
Divisor Dividend

Fig. 2. The Architecture of the Divider

multiplexer will select the positive divisor for
the next iteration. The GC (generate complete)
gate has two sets of inputs, and each set is with
32-bit length. When both of the two sets are the
same, the output of the GC gate is set to 0,
otherwise, the output of the GC is set to 1. The
detail circuit design of GC will be described in
Section IV. The GC gate and the feedback latch
together will generate a self-timed clock signal.
The self-timed clock signal is used to trigger
the counter and the feedback latch. Originally
the output of GC is 0, as soon as the starting
signal is triggered, then the output of GC
becomes 1. This GC signal will activate the
counter and make the counter to count 1 up.
The feedback latch is designed as a level
triggered latch. As soon as the counter counts,
the multiplexer in the dividend side will select
the result from the feedback latch. When the
adder finishes summation operation, the two
sets of inputs of GC are the same and cause the
output of GC to be 0, and the feedback latch
stops latching data. At this moment the 31st bit
of the partial remainder will select either
positive or negative divisor to the adder and do
the addition operation. By the way, the 31st bit
of the partial remainder is shifted into the MSB
of the shift register to form the current bit of
the quotient. As soon as the addition operation
of the adder starts, the output of GC changes to
1, and the feedback latch starts latching the
partial remainder, and the counter counts again.

Recursively, the operation will repeat 32 times,
and the counter will count 32 times and then set
the ripple carry bit of the counter to 1 and the
division procedure stops. Finally the quotient
will be found in the output latch.

4. The Circuit Design and the
Asynchronous Divider

 The key components of this divider are the
adder and the GC gate. In order to increase the
speed of the division, the conditional
carry-selection adder (CCSA) (Ohkubo and Suziki,
1995) is used. The block diagram of the CCSA is
shown in Fig. 3. This adder combines the
characteristics of carry look-ahead adder and
conditional sum adder (Hwang, 1979). The first
level of the 32-b CCSA consists of a series of 4-b
CLA adders (8 sets). Each CLA adder will generate
two sets of outputs, where one is without carry-in
sum and carry, and the other is with carry-in sum
and carry. The sums with carry or without carry
will be selected by the CSS to form the exact sum.
The carries of each CLA adder go into the CLA2
block to find the correct carries. Based on the
correct carries, the CSS can select the right partial
sums which form the CLA adders. The detail of
CCSA please refer to (Ohkubo and Suziki, 1995).
The speed of the CCSA is very fast but the
hardware is smaller than the traditional conditional
sum adder. This adder can satisfy our requirement.

Fig. 3. The Block Diagram of the CCSA

 The GC gate is designed by the pseudo

Jen-Shiun Chiang, Eugene Lai and Jun-Yao Liao: A Radix-2 Non-Restoring 32-b/32-b Ring Divider with 41
Asynchronous Control Scheme

NMOS approach which is shown in Fig. 4. In the
GC circuit, the exclusive-or gate is used to check
the completion of the summation of the adder. One
input of the exclusive-or gate is from the output of
the feedback latch, and the other input is from the
corresponding bit of the partial remainder. From
Fig. 2 we find that the feedback latch is a level
triggered latch, and the multiplexer in the dividend
side selects the input from the feedback latch. When
both inputs of GC are different, it means that the
adder has not finished summation operation yet,
and the feedback latch is still latching the output of
the adder. As soon as the adder finishes summation,
the exclusive-or gate of GC becomes 0 and makes
the feedback latch stop latching data but hold the
latched data. By the pseudo NMOS and
exclusive-or gates arrangement as shown in Fig. 4,
if one output of the exclusive-or gate is 1, the
pseudo NMOS circuit will discharge and make the
output of the GC to be 1. Only all the outputs of the
exclusive-or gates are 0’s, then the “output” of Fig.
4 becomes 0. This “0” signal of GC will cause the
feedback latch to hold the latched data, and
generate a series of self-timed clock signals.

Fig. 4. The Structure of GC Gate

 By the arrangement of GC and CCSA adder,
the divider can work recursively. We need only one
trigger signal (“starting”) to tell the divider to do
the division, and no external clock is needed. When
the division operation is finished, the quotient is
latched in the latch, and then the system stops there
and idle to wait for the next sets of divisor and
dividend, and the asynchronous operation mode is
thus formed.

5. The Simulation and the VLSI Layout

 By the architecture and the circuit design
technique discussed in Section III and IV, we use
TSMC’s 0.6 µ m SPDM process to design and
implement a 32-b/32-b parallel-in serial-out divider.
The HSPICE simulation of the GC gate is shown in
Fig. 5. Because the speed of the addition depends
on the amounts of the two inputs of the adder. In
the asynchronous operation mode, the finished time
for each operation should be different. From Fig. 5
we can clearly find that the period of the given
cycles formed by the GC are different. However, it
can work properly.

Fig. 5. The Period of Subtraction Operation

 The fastest division needs only 3.7ns and the
HSPICE simulation is shown in Fig. 6. If we need
32 division steps, it takes 160.2ns and the HSPICE
simulation is shown in Fig. 7. The specification of
this divider is shown in Table. 1. The VLSI layout
of this 32-b/32-b radix-2 non-restoring divider is
shown in Fig. 8.

42 Tamkang Journal of Science and Engineering, vol. 2, No. 1 (1999)

Table. 1. The Specification of the Divider

6. Conclusion

 A new architecture of the 32-b/32-b radix-2
non-restoring asynchronous divider is proposed and
implemented. This is a ring divider, and the
asynchronous component, GC gate, is used to
control the addition or subtraction procedures. The
architecture of the divider is of simplicity and takes
small hardware. From the simulation we find that
even a very simple architecture the divider can
operate asynchronously and properly. We design
the divider by TSMC’s 0.6µm SPDM process and
this divider (32-b/32-b) is composed of 4051 MOS
transistors.
 Theoretically asynchronous circuits consume
less power. However, it takes 157.5mW for the
32-b/32-b division. We find the reason is that
pseudo NMOS architecture in the GC gate may
consume most of the power. If the pseudo NMOS
of the GC gate can be revised, the power
consumption of this asynchronous divider may be
reduced significantly.

Fig. 6. The Fastest Division

Fig. 7. Full 32 Division Steps

Fig. 8. The VLSI Layout of Divider

Jen-Shiun Chiang, Eugene Lai and Jun-Yao Liao: A Radix-2 Non-Restoring 32-b/32-b Ring Divider with 43
Asynchronous Control Scheme

References

1. Hauck, S., “Asynchronous design
methodologies: an overview,” IEEE
Proceeding, Vol. 83, No. 1, pp. 69-93 (1995).

2. Hwang, K. Computer Arithmetic Principles,
Architecture, and Design, John Wiley & Sons
Inc (1979).

3. Jacob, I. and Brobersen, R. W., “A fully
asynchronous digital signal processor using
self-timed circuits,” IEEE J. Solid-State
Circuits, Vol. 25, No. 11, pp. 1526-1537
(1991).

4. Koren, I. Computer Arithmetic Algorithms,
Prentice-Hall Inc (1993).

5. Kuo, J. B., Chen, H. P. and Huang, H. J., “A
BiCMOS dynamic divider circuit using a
non-restoring iterative architecture with carry
look ahead for CPU VLSI,” IEEE Int.
Symposium on Circuits and Systems (1993).

6. Molina, P. A., Cheung Y. K. and Bormann D.
S., “Quasi delay-insensitive bus for fully
asynchronous systems,” pp. 189-192 (1996).

7. Ohkubo, K. and Suzuki, M., “A 4.4ns CMOS
54x54-b multiplier using pass-transistor
multiplexer,” IEEE J. Solid-State Circuits, Vol.
30, No. 3, pp. 251-256 (1995).

8. Piguet, C., “Logic synthesis of race-free
asynchronous CMOS circuits,” IEEE J.
Solid-State Circuits, Vol. 26, No. 3, pp.
371-380 (1991).

9. Renaudin, M., Hassan, B. E., and Guyot, A.,
“A new asynchronous pipeline scheme:
application to the design of a self-timed ring
divider,” IEEE J. Solid-State Circuits, Vol. 31,
No. 7, pp. 1001-1013 (1996).

10. Sutherland K., “I. E. Micropiplines,” Commun.
ACM, Vol. 32, No. 5, pp. 720-736 (1989).

11. Unger, S. H., “Hazards, critical races, and
metastability,” IEEE Trans. Computers, Vol.
44, No. 6, pp. 754-768, (1995).

12. Weste, N. and Eshraghhian, K., Principles of
CMOS VLSI Design: A Systems Perspective,
2nd ed., Addison-Wesley Publishing Company
(1993).

13. Willians, T. E. and Horowitz, M. A., “A
zero-overhand self-timed 160-ns 54-b CMOS
divider,” IEEE J. Solid-State Circuits, Vol. 26,
No. 11, pp. 1651-1661 (1991).

14. Yuan, J. and Svensson, C., “High-speed
CMOS circuit technique,” IEEE J. Solid-State
Circuits, Vol. 24, No.1, pp. 62-70 (1989).

Manuscript Received: Apr. 12, 1999

Revision Received: Apr. 26, 1999
and Accepted: May. 31, 1999

