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Abstract 

   Division operation is very important in the computer system. 
Nowadays people use a hardware module─divider to implement the 
division algorithm. Conventionally synchronous techniques are 
applied to implement the divider. The synchronous systems always 
need system clock signals to trigger the system. However, the system 
clock of the synchronous system may cause some problems, such as 
clock skew, dynamic power consumption, ..., etc. Compared to 
synchronous systems, asynchronous circuits do not need system clock 
signals and thus the asynchronous system does not have the 
shortcomings mentioned above. Here we will propose a new 
asynchronous architecture for the divider. In this asynchronous 
scheme, the architecture is of simplicity and is very easy for the VLSI 
implementation. By this asynchronous architecture, we use TSMC’s 
0.6um SPDM process to design a 32-b/32-b radix-2 non-restoring 
divider and the spice simulation proves it works. The HSPICE 
simulation shows that it can finish a 32-b/32-b division in between 
3.7ns to 160.2ns. 
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1.  Introduction 

     The divider is a very important device in the 
computer central processing unit (CPU). Basically 
dividers are sequential circuits. Conventionally 
people use synchronous design technique to design 
the divider (Kuo et al., 1993). In the synchronous 
system, we need a global clock to activate the 
operation of the system. The global clock scheme 
used in the synchronous circuits makes the design 
of a system be easy (Sutherland, 1989). However, 
there are several drawbacks in the synchronous 
system with global clock signals (Unger, 1995; 
Hauck, 1995). First, the long path of the system 
clock signals may cause clock skew, and that may 
cause very severe problems and the system may 
thus be malfunctioned. Second, the clock frequency 
of the system clock is decided by the longest period 
among the states. In order to increase the clock 
frequency, people have to do a lot of efforts to 

separate the states to be almost equal operation time, 
and this may reduce the design efficiency and 
increase the design time. Third, nowadays people 
like to use dynamic devices to design circuits (Yuan 
and Svensson, 1989), and the charge and discharge 
of the circuits consume power. The higher the 
frequency of the clock is, the more the power 
consumes. Fourth, the VLSI technology progresses 
significantly nowadays. The implementation 
processes are dependent prone, and that means the 
circuit works in one VLSI implementation process 
may not function properly in another VLSI process 
(Hauck, 1995). Therefore, the same circuit has to be 
redesigned in different implementation processes. 
This characteristic reduces the life time of a 
product. 
     Besides the synchronous design technique, 
there is another design technique ─asynchronous 
design technique. The asynchronous circuit (Jacob 
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and Brobersen, 1991; Pigeut, 1991; Williams and 
Horowitz, 1991; Renaudin et al. 1996) is activated 
by the input event, therefore, there is no need of 
system clocks. In the asynchronous system we do 
not need to worry about the problems which are 
caused by the system clock. There are several 
approaches to design an asynchronous circuit 
(Hauck, 1995), such as bounded delay models, 
micropipelines (Sutherland, 1989), delay insensitive 
circuits, and quasi delay insensitive circuits (Molina 
et al. 1996). The bounded delay models are the 
conventional approach; we have to generate the 
flow table and assign the internal states very 
carefully to prevent the critical race. Due to the 
unpredictable delays we have to do a lot of effort to 
make the state transitions properly, therefore it is 
not practical to the real circuit design (Hauck, 
1995). The other approaches, such as delay 
insensitive circuits and quasi delay insensitive 
circuits, are classified as handshaking mechanism 
approaches which are the main stream of the 
asynchronous design recently. Since the circuit is 
activated by the input event and the handshaking 
signals in the asynchronous circuits, so we do not 
need to take special care of the system clock path 
routing to avoid the clock skew problems. 
Therefore, the asynchronous designs are 
implementation process independent (Hauck, 1995). 
That means the asynchronous design can be fit to 
any kind of VLSI process and do not affect the 
function of the design. There is no system clocks in 
the asynchronous circuits, the power consumption 
which we worry about in the synchronous circuits 
is thus prevented.  
    The divider proposed in this paper is in the 
asynchronous manner, and there is no system clock 
signal to activate the division operation. We use a 
single stage ring to finish the radix-2 non-restoring 
division (Hwang, 1979; Koren, 1993), so the 
hardware is small. About the asynchronous 
controller, we use the very commonly used devices, 
such as exclusive-or gates and latches, and pseudo 
NMOS technique (Wesete and Eshraghhing, 1993) 
to implement this 32-b/32-b divider. In order to 
increase the operation speed, the conditional 
carry-selection adder (CCSA) (Ohkubo and Suzuki, 
1995) is adopted. This divider is designed in a 
parallel-in serial-out manner and takes only 4,051 
MOS transistors. The HSPICE simulation shows 
this divider works well. 
     This paper is arranged as follows. Section I is 
introduction. Section II will describe the 
background of the radix-2 non-restoring division 
algorithm. Based on Section II we propose an 
architecture of the 32-b/32-b divider and is 

expressed in Section III. The circuit design is 
shown in Section IV. The VLSI layout is also 
shown in Section IV. The simulation and certain 
results are shown in Section V. Finally we will give 
the concluding remarks  which are shown in 
Section VI. 

2.  Radix-2 Non-Restoring Division 

     Division is the most difficult operation in the 
computer arithmetic. Basically the division 
algorithm can be classified as multiplicative and 
subtractive approaches. In the multiplicative 
approach, we try to find the multiplicative inverse 
to calculate the quotient. On the other hand, we 
subtract the divisor form the partial remainder 
(dividend) recursively to find the quotient and 
remainder. Here we will concentrate ourselves to 
the subtractive approach. In the subtractive idea the 
algorithm is the same as the division methods that 
we were taught in the elementary school. Suppose 
that there are two n-digit numbers, X and D, which 
represent the dividend and divisor respectively. By 
the division operation we can find a n-digit quotient 
and a n-digit remainder denoted as Q and R 
respectively. The mathematical representations of X, 
D, Q, and R are as following (Koren, 1993),  
 
   R r R q Dj j

j
( ) ( )+

+= × − ×1
1        (1)  

The final quotient is represented as 
Q q q q qn= 1 2 3 ...  

     Due to the complexity and the hardware cost, 
we use radix-2, i.e., r=2, for our design. Therefore, 
equation (1) can be rewritten and represented in 
equation (2) as follows (Koren, 1993). 
 
R R q Dj j

j
( ) ( )+

+= × − ×1
12           (2)  

 
     In the hardware design we have to check the 
subtraction at each step to decide the quotient in 
that digit. There are two ways to find the quotient 
of the current digit. One is the restoring method, 
and the other is the non-restoring method. Without 
loss of generality let us discuss the two methods in 
the radix-2 number system. In the restoring 
approach, when the current partial remainder, 

Where  j = 0, 1, 2, …, n-1 is the iteration number. 
      Rj is the partial remainder at iteration j.   
       r is the radix number. 
       q j +1  is the j+1th digit of the quotient. 
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R j( )+1 , is positive, the current quotient bit is equal 
to 1. On the other hand, if the current partial 
remainder is less than 0, then the current quotient 
bit is set to 0, and then the partial remainder should 
be added with the divisor and restore back to the 
previous partial remainder, R j( ) , and it is so called 
the “restoring” method. In the non-restoring method, 
if the current partial remainder, R j( )+1 , is positive, 
the current quotient bit is equal to 1. On the other 
hand, if the current partial remainder is less than 0, 
then the current quotient bit is set to -1, and at the 
next step we have to add the divisor to the current 
partial remainder, R j( )+1 , to form the next partial 
remainder, R j( )+2 . The quotient map is shown in 
Fig. 1. By this method, there is no need to add 
divisor to restore the previous partial remainder. 
However, the quotient in the non-restoring scheme 
is represented in the signed bit (digit) format. 
Therefore, after we finish the division process, the 
non-restoring method needs an additional step to 
convert the signed bit format to the binary number 
representation. Since we do not need to check the 
polarity of the partial remainder to do the restoring 
of the partial remainder. Therefore, the speed of the 
non-restoring division algorithm is faster than the 
speed of the restoring division algorithm (Hwang, 
1979; Koren, 1993). 

-D

-D

D

D 2D-2D

ri

2ri-1

qi= -1 qi= 1

 
Fig. 1. The Quotient Map of Non-Restoring 

Division  
 
     In the radix-2 division, dividend and divisor 
are usually represented in the normalized format. A 
normalized binary number can be represented in the 
following format. 

A a a an= ( . ... )0 1 1 2 2  
 
     By the non-restoring division approach, we 
find the -1 of the quotient bit can be simply set to 0, 
and the quotient is the actual quotient that we want 
to find. We use a simple example to describe the 

normalized radix-2 non-restoring division algorithm. 
Suppose that we have two numbers, 011011111 and 
01001, where the decimal points are abbreviated 
and the first bits of the dividend and divisor 
represent the sign bits. The division is executing as 
the following procedures. 
 
Example:  
 
011010000 /  01001 => Q  = 010111  &R  
= 0001  
          011010000 
        - )  01001      (+10111) 
          001000000        q1 = 1  
         - )  01001     (+10111) 
           11111000        q2 = 0  
        +)   01001 
            0011100        q3 =1  
           - )  01001   (+10111) 
             001010        q4 =1  
            - )  01001  (+10111) 
R = 0001  <=  00001          q5 
=1  =>  Q  = 010111 
 
     That means in the radix-2 non-restoring 
division approach; we do not need to convert the 
signed digit quotient to the binary representation 
and the calculated quotient is the number that we 
want in the hardware design. For the benefit of the 
speed and hardware cost, we use normalized 
radix-2 non-restoring division algorithm to build 
our divider. 

3.  The Architecture of the Asynchronous 
Divider 

     The architecture of the divider is shown in 
Fig. 2. The basic components of this divider 
consists of multiplexers, counters, adders, shift 
registers, and latches. The operating procedures are 
described in next paragraph. From Fig. 2, we can 
find that the architecture has the characteristics of 
simplicity, and the hardware is small. 
     Suppose that the divisor and dividend are 
ready, we give a starting signal to start the divider. 
According to the non-restoring division algorithm, 
the multiplexer of the divisor will select the positive 
or negative divisor which depends on the sign of 
the result of the 32-b adder (partial remainder). If 
the partial remainder is positive the quotient bit is 
set to 1, and the multiplexer selects the negative 
divisor for the next iteration. On the other hand, the 
quotient bit is set to 0, and the 
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Fig. 2. The Architecture of the Divider 

multiplexer will select the positive divisor for 
the next iteration. The GC (generate complete) 
gate has two sets of inputs, and each set is with 
32-bit length. When both of the two sets are the 
same, the output of the GC gate is set to 0, 
otherwise, the output of the GC is set to 1. The 
detail circuit design of GC will be described in 
Section IV. The GC gate and the feedback latch 
together will generate a self-timed clock signal. 
The self-timed clock signal is used to trigger 
the counter and the feedback latch. Originally 
the output of GC is 0, as soon as the starting 
signal is triggered, then the output of GC 
becomes 1. This GC signal will activate the 
counter and make the counter to count 1 up. 
The feedback latch is designed as a level 
triggered latch. As soon as the counter counts, 
the multiplexer in the dividend side will select 
the result from the feedback latch. When the 
adder finishes summation operation, the two 
sets of inputs of GC are the same and cause the 
output of GC to be 0, and the feedback latch 
stops latching data. At this moment the 31st bit 
of the partial remainder will select either 
positive or negative divisor to the adder and do 
the addition operation. By the way, the 31st bit 
of the partial remainder is shifted into the MSB 
of the shift register to form the current bit of 
the quotient. As soon as the addition operation 
of the adder starts, the output of GC changes to 
1, and the feedback latch starts latching the 
partial remainder, and the counter counts again. 

Recursively, the operation will repeat 32 times, 
and the counter will count 32 times and then set 
the ripple carry bit of the counter to 1 and the 
division procedure stops. Finally the quotient 
will be found in the output latch. 

4.  The Circuit Design and the 
Asynchronous Divider 

     The key components of this divider are the 
adder and the GC gate. In order to increase the 
speed of the division, the conditional 
carry-selection adder (CCSA) (Ohkubo and Suziki, 
1995) is used. The block diagram of the CCSA is 
shown in Fig. 3. This adder combines the 
characteristics of carry look-ahead adder and 
conditional sum adder (Hwang, 1979). The first 
level of the 32-b CCSA consists of a series of 4-b 
CLA adders (8 sets). Each CLA adder will generate 
two sets of outputs, where one is without carry-in 
sum and carry, and the other is with carry-in sum 
and carry. The sums with carry or without carry 
will be selected by the CSS to form the exact sum. 
The carries of each CLA adder go into the CLA2 
block to find the correct carries. Based on the 
correct carries, the CSS can select the right partial 
sums which form the CLA adders. The detail of 
CCSA please refer to (Ohkubo and Suziki, 1995). 
The speed of the CCSA is very fast but the 
hardware is smaller than the traditional conditional 
sum adder. This adder can satisfy our requirement. 

 
Fig. 3. The Block Diagram of the CCSA 

 
     The GC gate is designed by the pseudo 
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NMOS approach which is shown in Fig. 4. In the 
GC circuit, the exclusive-or gate is used to check 
the completion of the summation of the adder. One 
input of the exclusive-or gate is from the output of 
the feedback latch, and the other input is from the 
corresponding bit of the partial remainder. From 
Fig. 2 we find that the feedback latch is a level 
triggered latch, and the multiplexer in the dividend 
side selects the input from the feedback latch. When 
both inputs of GC are different, it means that the 
adder has not finished summation operation yet, 
and the feedback latch is still latching the output of 
the adder. As soon as the adder finishes summation, 
the exclusive-or gate of GC becomes 0 and makes 
the feedback latch stop latching data but hold the 
latched data. By the pseudo NMOS and 
exclusive-or gates arrangement as shown in Fig. 4, 
if one output of the exclusive-or gate is 1, the 
pseudo NMOS circuit will discharge and make the 
output of the GC to be 1. Only all the outputs of the 
exclusive-or gates are 0’s, then the “output” of Fig. 
4 becomes 0. This “0” signal of GC will cause the 
feedback latch to hold the latched data, and 
generate a series of self-timed clock signals. 

 

 
Fig. 4. The Structure of GC Gate 

 
 
     By the arrangement of GC and CCSA adder, 
the divider can work recursively. We need only one 
trigger signal (“starting”) to tell the divider to do 
the division, and no external clock is needed. When 
the division operation is finished, the quotient is 
latched in the latch, and then the system stops there 
and idle to wait for the next sets of divisor and 
dividend, and the asynchronous operation mode is 
thus formed. 

5.  The Simulation and the VLSI Layout 

     By the architecture and the circuit design 
technique discussed in Section III and IV, we use 
TSMC’s 0.6 µ m SPDM process to design and 
implement a 32-b/32-b parallel-in serial-out divider. 
The HSPICE simulation of the GC gate is shown in 
Fig. 5. Because the speed of the addition depends 
on the amounts of the two inputs of the adder. In 
the asynchronous operation mode, the finished time 
for each operation should be different. From Fig. 5 
we can clearly find that the period of the given 
cycles formed by the GC are different. However, it 
can work properly. 

 

 
Fig. 5. The Period of Subtraction Operation 

      
     The fastest division needs only 3.7ns and the 
HSPICE simulation is shown in Fig. 6. If we need 
32 division steps, it takes 160.2ns and the HSPICE 
simulation is shown in Fig. 7. The specification of 
this divider is shown in Table. 1. The VLSI layout 
of this 32-b/32-b radix-2 non-restoring divider is 
shown in Fig. 8. 
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Table. 1. The Specification of the Divider 

6.  Conclusion 

     A new architecture of the 32-b/32-b radix-2 
non-restoring asynchronous divider is proposed and 
implemented. This is a ring divider, and the 
asynchronous component, GC gate, is used to 
control the addition or subtraction procedures. The 
architecture of the divider is of simplicity and takes 
small hardware. From the simulation we find that 
even a very simple architecture the divider can 
operate asynchronously and properly. We design 
the divider by TSMC’s 0.6µm SPDM process and 
this divider (32-b/32-b) is composed of 4051 MOS 
transistors.  
     Theoretically asynchronous circuits consume 
less power. However, it takes 157.5mW for the 
32-b/32-b division. We find the reason is that 
pseudo NMOS architecture in the GC gate may 
consume most of the power. If the pseudo NMOS 
of the GC gate can be revised, the power 
consumption of this asynchronous divider may be 
reduced significantly. 
 
 

 

Fig. 6. The Fastest Division 
 

 
Fig. 7. Full 32 Division Steps 

 
 
 

 

 
Fig. 8. The VLSI Layout of Divider 
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